D7(1):S3^2

    order := 36,
    length := 1209600,
    subgroup := MatrixGroup(9, Integer Ring) of order 2^2 * 3^2
    Generators:
        [ 5  2  2  2  0  2  0  2  2]
        [-2  0 -1 -1  0 -1  0 -1 -1]
        [-2 -1 -1 -1  0 -1  0  0 -1]
        [-2 -1 -1  0  0 -1  0 -1 -1]
        [ 0  0  0  0  1  0  0  0  0]
        [-2 -1 -1 -1  0 -1  0 -1  0]
        [ 0  0  0  0  0  0  1  0  0]
        [-2 -1  0 -1  0 -1  0 -1 -1]
        [-2 -1 -1 -1  0  0  0 -1 -1]

        [11  3  4  2  5  5  4  3  4]
        [-3 -1 -1  0 -1 -2 -1 -1 -1]
        [-4 -1 -2 -1 -2 -2 -1 -1 -1]
        [-2  0 -1  0 -1 -1 -1  0 -1]
        [-5 -1 -2 -1 -2 -2 -2 -2 -2]
        [-5 -2 -2 -1 -2 -2 -2 -1 -2]
        [-4 -1 -1 -1 -2 -2 -1 -1 -2]
        [-3 -1 -1  0 -2 -1 -1 -1 -1]
        [-4 -1 -1 -1 -2 -2 -2 -1 -1]

        [ 2  1  0  0  0  1  0  1  0]
        [ 0  0  0  1  0  0  0  0  0]
        [ 0  0  1  0  0  0  0  0  0]
        [-1  0  0  0  0 -1  0 -1  0]
        [ 0  0  0  0  1  0  0  0  0]
        [-1 -1  0  0  0  0  0 -1  0]
        [ 0  0  0  0  0  0  1  0  0]
        [-1 -1  0  0  0 -1  0  0  0]
        [ 0  0  0  0  0  0  0  0  1]

        [ 9  4  2  3  5  3  2  3  2]
        [-1 -1  0  0 -1  0  0  0  0]
        [-3 -1  0 -1 -2 -1 -1 -1 -1]
        [-2 -1  0 -1 -1 -1  0 -1  0]
        [-4 -2 -1 -2 -2 -1 -1 -1 -1]
        [-4 -2 -1 -1 -2 -1 -1 -2 -1]
        [-3 -1 -1 -1 -2 -1  0 -1 -1]
        [-4 -2 -1 -1 -2 -2 -1 -1 -1]
        [-3 -1 -1 -1 -2 -1 -1 -1  0]>

Orbit type:{2,2,3,3,3,3,4,4,6,6,6,6,6,6,12,12,12,12,12,12,36,36,36}

Orbit:
1
{@
    Mod: ( 1  0  0  0 -1 -1  0  0  0),
    Mod: ( 3 -1 -1 -1 -1 -1  0 -1 -2)
@}
Intersection Matrix:
[-1  1]
[ 1 -1]
Stabilizer Group Name:
C3:S3
MatrixGroup(9, Integer Ring)
Generators:
    [11  3  4  2  5  5  4  3  4]
    [-3 -1 -1  0 -1 -2 -1 -1 -1]
    [-4 -1 -2 -1 -2 -2 -1 -1 -1]
    [-2  0 -1  0 -1 -1 -1  0 -1]
    [-5 -1 -2 -1 -2 -2 -2 -2 -2]
    [-5 -2 -2 -1 -2 -2 -2 -1 -2]
    [-4 -1 -1 -1 -2 -2 -1 -1 -2]
    [-3 -1 -1  0 -2 -1 -1 -1 -1]
    [-4 -1 -1 -1 -2 -2 -2 -1 -1]

    [ 2  1  0  0  0  1  0  1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  1  0  0  0  0  0  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

    [ 9  4  2  3  5  3  2  3  2]
    [-1 -1  0  0 -1  0  0  0  0]
    [-3 -1  0 -1 -2 -1 -1 -1 -1]
    [-2 -1  0 -1 -1 -1  0 -1  0]
    [-4 -2 -1 -2 -2 -1 -1 -1 -1]
    [-4 -2 -1 -1 -2 -1 -1 -2 -1]
    [-3 -1 -1 -1 -2 -1  0 -1 -1]
    [-4 -2 -1 -1 -2 -2 -1 -1 -1]
    [-3 -1 -1 -1 -2 -1 -1 -1  0]

2
{@
    Mod: ( 5 -2 -2 -2 -1 -1 -2 -2 -2),
    Mod: ( 3 -1 -1 -1 -1 -1 -2 -1  0)
@}
Intersection Matrix:
[-1  1]
[ 1 -1]
Stabilizer Group Name:
C3:S3
MatrixGroup(9, Integer Ring)
Generators:
    [11  3  4  2  5  5  4  3  4]
    [-3 -1 -1  0 -1 -2 -1 -1 -1]
    [-4 -1 -2 -1 -2 -2 -1 -1 -1]
    [-2  0 -1  0 -1 -1 -1  0 -1]
    [-5 -1 -2 -1 -2 -2 -2 -2 -2]
    [-5 -2 -2 -1 -2 -2 -2 -1 -2]
    [-4 -1 -1 -1 -2 -2 -1 -1 -2]
    [-3 -1 -1  0 -2 -1 -1 -1 -1]
    [-4 -1 -1 -1 -2 -2 -2 -1 -1]

    [ 2  1  0  0  0  1  0  1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  1  0  0  0  0  0  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

    [ 9  4  2  3  5  3  2  3  2]
    [-1 -1  0  0 -1  0  0  0  0]
    [-3 -1  0 -1 -2 -1 -1 -1 -1]
    [-2 -1  0 -1 -1 -1  0 -1  0]
    [-4 -2 -1 -2 -2 -1 -1 -1 -1]
    [-4 -2 -1 -1 -2 -1 -1 -2 -1]
    [-3 -1 -1 -1 -2 -1  0 -1 -1]
    [-4 -2 -1 -1 -2 -2 -1 -1 -1]
    [-3 -1 -1 -1 -2 -1 -1 -1  0]

3
{@
    Mod: ( 2  0 -1  0  0 -1 -1 -1 -1),
    Mod: ( 1 -1  0 -1  0  0  0  0  0),
    Mod: ( 6 -2 -2 -2 -3 -2 -2 -2 -2)
@}
Intersection Matrix:
[-1  2  2]
[ 2 -1  2]
[ 2  2 -1]
Stabilizer Group Name:
D6
MatrixGroup(9, Integer Ring)
Generators:
    [ 5  2  2  2  0  2  0  2  2]
    [-2  0 -1 -1  0 -1  0 -1 -1]
    [-2 -1 -1 -1  0 -1  0  0 -1]
    [-2 -1 -1  0  0 -1  0 -1 -1]
    [ 0  0  0  0  1  0  0  0  0]
    [-2 -1 -1 -1  0 -1  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-2 -1  0 -1  0 -1  0 -1 -1]
    [-2 -1 -1 -1  0  0  0 -1 -1]

    [11  3  4  2  5  5  4  3  4]
    [-3 -1 -1  0 -1 -2 -1 -1 -1]
    [-4 -1 -2 -1 -2 -2 -1 -1 -1]
    [-2  0 -1  0 -1 -1 -1  0 -1]
    [-5 -1 -2 -1 -2 -2 -2 -2 -2]
    [-5 -2 -2 -1 -2 -2 -2 -1 -2]
    [-4 -1 -1 -1 -2 -2 -1 -1 -2]
    [-3 -1 -1  0 -2 -1 -1 -1 -1]
    [-4 -1 -1 -1 -2 -2 -2 -1 -1]

    [ 2  1  0  0  0  1  0  1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  1  0  0  0  0  0  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

4
{@
    Mod: ( 4 -2 -1 -1 -1 -2 -1 -2 -1),
    Mod: ( 2 -1 -1  0 -1  0 -1  0 -1),
    Mod: ( 3  0 -1 -2 -1 -1 -1 -1 -1)
@}
Intersection Matrix:
[-1  2  2]
[ 2 -1  2]
[ 2  2 -1]
Stabilizer Group Name:
D6
MatrixGroup(9, Integer Ring)
Generators:
    [12  3  4  3  5  4  4  4  6]
    [-3  0 -1 -1 -1 -1 -1 -1 -2]
    [-4 -1 -1 -1 -2 -1 -1 -2 -2]
    [-3 -1 -1  0 -1 -1 -1 -1 -2]
    [-5 -1 -2 -1 -2 -2 -2 -2 -2]
    [-4 -1 -1 -1 -2 -1 -2 -1 -2]
    [-4 -1 -1 -1 -2 -2 -1 -1 -2]
    [-4 -1 -2 -1 -2 -1 -1 -1 -2]
    [-6 -2 -2 -2 -2 -2 -2 -2 -3]

    [ 8  3  2  3  5  2  2  2  2]
    [-1  0  0 -1 -1  0  0  0  0]
    [-3 -1  0 -1 -2 -1 -1 -1 -1]
    [-1 -1  0  0 -1  0  0  0  0]
    [-4 -2 -1 -2 -2 -1 -1 -1 -1]
    [-3 -1 -1 -1 -2  0 -1 -1 -1]
    [-3 -1 -1 -1 -2 -1  0 -1 -1]
    [-3 -1 -1 -1 -2 -1 -1  0 -1]
    [-3 -1 -1 -1 -2 -1 -1 -1  0]

    [11  4  4  5  5  3  2  3  4]
    [-2 -1 -1 -1 -1  0  0  0 -1]
    [-5 -2 -2 -2 -2 -2 -1 -1 -2]
    [-3 -1 -1 -2 -1 -1  0 -1 -1]
    [-4 -2 -1 -2 -2 -1 -1 -1 -1]
    [-4 -1 -2 -2 -2 -1 -1 -1 -1]
    [-3 -1 -1 -1 -2 -1  0 -1 -1]
    [-4 -1 -1 -2 -2 -1 -1 -1 -2]
    [-5 -2 -2 -2 -2 -1 -1 -2 -2]

5
{@
    Mod: ( 4 -2 -1 -2 -2 -1 -1 -1 -1),
    Mod: ( 5 -1 -2 -1 -2 -2 -2 -2 -2),
    Mod: (0 0 0 0 1 0 0 0 0)
@}
Intersection Matrix:
[-1  2  2]
[ 2 -1  2]
[ 2  2 -1]
Stabilizer Group Name:
D6
MatrixGroup(9, Integer Ring)
Generators:
    [ 5  2  2  2  0  2  0  2  2]
    [-2  0 -1 -1  0 -1  0 -1 -1]
    [-2 -1 -1 -1  0 -1  0  0 -1]
    [-2 -1 -1  0  0 -1  0 -1 -1]
    [ 0  0  0  0  1  0  0  0  0]
    [-2 -1 -1 -1  0 -1  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-2 -1  0 -1  0 -1  0 -1 -1]
    [-2 -1 -1 -1  0  0  0 -1 -1]

    [11  3  4  2  5  5  4  3  4]
    [-3 -1 -1  0 -1 -2 -1 -1 -1]
    [-4 -1 -2 -1 -2 -2 -1 -1 -1]
    [-2  0 -1  0 -1 -1 -1  0 -1]
    [-5 -1 -2 -1 -2 -2 -2 -2 -2]
    [-5 -2 -2 -1 -2 -2 -2 -1 -2]
    [-4 -1 -1 -1 -2 -2 -1 -1 -2]
    [-3 -1 -1  0 -2 -1 -1 -1 -1]
    [-4 -1 -1 -1 -2 -2 -2 -1 -1]

    [ 2  1  0  0  0  1  0  1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  1  0  0  0  0  0  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

6
{@
    Mod: ( 4 -1 -1 -2 -1 -2 -1 -2 -1),
    Mod: ( 3 -2 -1  0 -1 -1 -1 -1 -1),
    Mod: ( 2  0 -1 -1 -1  0 -1  0 -1)
@}
Intersection Matrix:
[-1  2  2]
[ 2 -1  2]
[ 2  2 -1]
Stabilizer Group Name:
D6
MatrixGroup(9, Integer Ring)
Generators:
    [11  3  4  2  5  5  4  3  4]
    [-3 -1 -1  0 -1 -2 -1 -1 -1]
    [-4 -1 -2 -1 -2 -2 -1 -1 -1]
    [-2  0 -1  0 -1 -1 -1  0 -1]
    [-5 -1 -2 -1 -2 -2 -2 -2 -2]
    [-5 -2 -2 -1 -2 -2 -2 -1 -2]
    [-4 -1 -1 -1 -2 -2 -1 -1 -2]
    [-3 -1 -1  0 -2 -1 -1 -1 -1]
    [-4 -1 -1 -1 -2 -2 -2 -1 -1]

    [ 3  1  1  0  0  2  1  0  1]
    [-1 -1  0  0  0 -1  0  0  0]
    [-1  0 -1  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  1  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-2 -1 -1  0  0 -1 -1  0 -1]
    [-1  0  0  0  0 -1  0  0 -1]
    [ 0  0  0  1  0  0  0  0  0]
    [-1  0  0  0  0 -1 -1  0  0]

    [ 4  2  2  1  0  1  0  1  2]
    [-2 -1 -1  0  0 -1  0 -1 -1]
    [-2 -1 -1 -1  0 -1  0  0 -1]
    [-1  0 -1  0  0  0  0  0 -1]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1 -1  0  0  0  0  0  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0  0  0  0 -1]
    [-2 -1 -1 -1  0  0  0 -1 -1]

7
{@
    Mod: ( 3 -1  0 -1 -1 -1 -1 -1 -2),
    Mod: ( 3 -1 -1 -1 -1 -2 -1  0 -1),
    Mod: ( 1  0  0  0 -1  0  0 -1  0),
    Mod: ( 3 -1 -2 -1 -1 -1  0 -1 -1)
@}
Intersection Matrix:
[-1  1  1  2]
[ 1 -1  2  1]
[ 1  2 -1  1]
[ 2  1  1 -1]
Stabilizer Group Name:
C3^2
MatrixGroup(9, Integer Ring)
Generators:
    [ 2  1  0  0  0  1  0  1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  1  0  0  0  0  0  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

    [ 9  4  2  3  5  3  2  3  2]
    [-1 -1  0  0 -1  0  0  0  0]
    [-3 -1  0 -1 -2 -1 -1 -1 -1]
    [-2 -1  0 -1 -1 -1  0 -1  0]
    [-4 -2 -1 -2 -2 -1 -1 -1 -1]
    [-4 -2 -1 -1 -2 -1 -1 -2 -1]
    [-3 -1 -1 -1 -2 -1  0 -1 -1]
    [-4 -2 -1 -1 -2 -2 -1 -1 -1]
    [-3 -1 -1 -1 -2 -1 -1 -1  0]

8
{@
    Mod: ( 3 -1 -1 -1 -1  0 -1 -2 -1),
    Mod: ( 3 -1  0 -1 -1 -1 -2 -1 -1),
    Mod: ( 3 -1 -2 -1 -1 -1 -1 -1  0),
    Mod: ( 5 -2 -2 -2 -1 -2 -2 -1 -2)
@}
Intersection Matrix:
[-1  1  1  2]
[ 1 -1  2  1]
[ 1  2 -1  1]
[ 2  1  1 -1]
Stabilizer Group Name:
C3^2
MatrixGroup(9, Integer Ring)
Generators:
    [ 2  1  0  0  0  1  0  1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  1  0  0  0  0  0  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

    [ 9  4  2  3  5  3  2  3  2]
    [-1 -1  0  0 -1  0  0  0  0]
    [-3 -1  0 -1 -2 -1 -1 -1 -1]
    [-2 -1  0 -1 -1 -1  0 -1  0]
    [-4 -2 -1 -2 -2 -1 -1 -1 -1]
    [-4 -2 -1 -1 -2 -1 -1 -2 -1]
    [-3 -1 -1 -1 -2 -1  0 -1 -1]
    [-4 -2 -1 -1 -2 -2 -1 -1 -1]
    [-3 -1 -1 -1 -2 -1 -1 -1  0]
9
{@
    Mod: ( 2 -1  0  0 -1  0 -1 -1 -1),
    Mod: ( 4 -2 -2 -1 -1 -2 -1 -1 -1),
    Mod: ( 4 -1 -2 -2 -1 -2 -1 -1 -1),
    Mod: ( 2  0  0 -1 -1  0 -1 -1 -1),
    Mod: ( 3 -1  0 -1 -1 -1 -1 -2 -1),
    Mod: ( 3 -1 -2 -1 -1 -1 -1  0 -1)
@}
Intersection Matrix:
[-1  2  3  0  0  2]
[ 2 -1  0  3  2  0]
[ 3  0 -1  2  2  0]
[ 0  3  2 -1  0  2]
[ 0  2  2  0 -1  3]
[ 2  0  0  2  3 -1]
Stabilizer Group Name:
S3
MatrixGroup(9, Integer Ring)
Generators:
    [12  3  4  3  5  4  4  4  6]
    [-3  0 -1 -1 -1 -1 -1 -1 -2]
    [-4 -1 -1 -1 -2 -1 -1 -2 -2]
    [-3 -1 -1  0 -1 -1 -1 -1 -2]
    [-5 -1 -2 -1 -2 -2 -2 -2 -2]
    [-4 -1 -1 -1 -2 -1 -2 -1 -2]
    [-4 -1 -1 -1 -2 -2 -1 -1 -2]
    [-4 -1 -2 -1 -2 -1 -1 -1 -2]
    [-6 -2 -2 -2 -2 -2 -2 -2 -3]

    [ 8  3  2  3  5  2  2  2  2]
    [-1  0  0 -1 -1  0  0  0  0]
    [-3 -1  0 -1 -2 -1 -1 -1 -1]
    [-1 -1  0  0 -1  0  0  0  0]
    [-4 -2 -1 -2 -2 -1 -1 -1 -1]
    [-3 -1 -1 -1 -2  0 -1 -1 -1]
    [-3 -1 -1 -1 -2 -1  0 -1 -1]
    [-3 -1 -1 -1 -2 -1 -1  0 -1]
    [-3 -1 -1 -1 -2 -1 -1 -1  0]

10
{@
    Mod: ( 4 -1 -2 -1 -2 -1 -1 -2 -1),
    Mod: ( 4 -1 -1 -1 -1 -2 -2 -1 -2),
    Mod: ( 1  0 -1  0  0  0  0 -1  0),
    Mod: ( 2 -1 -1 -1 -1  0  0 -1  0),
    Mod: ( 2 -1  0 -1  0 -1 -1  0 -1),
    Mod: ( 5 -2 -1 -2 -2 -2 -2 -1 -2)
@}
Intersection Matrix:
[-1  2  0  0  3  2]
[ 2 -1  2  3  0  0]
[ 0  2 -1  0  2  3]
[ 0  3  0 -1  2  2]
[ 3  0  2  2 -1  0]
[ 2  0  3  2  0 -1]
Stabilizer Group Name:
S3
MatrixGroup(9, Integer Ring)
Generators:
    [ 5  2  2  2  0  2  0  2  2]
    [-2  0 -1 -1  0 -1  0 -1 -1]
    [-2 -1 -1 -1  0 -1  0  0 -1]
    [-2 -1 -1  0  0 -1  0 -1 -1]
    [ 0  0  0  0  1  0  0  0  0]
    [-2 -1 -1 -1  0 -1  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-2 -1  0 -1  0 -1  0 -1 -1]
    [-2 -1 -1 -1  0  0  0 -1 -1]

    [ 2  1  0  0  0  1  0  1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  1  0  0  0  0  0  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

11
{@
    Mod: ( 6 -2 -2 -2 -2 -2 -3 -2 -2),
    Mod: ( 2 -1 -1 -1  0  0 -1 -1  0),
    Mod: ( 5 -2 -2 -2 -2 -1 -2 -2 -1),
    Mod: ( 4 -2 -1 -2 -1 -1 -2 -1 -1),
    Mod: ( 3 -1 -1 -1  0 -1 -2 -1 -1),
    Mod: ( 4 -1 -2 -1 -1 -1 -2 -2 -1)
@}
Intersection Matrix:
[-1  1  0  0  0  0]
[ 1 -1  0  0  0  0]
[ 0  0 -1  0  1  0]
[ 0  0  0 -1  0  1]
[ 0  0  1  0 -1  0]
[ 0  0  0  1  0 -1]
Stabilizer Group Name:
S3
MatrixGroup(9, Integer Ring)
Generators:
    [ 5  2  2  2  0  2  0  2  2]
    [-2  0 -1 -1  0 -1  0 -1 -1]
    [-2 -1 -1 -1  0 -1  0  0 -1]
    [-2 -1 -1  0  0 -1  0 -1 -1]
    [ 0  0  0  0  1  0  0  0  0]
    [-2 -1 -1 -1  0 -1  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-2 -1  0 -1  0 -1  0 -1 -1]
    [-2 -1 -1 -1  0  0  0 -1 -1]

    [ 2  1  0  0  0  1  0  1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  1  0  0  0  0  0  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

12
{@
    Mod: ( 3 -1 -1 -1 -1  0 -2 -1 -1),
    Mod: ( 4 -2 -1 -1 -1 -1 -2 -2 -1),
    Mod: ( 4 -1 -1 -2 -1 -1 -2 -2 -1),
    Mod: ( 5 -2 -2 -2 -1 -2 -2 -2 -1),
    Mod: ( 4 -2 -2 -1 -1 -1 -2 -1 -1),
    Mod: ( 4 -1 -2 -2 -1 -1 -2 -1 -1)
@}
Intersection Matrix:
[-1  0  0  1  0  0]
[ 0 -1  0  0  0  1]
[ 0  0 -1  0  1  0]
[ 1  0  0 -1  0  0]
[ 0  0  1  0 -1  0]
[ 0  1  0  0  0 -1]
Stabilizer Group Name:
S3
MatrixGroup(9, Integer Ring)
Generators:
    [ 8  1  3  1  4  3  3  3  3]
    [-3  0 -1 -1 -2 -1 -1 -1 -1]
    [-2  0  0  0 -1 -1 -1 -1 -1]
    [-3 -1 -1  0 -2 -1 -1 -1 -1]
    [-5 -1 -2 -1 -2 -2 -2 -2 -2]
    [-2  0 -1  0 -1  0 -1 -1 -1]
    [-2  0 -1  0 -1 -1  0 -1 -1]
    [-2  0 -1  0 -1 -1 -1  0 -1]
    [-2  0 -1  0 -1 -1 -1 -1  0]

    [ 9  4  2  4  4  2  2  2  4]
    [-4 -1 -1 -2 -2 -1 -1 -1 -2]
    [-2 -1  0 -1 -1  0  0 -1 -1]
    [-4 -2 -1 -1 -2 -1 -1 -1 -2]
    [-4 -2 -1 -2 -2 -1 -1 -1 -1]
    [-2 -1  0 -1 -1  0 -1  0 -1]
    [-2 -1  0 -1 -1 -1  0  0 -1]
    [-2 -1 -1 -1 -1  0  0  0 -1]
    [-4 -2 -1 -2 -1 -1 -1 -1 -2]

13
{@
    Mod: ( 2 -1  0  0 -1 -1  0 -1 -1),
    Mod: ( 2 -1 -1  0 -1 -1  0  0 -1),
    Mod: ( 2  0 -1 -1 -1 -1  0  0 -1),
    Mod: ( 1  0  0  0 -1  0  0  0 -1),
    Mod: ( 2  0  0 -1 -1 -1  0 -1 -1),
    Mod: ( 3 -1 -1 -1 -1 -2  0 -1 -1)
@}
Intersection Matrix:
[-1  0  1  0  0  0]
[ 0 -1  0  0  1  0]
[ 1  0 -1  0  0  0]
[ 0  0  0 -1  0  1]
[ 0  1  0  0 -1  0]
[ 0  0  0  1  0 -1]
Stabilizer Group Name:
S3
MatrixGroup(9, Integer Ring)
Generators:
    [ 8  1  3  1  4  3  3  3  3]
    [-3  0 -1 -1 -2 -1 -1 -1 -1]
    [-2  0  0  0 -1 -1 -1 -1 -1]
    [-3 -1 -1  0 -2 -1 -1 -1 -1]
    [-5 -1 -2 -1 -2 -2 -2 -2 -2]
    [-2  0 -1  0 -1  0 -1 -1 -1]
    [-2  0 -1  0 -1 -1  0 -1 -1]
    [-2  0 -1  0 -1 -1 -1  0 -1]
    [-2  0 -1  0 -1 -1 -1 -1  0]

    [ 9  4  2  4  4  2  2  2  4]
    [-4 -1 -1 -2 -2 -1 -1 -1 -2]
    [-2 -1  0 -1 -1  0  0 -1 -1]
    [-4 -2 -1 -1 -2 -1 -1 -1 -2]
    [-4 -2 -1 -2 -2 -1 -1 -1 -1]
    [-2 -1  0 -1 -1  0 -1  0 -1]
    [-2 -1  0 -1 -1 -1  0  0 -1]
    [-2 -1 -1 -1 -1  0  0  0 -1]
    [-4 -2 -1 -2 -1 -1 -1 -1 -2]

14
{@
    Mod: ( 1  0  0  0  0 -1  0  0 -1),
    Mod: ( 3 -1 -1 -1 -2 -1  0 -1 -1),
    Mod: ( 2 -1  0 -1 -1 -1  0  0 -1),
    Mod: (0 0 0 0 0 0 1 0 0),
    Mod: ( 2  0 -1  0 -1 -1  0 -1 -1),
    Mod: ( 4 -1 -1 -1 -2 -2 -1 -1 -2)
@}
Intersection Matrix:
[-1  1  0  0  0  0]
[ 1 -1  0  0  0  0]
[ 0  0 -1  0  1  0]
[ 0  0  0 -1  0  1]
[ 0  0  1  0 -1  0]
[ 0  0  0  1  0 -1]
Stabilizer Group Name:
S3
MatrixGroup(9, Integer Ring)
Generators:
    [ 5  2  2  2  0  2  0  2  2]
    [-2  0 -1 -1  0 -1  0 -1 -1]
    [-2 -1 -1 -1  0 -1  0  0 -1]
    [-2 -1 -1  0  0 -1  0 -1 -1]
    [ 0  0  0  0  1  0  0  0  0]
    [-2 -1 -1 -1  0 -1  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-2 -1  0 -1  0 -1  0 -1 -1]
    [-2 -1 -1 -1  0  0  0 -1 -1]

    [ 2  1  0  0  0  1  0  1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  1  0  0  0  0  0  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

15
{@
    Mod: ( 2 -1 -1 -1  0 -1 -1  0  0),
    Mod: ( 6 -2 -3 -2 -2 -2 -2 -2 -2),
    Mod: ( 2 -1  0 -1  0  0 -1 -1 -1),
    Mod: ( 5 -2 -2 -2 -2 -2 -2 -1 -1),
    Mod: ( 4 -2 -2 -2 -1 -1 -1 -1 -1),
    Mod: ( 5 -2 -1 -2 -2 -1 -2 -2 -2),
    Mod: ( 4 -1 -2 -1 -1 -2 -2 -1 -1),
    Mod: ( 4 -1 -1 -1 -2 -1 -2 -2 -1),
    Mod: ( 2 -1  0 -1 -1  0 -1 -1  0),
    Mod: ( 3 -1 -2 -1  0 -1 -1 -1 -1),
    Mod: ( 1  0  0  0  0  0 -1 -1  0),
    Mod: ( 4 -1 -1 -1 -1 -1 -2 -2 -2)
@}
Intersection Matrix:
[-1  1  1  0  0  2  0  2  1  0  1  2]
[ 1 -1  2  0  0  1  0  1  2  0  2  1]
[ 1  2 -1  2  1  0  2  1  0  1  0  0]
[ 0  0  2 -1  0  1  0  1  1  1  2  2]
[ 0  0  1  0 -1  1  1  2  1  0  2  2]
[ 2  1  0  1  1 -1  2  0  0  2  1  0]
[ 0  0  2  0  1  2 -1  1  2  0  1  1]
[ 2  1  1  1  2  0  1 -1  0  2  0  0]
[ 1  2  0  1  1  0  2  0 -1  2  0  1]
[ 0  0  1  1  0  2  0  2  2 -1  1  1]
[ 1  2  0  2  2  1  1  0  0  1 -1  0]
[ 2  1  0  2  2  0  1  0  1  1  0 -1]
Stabilizer Group Name:
C3
MatrixGroup(9, Integer Ring)
Generators:
    [ 2  1  0  0  0  1  0  1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  1  0  0  0  0  0  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]


16
{@
    Mod: ( 4 -1 -2 -1 -1 -2 -1 -1 -2),
    Mod: ( 2 -1  0 -1 -1  0  0 -1 -1),
    Mod: ( 4 -1 -1 -1 -2 -1 -1 -2 -2),
    Mod: ( 2  0  0  0 -1 -1 -1 -1 -1),
    Mod: ( 3 -1  0 -1 -2 -1 -1 -1 -1),
    Mod: (0 0 1 0 0 0 0 0 0),
    Mod: ( 2 -1 -1 -1 -1 -1  0  0  0),
    Mod: ( 2 -1 -1 -1  0 -1  0  0 -1),
    Mod: ( 1  0  0  0  0  0  0 -1 -1),
    Mod: ( 1  0 -1  0  0 -1  0  0  0),
    Mod: ( 5 -2 -2 -2 -2 -2 -1 -1 -2),
    Mod: ( 4 -1 -2 -1 -2 -2 -1 -1 -1)
@}
Intersection Matrix:
[-1  2  1  1  2  2  1  0  1  0  0  0]
[ 2 -1  0  1  0  0  1  1  0  2  1  2]
[ 1  0 -1  0  0  1  2  2  0  2  1  1]
[ 1  1  0 -1  0  0  2  2  0  1  2  1]
[ 2  0  0  0 -1  0  1  2  1  2  1  1]
[ 2  0  1  0  0 -1  1  1  0  1  2  2]
[ 1  1  2  2  1  1 -1  0  2  0  0  0]
[ 0  1  2  2  2  1  0 -1  1  0  0  1]
[ 1  0  0  0  1  0  2  1 -1  1  2  2]
[ 0  2  2  1  2  1  0  0  1 -1  1  0]
[ 0  1  1  2  1  2  0  0  2  1 -1  0]
[ 0  2  1  1  1  2  0  1  2  0  0 -1]
Stabilizer Group Name:
C3
MatrixGroup(9, Integer Ring)
Generators:
    [ 2  1  0  0  0  1  0  1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  1  0  0  0  0  0  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

17
{@
    Mod: ( 3 -1 -1 -1 -1 -1 -2  0 -1),
    Mod: ( 4 -1 -1 -2 -1 -2 -2 -1 -1),
    Mod: ( 3 -1 -2 -1 -1  0 -1 -1 -1),
    Mod: ( 4 -2 -2 -1 -1 -1 -1 -2 -1),
    Mod: ( 4 -2 -1 -1 -1 -1 -2 -1 -2),
    Mod: ( 4 -2 -1 -1 -1 -2 -2 -1 -1),
    Mod: ( 2  0 -1 -1 -1  0 -1 -1  0),
    Mod: ( 5 -2 -1 -2 -1 -2 -2 -2 -2),
    Mod: ( 3 -1 -1 -1 -1 -1 -1 -2  0),
    Mod: ( 4 -1 -2 -2 -1 -1 -1 -2 -1),
    Mod: ( 2 -1 -1  0 -1  0 -1 -1  0),
    Mod: ( 4 -1 -1 -2 -1 -1 -2 -1 -2)
@}
Intersection Matrix:
[-1  0  1  2  0  0  1  1  2  2  1  0]
[ 0 -1  2  2  1  0  1  0  1  1  2  0]
[ 1  2 -1  0  1  2  0  2  1  0  0  1]
[ 2  2  0 -1  1  1  1  1  0  0  0  2]
[ 0  1  1  1 -1  0  2  0  2  2  1  0]
[ 0  0  2  1  0 -1  2  0  1  2  1  1]
[ 1  1  0  1  2  2 -1  2  0  0  0  1]
[ 1  0  2  1  0  0  2 -1  1  1  2  0]
[ 2  1  1  0  2  1  0  1 -1  0  0  2]
[ 2  1  0  0  2  2  0  1  0 -1  1  1]
[ 1  2  0  0  1  1  0  2  0  1 -1  2]
[ 0  0  1  2  0  1  1  0  2  1  2 -1]
Stabilizer Group Name:
C3
MatrixGroup(9, Integer Ring)
Generators:
    [ 8  1  3  1  4  3  3  3  3]
    [-3  0 -1 -1 -2 -1 -1 -1 -1]
    [-2  0  0  0 -1 -1 -1 -1 -1]
    [-3 -1 -1  0 -2 -1 -1 -1 -1]
    [-5 -1 -2 -1 -2 -2 -2 -2 -2]
    [-2  0 -1  0 -1  0 -1 -1 -1]
    [-2  0 -1  0 -1 -1  0 -1 -1]
    [-2  0 -1  0 -1 -1 -1  0 -1]
    [-2  0 -1  0 -1 -1 -1 -1  0]

18
{@
    Mod: ( 3 -1  0 -1 -1 -2 -1 -1 -1),
    Mod: ( 2 -1 -1  0 -1  0  0 -1 -1),
    Mod: ( 2  0 -1 -1 -1 -1  0 -1  0),
    Mod: ( 4 -1 -1 -2 -1 -2 -1 -1 -2),
    Mod: ( 3 -1 -1 -1 -1 -1  0 -2 -1),
    Mod: ( 2  0  0 -1 -1 -1 -1  0 -1),
    Mod: ( 2 -1 -1  0 -1 -1  0 -1  0),
    Mod: ( 2 -1  0  0 -1 -1 -1  0 -1),
    Mod: ( 3 -1 -1 -1 -1 -1 -1  0 -2),
    Mod: ( 1  0 -1  0 -1  0  0  0  0),
    Mod: ( 4 -2 -1 -1 -1 -2 -1 -1 -2),
    Mod: ( 2  0 -1 -1 -1  0  0 -1 -1)
@}
Intersection Matrix:
[-1  2  1  0  1  0  1  0  1  2  0  2]
[ 2 -1  1  2  0  2  0  1  1  0  1  0]
[ 1  1 -1  1  0  1  0  2  2  0  2  0]
[ 0  2  1 -1  1  0  2  1  0  2  0  1]
[ 1  0  0  1 -1  2  0  2  2  1  1  0]
[ 0  2  1  0  2 -1  2  0  0  1  1  1]
[ 1  0  0  2  0  2 -1  1  2  0  1  1]
[ 0  1  2  1  2  0  1 -1  0  1  0  2]
[ 1  1  2  0  2  0  2  0 -1  1  0  1]
[ 2  0  0  2  1  1  0  1  1 -1  2  0]
[ 0  1  2  0  1  1  1  0  0  2 -1  2]
[ 2  0  0  1  0  1  1  2  1  0  2 -1]
Stabilizer Group Name:
C3
MatrixGroup(9, Integer Ring)
Generators:
    [ 8  3  2  3  5  2  2  2  2]
    [-1  0  0 -1 -1  0  0  0  0]
    [-3 -1  0 -1 -2 -1 -1 -1 -1]
    [-1 -1  0  0 -1  0  0  0  0]
    [-4 -2 -1 -2 -2 -1 -1 -1 -1]
    [-3 -1 -1 -1 -2  0 -1 -1 -1]
    [-3 -1 -1 -1 -2 -1  0 -1 -1]
    [-3 -1 -1 -1 -2 -1 -1  0 -1]
    [-3 -1 -1 -1 -2 -1 -1 -1  0]

19
{@
    Mod: ( 4 -2 -2 -1 -1 -1 -1 -1 -2),
    Mod: ( 2 -1  0  0 -1 -1 -1 -1  0),
    Mod: ( 1  0  0  0 -1  0 -1  0  0),
    Mod: ( 2 -1 -1  0 -1 -1 -1  0  0),
    Mod: ( 3 -1 -1 -1 -1 -2 -1 -1  0),
    Mod: ( 5 -2 -2 -2 -1 -2 -1 -2 -2),
    Mod: ( 3 -1 -1 -1 -1  0 -1 -1 -2),
    Mod: ( 4 -2 -1 -1 -1 -1 -1 -2 -2),
    Mod: ( 4 -1 -2 -2 -1 -1 -1 -1 -2),
    Mod: ( 4 -1 -1 -2 -1 -1 -1 -2 -2),
    Mod: ( 2  0  0 -1 -1 -1 -1 -1  0),
    Mod: ( 2  0 -1 -1 -1 -1 -1  0  0)
@}
Intersection Matrix:
[-1  2  2  1  2  0  0  0  0  1  3  2]
[ 2 -1  0  0  0  2  2  1  3  2  0  1]
[ 2  0 -1  0  1  3  1  2  2  2  0  0]
[ 1  0  0 -1  0  2  2  2  2  3  1  0]
[ 2  0  1  0 -1  1  3  2  2  2  0  0]
[ 0  2  3  2  1 -1  1  0  0  0  2  2]
[ 0  2  1  2  3  1 -1  0  0  0  2  2]
[ 0  1  2  2  2  0  0 -1  1  0  2  3]
[ 0  3  2  2  2  0  0  1 -1  0  2  1]
[ 1  2  2  3  2  0  0  0  0 -1  1  2]
[ 3  0  0  1  0  2  2  2  2  1 -1  0]
[ 2  1  0  0  0  2  2  3  1  2  0 -1]
Stabilizer Group Name:
C3
MatrixGroup(9, Integer Ring)
Generators:
    [ 8  3  2  3  5  2  2  2  2]
    [-1  0  0 -1 -1  0  0  0  0]
    [-3 -1  0 -1 -2 -1 -1 -1 -1]
    [-1 -1  0  0 -1  0  0  0  0]
    [-4 -2 -1 -2 -2 -1 -1 -1 -1]
    [-3 -1 -1 -1 -2  0 -1 -1 -1]
    [-3 -1 -1 -1 -2 -1  0 -1 -1]
    [-3 -1 -1 -1 -2 -1 -1  0 -1]
    [-3 -1 -1 -1 -2 -1 -1 -1  0]

20
{@
    Mod: (0 0 0 0 0 0 0 0 1),
    Mod: ( 4 -1 -2 -1 -1 -1 -1 -2 -2),
    Mod: ( 1  0  0  0  0 -1 -1  0  0),
    Mod: ( 5 -2 -2 -2 -2 -1 -1 -2 -2),
    Mod: ( 2 -1  0 -1 -1 -1 -1  0  0),
    Mod: ( 4 -1 -1 -1 -2 -2 -2 -1 -1),
    Mod: ( 3 -1 -1 -1  0 -1 -1 -1 -2),
    Mod: ( 2  0 -1  0 -1 -1 -1 -1  0),
    Mod: ( 4 -2 -1 -2 -1 -1 -1 -1 -2),
    Mod: ( 3 -1 -1 -1 -2 -1 -1 -1  0),
    Mod: ( 2 -1 -1 -1  0  0  0 -1 -1),
    Mod: ( 6 -2 -2 -2 -2 -2 -2 -2 -3)
@}
Intersection Matrix:
[-1  2  0  2  0  1  2  0  2  0  1  3]
[ 2 -1  2  0  3  2  0  1  1  2  0  0]
[ 0  2 -1  3  0  0  1  0  2  1  2  2]
[ 2  0  3 -1  2  2  1  2  0  1  0  0]
[ 0  3  0  2 -1  0  2  1  1  0  2  2]
[ 1  2  0  2  0 -1  2  0  2  0  3  1]
[ 2  0  1  1  2  2 -1  2  0  3  0  0]
[ 0  1  0  2  1  0  2 -1  3  0  2  2]
[ 2  1  2  0  1  2  0  3 -1  2  0  0]
[ 0  2  1  1  0  0  3  0  2 -1  2  2]
[ 1  0  2  0  2  3  0  2  0  2 -1  1]
[ 3  0  2  0  2  1  0  2  0  2  1 -1]
Stabilizer Group Name:
C3
MatrixGroup(9, Integer Ring)
Generators:
    [ 2  1  0  0  0  1  0  1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  1  0  0  0  0  0  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

21
{@
    Mod: ( 1 -1  0  0  0 -1  0  0  0),
    Mod: ( 3 -1 -1 -2 -1 -1  0 -1 -1),
    Mod: ( 5 -2 -2 -1 -2 -2 -1 -2 -2),
    Mod: ( 4 -2 -1 -1 -2 -2 -1 -1 -1),
    Mod: (0 0 0 1 0 0 0 0 0),
    Mod: (0 0 0 0 0 0 0 1 0),
    Mod: ( 2  0 -1 -1  0 -1  0 -1 -1),
    Mod: ( 3 -1 -1  0 -1 -1 -1 -1 -2),
    Mod: ( 2 -1  0 -1  0 -1  0 -1 -1),
    Mod: ( 3  0 -1 -1 -1 -2 -1 -1 -1),
    Mod: ( 2 -1 -1 -1 -1  0  0  0 -1),
    Mod: ( 1  0  0 -1 -1  0  0  0  0),
    Mod: ( 1 -1  0  0 -1  0  0  0  0),
    Mod: ( 2 -1 -1  0  0 -1  0 -1 -1),
    Mod: ( 3 -1 -1  0 -2 -1 -1 -1 -1),
    Mod: ( 4 -1 -1 -2 -2 -1 -1 -1 -2),
    Mod: ( 2 -1  0 -1 -1 -1  0 -1  0),
    Mod: ( 1  0  0  0  0 -1  0 -1  0),
    Mod: ( 4 -2 -1 -1 -2 -1 -1 -1 -2),
    Mod: ( 5 -2 -1 -2 -2 -2 -1 -2 -2),
    Mod: ( 3 -1 -1  0 -1 -2 -1 -1 -1),
    Mod: ( 3 -1 -1 -1 -2 -1 -1  0 -1),
    Mod: ( 1  0  0 -1  0  0  0  0 -1),
    Mod: ( 2  0 -1  0 -1 -1 -1  0 -1),
    Mod: ( 1 -1  0  0  0  0  0  0 -1),
    Mod: ( 3  0 -1 -1 -2 -1 -1 -1 -1),
    Mod: (0 1 0 0 0 0 0 0 0),
    Mod: ( 1  0 -1  0  0  0  0  0 -1),
    Mod: ( 4 -1 -2 -1 -2 -1 -1 -1 -2),
    Mod: ( 4 -1 -1 -1 -1 -2 -1 -2 -2),
    Mod: ( 3  0 -1 -1 -1 -1 -1 -1 -2),
    Mod: ( 1  0  0 -1  0 -1  0  0  0),
    Mod: ( 3 -2 -1 -1 -1 -1  0 -1 -1),
    Mod: ( 5 -1 -2 -2 -2 -2 -1 -2 -2),
    Mod: ( 4 -1 -1 -2 -2 -2 -1 -1 -1),
    Mod: ( 4 -1 -1 -1 -2 -2 -1 -2 -1)
@}
Intersection Matrix:
[-1  1  1  0  0  0  1  1  0  1  1  1  0  0  1  2  0  0  1  1  0  1  1  1  0  2  1  1  2  1  2  0  0  2  1  1]
[ 1 -1  1  1  2  1  0  2  0  1  0  0  1  1  2  0  0  1  1  0  2  1  0  2  1  1  1  1  1  1  1  0  0  0  0  1]
[ 1  1 -1  0  1  2  1  0  1  1  1  2  1  0  0  1  1  1  0  0  0  1  2  1  1  1  2  1  0  0  1  2  0  0  1  0]
[ 0  1  0 -1  1  1  2  1  1  1  1  1  0  1  0  1  0  1  0  0  0  0  2  1  1  1  2  2  1  1  2  1  0  1  0  0]
[ 0  2  1  1 -1  0  1  0  1  1  1  1  0  0  0  2  1  0  1  2  0  1  1  0  0  1  0  0  1  1  1  1  1  2  2  1]
[ 0  1  2  1  0 -1  1  1  1  1  0  0  0  1  1  1  1  1  1  2  1  0  0  0  0  1  0  0  1  2  1  0  1  2  1  2]
[ 1  0  1  2  1  1 -1  1  0  0  1  1  2  0  2  1  1  0  2  1  1  2  0  1  1  1  0  0  1  0  0  0  1  0  1  1]
[ 1  2  0  1  0  1  1 -1  1  1  1  2  1  0  0  1  2  1  0  1  0  1  1  0  0  1  1  0  0  0  0  2  1  1  2  1]
[ 0  0  1  1  1  1  0  1 -1  1  1  1  1  0  2  1  0  0  1  0  1  2  0  2  0  2  1  1  2  0  1  0  0  1  1  1]
[ 1  1  1  1  1  1  0  1  1 -1  2  1  2  1  1  1  1  0  2  1  0  1  1  0  2  0  0  1  1  0  0  0  2  0  0  0]
[ 1  0  1  1  1  0  1  1  1  2 -1  0  0  1  1  0  1  2  0  1  2  0  0  1  0  1  1  0  0  2  1  1  0  1  1  2]
[ 1  0  2  1  1  0  1  2  1  1  0 -1  0  2  1  0  0  1  1  1  2  0  0  1  1  0  0  1  1  2  1  0  1  1  0  1]
[ 0  1  1  0  0  0  2  1  1  2  0  0 -1  1  0  1  0  1  0  1  1  0  1  1  0  1  1  1  1  2  2  1  0  2  1  1]
[ 0  1  0  1  0  1  0  0  0  1  1  2  1 -1  1  2  1  0  1  1  0  2  1  1  0  2  1  0  1  0  1  1  0  1  2  1]
[ 1  2  0  0  0  1  2  0  2  1  1  1  0  1 -1  1  1  1  0  1  0  0  2  0  1  0  1  1  0  1  1  2  1  1  1  0]
[ 2  0  1  1  2  1  1  1  1  1  0  0  1  2  1 -1  1  2  0  0  2  0  0  1  1  0  1  1  0  1  0  1  1  0  0  1]
[ 0  0  1  0  1  1  1  2  0  1  1  0  0  1  1  1 -1  0  1  0  1  1  1  2  1  1  1  2  2  1  2  0  0  1  0  0]
[ 0  1  1  1  0  1  0  1  0  0  2  1  1  0  1  2  0 -1  2  1  0  2  1  1  1  1  0  1  2  0  1  0  1  1  1  0]
[ 1  1  0  0  1  1  2  0  1  2  0  1  0  1  0  0  1  2 -1  0  1  0  1  1  0  1  2  1  0  1  1  2  0  1  1  1]
[ 1  0  0  0  2  2  1  1  0  1  1  1  1  1  1  0  0  1  0 -1  1  1  1  2  1  1  2  2  1  0  1  1  0  0  0  0]
[ 0  2  0  0  0  1  1  0  1  0  2  2  1  0  0  2  1  0  1  1 -1  1  2  0  1  1  1  1  1  0  1  1  1  1  1  0]
[ 1  1  1  0  1  0  2  1  2  1  0  0  0  2  0  0  1  2  0  1  1 -1  1  0  1  0  1  1  0  2  1  1  1  1  0  1]
[ 1  0  2  2  1  0  0  1  0  1  0  0  1  1  2  0  1  1  1  1  2  1 -1  1  0  1  0  0  1  1  0  0  1  1  1  2]
[ 1  2  1  1  0  0  1  0  2  0  1  1  1  1  0  1  2  1  1  2  0  0  1 -1  1  0  0  0  0  1  0  1  2  1  1  1]
[ 0  1  1  1  0  0  1  0  0  2  0  1  0  0  1  1  1  1  0  1  1  1  0  1 -1  2  1  0  1  1  1  1  0  2  2  2]
[ 2  1  1  1  1  1  1  1  2  0  1  0  1  2  0  0  1  1  1  1  1  0  1  0  2 -1  0  1  0  1  0  1  2  0  0  0]
[ 1  1  2  2  0  0  0  1  1  0  1  0  1  1  1  1  1  0  2  2  1  1  0  0  1  0 -1  0  1  1  0  0  2  1  1  1]
[ 1  1  1  2  0  0  0  0  1  1  0  1  1  0  1  1  2  1  1  2  1  1  0  0  0  1  0 -1  0  1  0  1  1  1  2  2]
[ 2  1  0  1  1  1  1  0  2  1  0  1  1  1  0  0  2  2  0  1  1  0  1  0  1  0  1  0 -1  1  0  2  1  0  1  1]
[ 1  1  0  1  1  2  0  0  0  0  2  2  2  0  1  1  1  0  1  0  0  2  1  1  1  1  1  1  1 -1  0  1  1  0  1  0]
[ 2  1  1  2  1  1  0  0  1  0  1  1  2  1  1  0  2  1  1  1  1  1  0  0  1  0  0  0  0  0 -1  1  2  0  1  1]
[ 0  0  2  1  1  0  0  2  0  0  1  0  1  1  2  1  0  0  2  1  1  1  0  1  1  1  0  1  2  1  1 -1  1  1  0  1]
[ 0  0  0  0  1  1  1  1  0  2  0  1  0  0  1  1  0  1  0  0  1  1  1  2  0  2  2  1  1  1  2  1 -1  1  1  1]
[ 2  0  0  1  2  2  0  1  1  0  1  1  2  1  1  0  1  1  1  0  1  1  1  1  2  0  1  1  0  0  0  1  1 -1  0  0]
[ 1  0  1  0  2  1  1  2  1  0  1  0  1  2  1  0  0  1  1  0  1  0  1  1  2  0  1  2  1  1  1  0  1  0 -1  0]
[ 1  1  0  0  1  2  1  1  1  0  2  1  1  1  0  1  0  0  1  0  0  1  2  1  2  0  1  2  1  0  1  1  1  0  0 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

22
{@
    Mod: ( 3 -1 -1 -1  0 -1 -1 -2 -1),
    Mod: ( 3 -2 -1 -1 -1 -1 -1 -1  0),
    Mod: ( 3 -1 -1 -2  0 -1 -1 -1 -1),
    Mod: ( 5 -1 -2 -2 -2 -1 -2 -2 -2),
    Mod: ( 1  0  0 -1  0  0 -1  0  0),
    Mod: ( 3 -1 -1  0 -1 -1 -2 -1 -1),
    Mod: ( 3 -2 -1 -1 -1  0 -1 -1 -1),
    Mod: ( 4 -1 -1 -2 -2 -1 -2 -1 -1),
    Mod: ( 3 -1 -1 -2 -1 -1 -1 -1  0),
    Mod: ( 2 -1 -1 -1  0  0 -1  0 -1),
    Mod: ( 5 -2 -2 -2 -2 -1 -2 -1 -2),
    Mod: ( 5 -2 -2 -1 -2 -1 -2 -2 -2),
    Mod: ( 6 -2 -2 -3 -2 -2 -2 -2 -2),
    Mod: ( 1 -1  0  0  0  0 -1  0  0),
    Mod: ( 2  0 -1 -1  0 -1 -1 -1  0),
    Mod: ( 3 -1 -1 -2 -1  0 -1 -1 -1),
    Mod: ( 6 -2 -2 -2 -2 -2 -2 -3 -2),
    Mod: ( 2 -1  0 -1  0 -1 -1 -1  0),
    Mod: ( 4 -2 -1 -1 -2 -1 -2 -1 -1),
    Mod: ( 1  0 -1  0  0  0 -1  0  0),
    Mod: ( 5 -2 -1 -2 -2 -2 -2 -2 -1),
    Mod: ( 2  0 -1 -1  0  0 -1 -1 -1),
    Mod: ( 6 -3 -2 -2 -2 -2 -2 -2 -2),
    Mod: ( 4 -2 -1 -2 -1 -1 -1 -2 -1),
    Mod: ( 2 -1 -1  0  0 -1 -1 -1  0),
    Mod: ( 2 -1 -1 -1 -1  0 -1  0  0),
    Mod: ( 2 -1 -1  0  0  0 -1 -1 -1),
    Mod: ( 4 -1 -2 -1 -1 -1 -2 -1 -2),
    Mod: ( 5 -1 -2 -2 -1 -2 -2 -2 -2),
    Mod: ( 4 -1 -2 -1 -2 -1 -2 -1 -1),
    Mod: ( 4 -1 -1 -1 -1 -2 -2 -2 -1),
    Mod: ( 5 -1 -2 -2 -2 -2 -2 -2 -1),
    Mod: ( 5 -2 -2 -1 -1 -2 -2 -2 -2),
    Mod: ( 3  0 -1 -1 -1 -1 -2 -1 -1),
    Mod: ( 5 -2 -2 -1 -2 -2 -2 -2 -1),
    Mod: ( 3 -2 -1 -1  0 -1 -1 -1 -1)
@}
Intersection Matrix:
[-1  1  0  1  1  1  1  2  1  1  2  1  1  1  0  1  0  0  2  1  1  0  1  0  0  2  0  1  0  2  0  1  0  1  1  0]
[ 1 -1  1  2  1  1  0  1  0  1  1  1  1  0  1  1  1  0  0  1  0  2  0  0  0  0  1  2  2  1  1  1  1  2  0  0]
[ 0  1 -1  1  0  2  1  1  0  0  1  2  0  1  0  0  1  0  2  1  1  0  1  0  1  1  1  1  0  2  1  1  1  1  2  0]
[ 1  2  1 -1  1  1  1  0  1  1  0  0  0  2  1  0  0  2  1  1  1  0  1  1  2  1  1  0  0  0  1  0  1  0  1  2]
[ 1  1  0  1 -1  1  1  0  0  0  1  2  1  0  0  0  2  0  1  0  1  0  2  1  1  0  1  1  1  1  1  1  2  0  2  1]
[ 1  1  2  1  1 -1  1  1  2  1  1  0  2  0  1  2  1  1  0  0  1  1  1  2  0  1  0  0  1  0  0  1  0  0  0  1]
[ 1  0  1  1  1  1 -1  1  1  0  0  0  1  0  2  0  1  1  0  1  1  1  0  0  1  0  0  1  2  1  2  2  1  2  1  0]
[ 2  1  1  0  0  1  1 -1  0  1  0  1  0  1  1  0  1  1  0  1  0  1  1  1  2  0  2  1  1  0  1  0  2  0  1  2]
[ 1  0  0  1  0  2  1  0 -1  1  1  2  0  1  0  0  1  0  1  1  0  1  1  0  1  0  2  2  1  1  1  0  2  1  1  1]
[ 1  1  0  1  0  1  0  1  1 -1  0  1  1  0  1  0  2  1  1  0  2  0  1  1  1  0  0  0  1  1  2  2  1  1  2  0]
[ 2  1  1  0  1  1  0  0  1  0 -1  0  0  1  2  0  1  2  0  1  1  1  0  1  2  0  1  0  1  0  2  1  1  1  1  1]
[ 1  1  2  0  2  0  0  1  2  1  0 -1  1  1  2  1  0  2  0  1  1  1  0  1  1  1  0  0  1  0  1  1  0  1  0  1]
[ 1  1  0  0  1  2  1  0  0  1  0  1 -1  2  1  0  0  1  1  2  0  1  0  0  2  1  2  1  0  1  1  0  1  1  1  1]
[ 1  0  1  2  0  0  0  1  1  0  1  1  2 -1  1  1  2  0  0  0  1  1  1  1  0  0  0  1  2  1  1  2  1  1  1  0]
[ 0  1  0  1  0  1  2  1  0  1  2  2  1  1 -1  1  1  0  2  0  1  0  2  1  0  1  1  1  0  1  0  0  1  0  1  1]
[ 1  1  0  0  0  2  0  0  0  0  0  1  0  1  1 -1  1  1  1  1  1  0  1  0  2  0  1  1  1  1  2  1  2  1  2  1]
[ 0  1  1  0  2  1  1  1  1  2  1  0  0  2  1  1 -1  1  1  2  0  1  0  0  1  2  1  1  0  1  0  0  0  1  0  1]
[ 0  0  0  2  0  1  1  1  0  1  2  2  1  0  0  1  1 -1  1  1  0  1  1  0  0  1  1  2  1  2  0  1  1  1  1  0]
[ 2  0  2  1  1  0  0  0  1  1  0  0  1  0  2  1  1  1 -1  1  0  2  0  1  1  0  1  1  2  0  1  1  1  1  0  1]
[ 1  1  1  1  0  0  1  1  1  0  1  1  2  0  0  1  2  1  1 -1  2  0  2  2  0  0  0  0  1  0  1  1  1  0  1  1]
[ 1  0  1  1  1  1  1  0  0  2  1  1  0  1  1  1  0  0  0  2 -1  2  0  0  1  1  2  2  1  1  0  0  1  1  0  1]
[ 0  2  0  0  0  1  1  1  1  0  1  1  1  1  0  0  1  1  2  0  2 -1  2  1  1  1  0  0  0  1  1  1  1  0  2  1]
[ 1  0  1  1  2  1  0  1  1  1  0  0  0  1  2  1  0  1  0  2  0  2 -1  0  1  1  1  1  1  1  1  1  0  2  0  0]
[ 0  0  0  1  1  2  0  1  0  1  1  1  0  1  1  0  0  0  1  2  0  1  0 -1  1  1  1  2  1  2  1  1  1  2  1  0]
[ 0  0  1  2  1  0  1  2  1  1  2  1  2  0  0  2  1  0  1  0  1  1  1  1 -1  1  0  1  1  1  0  1  0  1  0  0]
[ 2  0  1  1  0  1  0  0  0  0  0  1  1  0  1  0  2  1  0  0  1  1  1  1  1 -1  1  1  2  0  2  1  2  1  1  1]
[ 0  1  1  1  1  0  0  2  2  0  1  0  2  0  1  1  1  1  1  0  2  0  1  1  0  1 -1  0  1  1  1  2  0  1  1  0]
[ 1  2  1  0  1  0  1  1  2  0  0  0  1  1  1  1  1  2  1  0  2  0  1  2  1  1  0 -1  0  0  1  1  0  0  1  1]
[ 0  2  0  0  1  1  2  1  1  1  1  1  0  2  0  1  0  1  2  1  1  0  1  1  1  2  1  0 -1  1  0  0  0  0  1  1]
[ 2  1  2  0  1  0  1  0  1  1  0  0  1  1  1  1  1  2  0  0  1  1  1  2  1  0  1  0  1 -1  1  0  1  0  0  2]
[ 0  1  1  1  1  0  2  1  1  2  2  1  1  1  0  2  0  0  1  1  0  1  1  1  0  2  1  1  0  1 -1  0  0  0  0  1]
[ 1  1  1  0  1  1  2  0  0  2  1  1  0  2  0  1  0  1  1  1  0  1  1  1  1  1  2  1  0  0  0 -1  1  0  0  2]
[ 0  1  1  1  2  0  1  2  2  1  1  0  1  1  1  2  0  1  1  1  1  1  0  1  0  2  0  0  0  1  0  1 -1  1  0  0]
[ 1  2  1  0  0  0  2  0  1  1  1  1  1  1  0  1  1  1  1  0  1  0  2  2  1  1  1  0  0  0  0  0  1 -1  1  2]
[ 1  0  2  1  2  0  1  1  1  2  1  0  1  1  1  2  0  1  0  1  0  2  0  1  0  1  1  1  1  0  0  0  0  1 -1  1]
[ 0  0  0  2  1  1  0  2  1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0  0  1  0  1  1  2  1  2  0  2  1 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

23
{@
    Mod: ( 2 -1  0 -1 -1  0 -1  0 -1),
    Mod: ( 4 -2 -1 -2 -1 -2 -1 -1 -1),
    Mod: ( 3 -1 -1  0 -1 -1 -1 -2 -1),
    Mod: ( 4 -2 -2 -1 -2 -1 -1 -1 -1),
    Mod: ( 5 -2 -2 -2 -2 -2 -1 -2 -1),
    Mod: ( 2 -1  0  0  0 -1 -1 -1 -1),
    Mod: ( 1 -1 -1  0  0  0  0  0  0),
    Mod: ( 4 -1 -1 -1 -2 -1 -2 -1 -2),
    Mod: ( 5 -1 -1 -2 -2 -2 -2 -2 -2),
    Mod: ( 3 -1 -1 -1 -2  0 -1 -1 -1),
    Mod: ( 2  0  0 -1  0 -1 -1 -1 -1),
    Mod: ( 1  0 -1 -1  0  0  0  0  0),
    Mod: ( 5 -2 -1 -1 -2 -2 -2 -2 -2),
    Mod: ( 4 -1 -1 -2 -2 -1 -1 -2 -1),
    Mod: ( 2  0 -1  0 -1  0 -1 -1 -1),
    Mod: ( 4 -1 -2 -1 -1 -2 -1 -2 -1),
    Mod: ( 3 -2 -1 -1 -1 -1 -1  0 -1),
    Mod: ( 3  0 -2 -1 -1 -1 -1 -1 -1),
    Mod: ( 3 -1 -2  0 -1 -1 -1 -1 -1),
    Mod: ( 4 -2 -1 -1 -2 -1 -1 -2 -1),
    Mod: ( 2 -1 -1 -1  0 -1  0 -1  0),
    Mod: ( 3 -1 -1 -2 -1 -1 -1  0 -1),
    Mod: ( 1  0  0 -1  0  0  0 -1  0),
    Mod: ( 1  0  0  0  0  0 -1  0 -1),
    Mod: (0 0 0 0 0 1 0 0 0),
    Mod: ( 3 -2  0 -1 -1 -1 -1 -1 -1),
    Mod: ( 5 -1 -2 -2 -2 -2 -2 -1 -2),
    Mod: ( 2  0 -1 -1  0 -1 -1  0 -1),
    Mod: ( 3  0 -1 -1 -1 -1 -1 -2 -1),
    Mod: ( 1 -1  0  0  0  0  0 -1  0),
    Mod: ( 3 -1 -1 -1  0 -2 -1 -1 -1),
    Mod: ( 5 -2 -2 -1 -2 -2 -2 -1 -2),
    Mod: ( 2 -1 -1  0  0 -1 -1  0 -1),
    Mod: ( 4 -1 -2 -2 -2 -1 -1 -1 -1),
    Mod: ( 6 -2 -2 -2 -2 -3 -2 -2 -2),
    Mod: ( 3 -1  0 -2 -1 -1 -1 -1 -1)
@}
Intersection Matrix:
[-1  1  2  1  2  1  1  0  1  0  1  1  1  1  1  3  0  2  2  1  2  0  1  0  0  0  1  1  2  1  2  1  1  1  2  0]
[ 1 -1  2  1  0  1  1  2  1  2  1  1  1  1  3  1  0  2  2  1  0  0  1  2  2  0  1  1  2  1  0  1  1  1  0  0]
[ 2  2 -1  1  1  0  1  1  1  1  1  2  0  1  0  0  2  1  0  0  1  3  1  1  1  1  2  2  0  0  1  1  1  2  1  2]
[ 1  1  1 -1  0  2  0  1  2  0  3  1  1  1  1  1  0  1  0  0  1  1  2  2  1  1  1  2  2  1  2  0  1  0  1  2]
[ 2  0  1  0 -1  2  1  2  1  1  2  1  1  0  2  0  1  1  1  0  0  1  1  3  2  1  1  2  1  1  1  1  2  0  0  1]
[ 1  1  0  2  2 -1  1  1  1  2  0  2  0  2  1  1  1  2  1  1  1  2  1  0  1  0  2  1  1  0  0  1  0  3  1  1]
[ 1  1  1  0  1  1 -1  2  3  1  2  0  2  2  1  1  0  1  0  1  0  1  1  1  0  1  2  1  2  0  1  1  0  1  2  2]
[ 0  2  1  1  2  1  2 -1  0  0  1  2  0  1  0  2  1  1  1  1  3  1  2  0  1  1  0  1  1  2  2  0  1  1  1  1]
[ 1  1  1  2  1  1  3  0 -1  1  0  2  0  0  1  1  2  1  2  1  2  1  1  1  2  1  0  1  0  2  1  1  2  1  0  0]
[ 0  2  1  0  1  2  1  0  1 -1  2  1  1  0  0  2  1  1  1  0  2  1  1  1  0  1  1  2  1  1  3  1  2  0  2  1]
[ 1  1  1  3  2  0  2  1  0  2 -1  1  1  1  1  1  2  1  2  2  1  1  0  0  1  1  1  0  0  1  0  2  1  2  1  0]
[ 1  1  2  1  1  2  0  2  2  1  1 -1  3  1  1  1  1  0  1  2  0  0  0  1  0  2  1  0  1  1  1  2  1  0  2  1]
[ 1  1  0  1  1  0  2  0  0  1  1  3 -1  1  1  1  1  2  1  0  2  2  2  1  2  0  1  2  1  1  1  0  1  2  0  1]
[ 1  1  1  1  0  2  2  1  0  0  1  1  1 -1  1  1  2  1  2  0  1  1  0  2  1  1  1  2  0  1  2  2  3  0  1  0]
[ 1  3  0  1  2  1  1  0  1  0  1  1  1  1 -1  1  2  0  0  1  2  2  1  0  0  2  1  1  0  1  2  1  1  1  2  2]
[ 3  1  0  1  0  1  1  2  1  2  1  1  1  1  1 -1  2  0  0  1  0  2  1  2  2  2  1  1  0  1  0  1  1  1  0  2]
[ 0  0  2  0  1  1  0  1  2  1  2  1  1  2  2  2 -1  2  1  1  1  0  2  1  1  0  1  1  3  1  1  0  0  1  1  1]
[ 2  2  1  1  1  2  1  1  1  1  1  0  2  1  0  0  2 -1  0  2  1  1  1  1  1  3  0  0  0  2  1  1  1  0  1  2]
[ 2  2  0  0  1  1  0  1  2  1  2  1  1  2  0  0  1  0 -1  1  1  2  2  1  1  2  1  1  1  1  1  0  0  1  1  3]
[ 1  1  0  0  0  1  1  1  1  0  2  2  0  0  1  1  1  2  1 -1  1  2  1  2  1  0  2  3  1  0  2  1  2  1  1  1]
[ 2  0  1  1  0  1  0  3  2  2  1  0  2  1  2  0  1  1  1  1 -1  1  0  2  1  1  2  1  1  0  0  2  1  1  1  1]
[ 0  0  3  1  1  2  1  1  1  1  1  0  2  1  2  2  0  1  2  2  1 -1  1  1  1  1  0  0  2  2  1  1  1  0  1  0]
[ 1  1  1  2  1  1  1  2  1  1  0  0  2  0  1  1  2  1  2  1  0  1 -1  1  0  1  2  1  0  0  1  3  2  1  2  0]
[ 0  2  1  2  3  0  1  0  1  1  0  1  1  2  0  2  1  1  1  2  2  1  1 -1  0  1  1  0  1  1  1  1  0  2  2  1]
[ 0  2  1  1  2  1  0  1  2  0  1  0  2  1  0  2  1  1  1  1  1  1  0  0 -1  1  2  1  1  0  2  2  1  1  3  1]
[ 0  0  1  1  1  0  1  1  1  1  1  2  0  1  2  2  0  3  2  0  1  1  1  1  1 -1  2  2  2  0  1  1  1  2  1  0]
[ 1  1  2  1  1  2  2  0  0  1  1  1  1  1  1  1  1  0  1  2  2  0  2  1  2  2 -1  0  1  3  1  0  1  0  0  1]
[ 1  1  2  2  2  1  1  1  1  2  0  0  2  2  1  1  1  0  1  3  1  0  1  0  1  2  0 -1  1  2  0  1  0  1  1  1]
[ 2  2  0  2  1  1  2  1  0  1  0  1  1  0  0  0  3  0  1  1  1  2  0  1  1  2  1  1 -1  1  1  2  2  1  1  1]
[ 1  1  0  1  1  0  0  2  2  1  1  1  1  1  1  1  1  2  1  0  0  2  0  1  0  0  3  2  1 -1  1  2  1  2  2  1]
[ 2  0  1  2  1  0  1  2  1  3  0  1  1  2  2  0  1  1  1  2  0  1  1  1  2  1  1  0  1  1 -1  1  0  2  0  1]
[ 1  1  1  0  1  1  1  0  1  1  2  2  0  2  1  1  0  1  0  1  2  1  3  1  2  1  0  1  2  2  1 -1  0  1  0  2]
[ 1  1  1  1  2  0  0  1  2  2  1  1  1  3  1  1  0  1  0  2  1  1  2  0  1  1  1  0  2  1  0  0 -1  2  1  2]
[ 1  1  2  0  0  3  1  1  1  0  2  0  2  0  1  1  1  0  1  1  1  0  1  2  1  2  0  1  1  2  2  1  2 -1  1  1]
[ 2  0  1  1  0  1  2  1  0  2  1  2  0  1  2  0  1  1  1  1  1  1  2  2  3  1  0  1  1  2  0  0  1  1 -1  1]
[ 0  0  2  2  1  1  2  1  0  1  0  1  1  0  2  2  1  2  3  1  1  0  0  1  1  0  1  1  1  1  1  2  2  1  1 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

D7(2):D10

    order := 20,
    length := 2177280,
    subgroup := MatrixGroup(9, Integer Ring) of order 2^2 * 5
    Generators:
        [13  5  4  4  5  5  4  3  6]
        [-5 -2 -1 -2 -2 -2 -2 -1 -2]
        [-4 -1 -1 -1 -2 -2 -1 -1 -2]
        [-4 -2 -1 -1 -1 -2 -1 -1 -2]
        [-5 -2 -2 -1 -2 -2 -2 -1 -2]
        [-5 -2 -2 -2 -2 -2 -1 -1 -2]
        [-4 -2 -1 -1 -2 -1 -1 -1 -2]
        [-3 -1 -1 -1 -1 -1 -1  0 -2]
        [-6 -2 -2 -2 -2 -2 -2 -2 -3]

        [ 8  1  4  4  2  3  2  2  3]
        [-3  0 -1 -2 -1 -1 -1 -1 -1]
        [-2  0 -1 -1  0 -1 -1  0 -1]
        [-3  0 -2 -1 -1 -1 -1 -1 -1]
        [-2  0 -1 -1  0 -1  0 -1 -1]
        [-4 -1 -2 -2 -1 -1 -1 -1 -2]
        [-1  0 -1 -1  0  0  0  0  0]
        [-2  0 -1 -1 -1 -1  0  0 -1]
        [-4 -1 -2 -2 -1 -2 -1 -1 -1]

        [ 3  1  1  0  2  1  1  0  0]
        [-1  0 -1  0 -1  0  0  0  0]
        [-1 -1  0  0 -1  0  0  0  0]
        [ 0  0  0  1  0  0  0  0  0]
        [-2 -1 -1  0 -1 -1 -1  0  0]
        [-1  0  0  0 -1  0 -1  0  0]
        [-1  0  0  0 -1 -1  0  0  0]
        [ 0  0  0  0  0  0  0  1  0]
        [ 0  0  0  0  0  0  0  0  1]>
Orbit type:{2,2,2,2,4,4,4,5,5,5,5,10,10,10,10,20,20,20,20,20,20,20,20}

Orbit:
1
{@
    Mod: ( 2  0  0 -1 -1 -1 -1  0 -1),
    Mod: ( 2 -1 -1 -1 -1  0  0  0 -1)
@}
Intersection Matrix:
[-1  1]
[ 1 -1]
Stabilizer Group Name:
D5
MatrixGroup(9, Integer Ring)
Generators:
    [ 8  1  4  4  2  3  2  2  3]
    [-3  0 -1 -2 -1 -1 -1 -1 -1]
    [-2  0 -1 -1  0 -1 -1  0 -1]
    [-3  0 -2 -1 -1 -1 -1 -1 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]
    [-4 -1 -2 -2 -1 -1 -1 -1 -2]
    [-1  0 -1 -1  0  0  0  0  0]
    [-2  0 -1 -1 -1 -1  0  0 -1]
    [-4 -1 -2 -2 -1 -2 -1 -1 -1]

    [13  5  4  4  5  5  4  3  6]
    [-5 -2 -1 -2 -2 -2 -2 -1 -2]
    [-4 -1 -1 -1 -2 -2 -1 -1 -2]
    [-4 -2 -1 -1 -1 -2 -1 -1 -2]
    [-5 -2 -2 -1 -2 -2 -2 -1 -2]
    [-5 -2 -2 -2 -2 -2 -1 -1 -2]
    [-4 -2 -1 -1 -2 -1 -1 -1 -2]
    [-3 -1 -1 -1 -1 -1 -1  0 -2]
    [-6 -2 -2 -2 -2 -2 -2 -2 -3]

2
{@
    Mod: ( 3 -1 -1 -1  0 -1 -1 -2 -1),
    Mod: ( 5 -2 -2 -1 -2 -2 -2 -2 -1)
@}
Intersection Matrix:
[-1  1]
[ 1 -1]
Stabilizer Group Name:
D5
MatrixGroup(9, Integer Ring)
Generators:
    [11  4  3  4  3  4  3  3  6]
    [-4 -2 -1 -2 -1 -1 -1 -1 -2]
    [-3 -1 -1 -1 -1 -1  0 -1 -2]
    [-4 -2 -1 -1 -1 -2 -1 -1 -2]
    [-3 -1 -1 -1  0 -1 -1 -1 -2]
    [-4 -1 -1 -2 -1 -2 -1 -1 -2]
    [-3 -1  0 -1 -1 -1 -1 -1 -2]
    [-3 -1 -1 -1 -1 -1 -1  0 -2]
    [-6 -2 -2 -2 -2 -2 -2 -2 -3]

    [ 8  1  4  4  2  3  2  2  3]
    [-3  0 -1 -2 -1 -1 -1 -1 -1]
    [-2  0 -1 -1  0 -1 -1  0 -1]
    [-3  0 -2 -1 -1 -1 -1 -1 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]
    [-4 -1 -2 -2 -1 -1 -1 -1 -2]
    [-1  0 -1 -1  0  0  0  0  0]
    [-2  0 -1 -1 -1 -1  0  0 -1]
    [-4 -1 -2 -2 -1 -2 -1 -1 -1]

3
{@
    Mod: ( 4 -1 -1 -1 -1 -2 -2 -2 -1),
    Mod: ( 4 -2 -2 -1 -1 -1 -1 -2 -1)
@}
Intersection Matrix:
[-1  1]
[ 1 -1]
Stabilizer Group Name:
D5
MatrixGroup(9, Integer Ring)
Generators:
    [ 8  1  4  4  2  3  2  2  3]
    [-3  0 -1 -2 -1 -1 -1 -1 -1]
    [-2  0 -1 -1  0 -1 -1  0 -1]
    [-3  0 -2 -1 -1 -1 -1 -1 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]
    [-4 -1 -2 -2 -1 -1 -1 -1 -2]
    [-1  0 -1 -1  0  0  0  0  0]
    [-2  0 -1 -1 -1 -1  0  0 -1]
    [-4 -1 -2 -2 -1 -2 -1 -1 -1]

    [13  5  4  4  5  5  4  3  6]
    [-5 -2 -1 -2 -2 -2 -2 -1 -2]
    [-4 -1 -1 -1 -2 -2 -1 -1 -2]
    [-4 -2 -1 -1 -1 -2 -1 -1 -2]
    [-5 -2 -2 -1 -2 -2 -2 -1 -2]
    [-5 -2 -2 -2 -2 -2 -1 -1 -2]
    [-4 -2 -1 -1 -2 -1 -1 -1 -2]
    [-3 -1 -1 -1 -1 -1 -1  0 -2]
    [-6 -2 -2 -2 -2 -2 -2 -2 -3]

4
{@
    Mod: ( 3 -1 -1 -1 -2 -1 -1  0 -1),
    Mod: ( 1  0  0 -1  0  0  0  0 -1)
@}
Intersection Matrix:
[-1  1]
[ 1 -1]
Stabilizer Group Name:
D5
MatrixGroup(9, Integer Ring)
Generators:
    [11  4  3  4  3  4  3  3  6]
    [-4 -2 -1 -2 -1 -1 -1 -1 -2]
    [-3 -1 -1 -1 -1 -1  0 -1 -2]
    [-4 -2 -1 -1 -1 -2 -1 -1 -2]
    [-3 -1 -1 -1  0 -1 -1 -1 -2]
    [-4 -1 -1 -2 -1 -2 -1 -1 -2]
    [-3 -1  0 -1 -1 -1 -1 -1 -2]
    [-3 -1 -1 -1 -1 -1 -1  0 -2]
    [-6 -2 -2 -2 -2 -2 -2 -2 -3]

    [ 8  1  4  4  2  3  2  2  3]
    [-3  0 -1 -2 -1 -1 -1 -1 -1]
    [-2  0 -1 -1  0 -1 -1  0 -1]
    [-3  0 -2 -1 -1 -1 -1 -1 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]
    [-4 -1 -2 -2 -1 -1 -1 -1 -2]
    [-1  0 -1 -1  0  0  0  0  0]
    [-2  0 -1 -1 -1 -1  0  0 -1]
    [-4 -1 -2 -2 -1 -2 -1 -1 -1]

5
{@
    Mod: ( 2 -1 -1 -1  0 -1  0 -1  0),
    Mod: ( 5 -2 -2 -1 -2 -1 -2 -2 -2),
    Mod: ( 3 -1 -1 -1 -1 -2 -1 -1  0),
    Mod: ( 4 -1 -1 -1 -1 -1 -2 -2 -2)
@}
Intersection Matrix:
[-1  2  0  2]
[ 2 -1  2  0]
[ 0  2 -1  2]
[ 2  0  2 -1]
Stabilizer Group Name:
C5
MatrixGroup(9, Integer Ring)
Generators:
    [ 8  1  4  4  2  3  2  2  3]
    [-3  0 -1 -2 -1 -1 -1 -1 -1]
    [-2  0 -1 -1  0 -1 -1  0 -1]
    [-3  0 -2 -1 -1 -1 -1 -1 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]
    [-4 -1 -2 -2 -1 -1 -1 -1 -2]
    [-1  0 -1 -1  0  0  0  0  0]
    [-2  0 -1 -1 -1 -1  0  0 -1]
    [-4 -1 -2 -2 -1 -2 -1 -1 -1]

6
{@
    Mod: ( 4 -1 -1 -1 -2 -1 -2 -1 -2),
    Mod: ( 3 -1 -1 -1 -1  0 -1 -1 -2),
    Mod: ( 2 -1 -1 -1 -1 -1  0  0  0),
    Mod: ( 1  0  0 -1  0 -1  0  0  0)
@}
Intersection Matrix:
[-1  0  2  2]
[ 0 -1  2  2]
[ 2  2 -1  0]
[ 2  2  0 -1]
Stabilizer Group Name:
C5
MatrixGroup(9, Integer Ring)
Generators:
    [ 8  1  4  4  2  3  2  2  3]
    [-3  0 -1 -2 -1 -1 -1 -1 -1]
    [-2  0 -1 -1  0 -1 -1  0 -1]
    [-3  0 -2 -1 -1 -1 -1 -1 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]
    [-4 -1 -2 -2 -1 -1 -1 -1 -2]
    [-1  0 -1 -1  0  0  0  0  0]
    [-2  0 -1 -1 -1 -1  0  0 -1]
    [-4 -1 -2 -2 -1 -2 -1 -1 -1]

7
{@
    Mod: ( 4 -2 -2 -1 -2 -1 -1 -1 -1),
    Mod: ( 2 -1 -1 -1  0  0  0 -1 -1),
    Mod: ( 4 -1 -1 -1 -2 -2 -2 -1 -1),
    Mod: ( 2  0  0 -1  0 -1 -1 -1 -1)
@}
Intersection Matrix:
[-1  1  1  3]
[ 1 -1  3  1]
[ 1  3 -1  1]
[ 3  1  1 -1]
Stabilizer Group Name:
C5
MatrixGroup(9, Integer Ring)
Generators:
    [ 8  1  4  4  2  3  2  2  3]
    [-3  0 -1 -2 -1 -1 -1 -1 -1]
    [-2  0 -1 -1  0 -1 -1  0 -1]
    [-3  0 -2 -1 -1 -1 -1 -1 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]
    [-4 -1 -2 -2 -1 -1 -1 -1 -2]
    [-1  0 -1 -1  0  0  0  0  0]
    [-2  0 -1 -1 -1 -1  0  0 -1]
    [-4 -1 -2 -2 -1 -2 -1 -1 -1]

8
{@
    Mod: ( 6 -2 -2 -3 -2 -2 -2 -2 -2),
    Mod: ( 2  0 -1 -1 -1  0 -1 -1  0),
    Mod: ( 2 -1 -1  0  0 -1 -1  0 -1),
    Mod: ( 3 -2  0 -1 -1 -1 -1 -1 -1),
    Mod: ( 2  0 -1  0 -1 -1  0 -1 -1)
@}
Intersection Matrix:
[-1  1  2  1  2]
[ 1 -1  2  2  1]
[ 2  2 -1  1  1]
[ 1  2  1 -1  2]
[ 2  1  1  2 -1]
Stabilizer Group Name:
C2^2
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  0  2  1  1  0  0]
    [-1  0 -1  0 -1  0  0  0  0]
    [-1 -1  0  0 -1  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [-2 -1 -1  0 -1 -1 -1  0  0]
    [-1  0  0  0 -1  0 -1  0  0]
    [-1  0  0  0 -1 -1  0  0  0]
    [ 0  0  0  0  0  0  0  1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [ 3  1  0  0  1  0  1  1  2]
    [-1 -1  0  0  0  0  0  0 -1]
    [ 0  0  0  0  0  1  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [-1  0  0  0  0  0  0 -1 -1]
    [ 0  0  1  0  0  0  0  0  0]
    [-1  0  0  0  0  0 -1  0 -1]
    [-1  0  0  0 -1  0  0  0 -1]
    [-2 -1  0  0 -1  0 -1 -1 -1]

9
{@
    Mod: ( 1 -1  0  0  0  0 -1  0  0),
    Mod: ( 1  0  0  0 -1  0  0 -1  0),
    Mod: ( 5 -2 -1 -2 -2 -2 -1 -2 -2),
    Mod: ( 4 -1 -2 -1 -1 -2 -1 -1 -2),
    Mod: ( 4 -1 -2 -2 -1 -1 -2 -1 -1)
@}
Intersection Matrix:
[-1  1  2  2  1]
[ 1 -1  1  2  2]
[ 2  1 -1  1  2]
[ 2  2  1 -1  1]
[ 1  2  2  1 -1]
Stabilizer Group Name:
C2^2
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  0  2  1  1  0  0]
    [-1  0 -1  0 -1  0  0  0  0]
    [-1 -1  0  0 -1  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [-2 -1 -1  0 -1 -1 -1  0  0]
    [-1  0  0  0 -1  0 -1  0  0]
    [-1  0  0  0 -1 -1  0  0  0]
    [ 0  0  0  0  0  0  0  1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [ 8  3  2  4  2  1  4  2  3]
    [-3 -1 -1 -2 -1  0 -1 -1 -1]
    [-2 -1 -1 -1  0  0 -1  0 -1]
    [-4 -2 -1 -2 -1 -1 -2 -1 -1]
    [-2 -1  0 -1  0  0 -1 -1 -1]
    [-1  0  0 -1  0  0 -1  0  0]
    [-4 -1 -1 -2 -1 -1 -2 -1 -2]
    [-2 -1  0 -1 -1  0 -1  0 -1]
    [-3 -1 -1 -1 -1  0 -2 -1 -1]

10
{@
    Mod: ( 4 -2 -1 -1 -1 -2 -1 -1 -2),
    Mod: ( 4 -2 -1 -2 -1 -1 -2 -1 -1),
    Mod: ( 3  0 -2 -1 -1 -1 -1 -1 -1),
    Mod: ( 4 -1 -1 -2 -2 -1 -1 -2 -1),
    Mod: (0 0 0 1 0 0 0 0 0)
@}
Intersection Matrix:
[-1  1  2  2  1]
[ 1 -1  2  1  2]
[ 2  2 -1  1  1]
[ 2  1  1 -1  2]
[ 1  2  1  2 -1]
Stabilizer Group Name:
C2^2
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  0  2  1  1  0  0]
    [-1  0 -1  0 -1  0  0  0  0]
    [-1 -1  0  0 -1  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [-2 -1 -1  0 -1 -1 -1  0  0]
    [-1  0  0  0 -1  0 -1  0  0]
    [-1  0  0  0 -1 -1  0  0  0]
    [ 0  0  0  0  0  0  0  1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [10  4  3  4  4  2  5  2  3]
    [-4 -1 -1 -2 -2 -1 -2 -1 -1]
    [-3 -1 -1 -1 -1 -1 -2  0 -1]
    [-4 -2 -1 -2 -1 -1 -2 -1 -1]
    [-4 -2 -1 -1 -2 -1 -2 -1 -1]
    [-2 -1 -1 -1 -1  0 -1  0  0]
    [-5 -2 -2 -2 -2 -1 -2 -1 -2]
    [-2 -1  0 -1 -1  0 -1  0 -1]
    [-3 -1 -1 -1 -1  0 -2 -1 -1]

11
{@
    Mod: ( 2 -1  0  0 -1 -1  0 -1 -1),
    Mod: ( 5 -1 -2 -2 -2 -2 -1 -2 -2),
    Mod: ( 1  0 -1  0  0  0 -1  0  0),
    Mod: ( 2 -1  0 -1 -1  0 -1 -1  0),
    Mod: ( 5 -2 -2 -2 -1 -2 -2 -1 -2)
@}
Intersection Matrix:
[-1  1  2  1  2]
[ 1 -1  2  2  1]
[ 2  2 -1  1  1]
[ 1  2  1 -1  2]
[ 2  1  1  2 -1]
Stabilizer Group Name:
C2^2
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  0  2  1  1  0  0]
    [-1  0 -1  0 -1  0  0  0  0]
    [-1 -1  0  0 -1  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [-2 -1 -1  0 -1 -1 -1  0  0]
    [-1  0  0  0 -1  0 -1  0  0]
    [-1  0  0  0 -1 -1  0  0  0]
    [ 0  0  0  0  0  0  0  1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [13  5  4  4  5  5  4  3  6]
    [-5 -2 -1 -2 -2 -2 -2 -1 -2]
    [-4 -1 -1 -1 -2 -2 -1 -1 -2]
    [-4 -2 -1 -1 -1 -2 -1 -1 -2]
    [-5 -2 -2 -1 -2 -2 -2 -1 -2]
    [-5 -2 -2 -2 -2 -2 -1 -1 -2]
    [-4 -2 -1 -1 -2 -1 -1 -1 -2]
    [-3 -1 -1 -1 -1 -1 -1  0 -2]
    [-6 -2 -2 -2 -2 -2 -2 -2 -3]

12
{@
    Mod: ( 1 -1  0  0  0 -1  0  0  0),
    Mod: ( 3 -1 -1  0 -1 -1 -1 -1 -2),
    Mod: ( 2  0 -1 -1 -1 -1  0 -1  0),
    Mod: ( 4 -2 -1 -2 -1 -2 -1 -1 -1),
    Mod: ( 5 -2 -1 -2 -2 -1 -2 -2 -2),
    Mod: ( 4 -2 -1 -1 -1 -1 -2 -1 -2),
    Mod: ( 2  0 -1  0 -1  0 -1 -1 -1),
    Mod: ( 1  0 -1  0  0 -1  0  0  0),
    Mod: ( 5 -1 -2 -2 -2 -1 -2 -2 -2),
    Mod: ( 3 -1 -1 -2 -1 -1 -1 -1  0)
@}
Intersection Matrix:
[-1  1  1  0  2  1  2  0  3  1]
[ 1 -1  2  2  1  0  0  1  1  3]
[ 1  2 -1  1  2  3  1  0  1  0]
[ 0  2  1 -1  1  1  3  1  2  0]
[ 2  1  2  1 -1  0  1  3  0  1]
[ 1  0  3  1  0 -1  1  2  1  2]
[ 2  0  1  3  1  1 -1  1  0  2]
[ 0  1  0  1  3  2  1 -1  2  1]
[ 3  1  1  2  0  1  0  2 -1  1]
[ 1  3  0  0  1  2  2  1  1 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  0  2  1  1  0  0]
    [-1  0 -1  0 -1  0  0  0  0]
    [-1 -1  0  0 -1  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [-2 -1 -1  0 -1 -1 -1  0  0]
    [-1  0  0  0 -1  0 -1  0  0]
    [-1  0  0  0 -1 -1  0  0  0]
    [ 0  0  0  0  0  0  0  1  0]
    [ 0  0  0  0  0  0  0  0  1]

13
{@
    Mod: ( 6 -2 -2 -2 -2 -2 -2 -2 -3),
    Mod: ( 2 -1 -1 -1  0 -1 -1  0  0),
    Mod: (0 0 0 0 0 0 0 0 1),
    Mod: ( 4 -1 -1 -1 -2 -1 -1 -2 -2),
    Mod: ( 3 -1 -1 -1 -1  0 -2 -1 -1),
    Mod: ( 2 -1  0  0 -1  0 -1 -1 -1),
    Mod: ( 2 -1  0 -1 -1 -1  0 -1  0),
    Mod: ( 4 -1 -2 -2 -1 -2 -1 -1 -1),
    Mod: ( 4 -1 -2 -1 -1 -1 -2 -1 -2),
    Mod: ( 3 -1 -1 -1 -1 -2  0 -1 -1)
@}
Intersection Matrix:
[-1  2  3  0  1  1  2  1  0  1]
[ 2 -1  0  3  1  2  1  0  1  1]
[ 3  0 -1  2  1  1  0  1  2  1]
[ 0  3  2 -1  1  0  1  2  1  1]
[ 1  1  1  1 -1  0  2  2  0  3]
[ 1  2  1  0  0 -1  1  3  1  2]
[ 2  1  0  1  2  1 -1  1  3  0]
[ 1  0  1  2  2  3  1 -1  1  0]
[ 0  1  2  1  0  1  3  1 -1  2]
[ 1  1  1  1  3  2  0  0  2 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  0  2  1  1  0  0]
    [-1  0 -1  0 -1  0  0  0  0]
    [-1 -1  0  0 -1  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [-2 -1 -1  0 -1 -1 -1  0  0]
    [-1  0  0  0 -1  0 -1  0  0]
    [-1  0  0  0 -1 -1  0  0  0]
    [ 0  0  0  0  0  0  0  1  0]
    [ 0  0  0  0  0  0  0  0  1]

14
{@
    Mod: ( 1  0  0  0 -1  0  0  0 -1),
    Mod: ( 4 -1 -1 -2 -2 -1 -1 -1 -2),
    Mod: ( 2  0 -1 -1 -1  0 -1  0 -1),
    Mod: ( 3 -1 -1 -2 -1 -1 -1  0 -1),
    Mod: ( 2 -1  0 -1 -1  0 -1  0 -1),
    Mod: ( 2  0 -1 -1 -1 -1  0  0 -1),
    Mod: ( 2 -1  0 -1 -1 -1  0  0 -1),
    Mod: (0 0 0 0 0 0 0 1 0),
    Mod: ( 1  0  0 -1 -1  0  0  0  0),
    Mod: ( 3 -1 -1 -1 -1 -1 -1  0 -2)
@}
Intersection Matrix:
[-1  0  0  1  0  0  0  0  0  0]
[ 0 -1  0  0  0  0  0  1  0  0]
[ 0  0 -1  0  0  0  1  0  0  0]
[ 1  0  0 -1  0  0  0  0  0  0]
[ 0  0  0  0 -1  1  0  0  0  0]
[ 0  0  0  0  1 -1  0  0  0  0]
[ 0  0  1  0  0  0 -1  0  0  0]
[ 0  1  0  0  0  0  0 -1  0  0]
[ 0  0  0  0  0  0  0  0 -1  1]
[ 0  0  0  0  0  0  0  0  1 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  0  2  1  1  0  0]
    [-1  0 -1  0 -1  0  0  0  0]
    [-1 -1  0  0 -1  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [-2 -1 -1  0 -1 -1 -1  0  0]
    [-1  0  0  0 -1  0 -1  0  0]
    [-1  0  0  0 -1 -1  0  0  0]
    [ 0  0  0  0  0  0  0  1  0]
    [ 0  0  0  0  0  0  0  0  1]

15
{@
    Mod: ( 4 -1 -2 -1 -1 -1 -2 -2 -1),
    Mod: ( 4 -2 -1 -1 -1 -2 -1 -2 -1),
    Mod: ( 6 -2 -2 -2 -2 -2 -2 -3 -2),
    Mod: ( 5 -2 -2 -1 -1 -2 -2 -2 -2),
    Mod: ( 4 -1 -2 -1 -1 -2 -1 -2 -1),
    Mod: ( 3 -1 -1  0 -1 -1 -1 -2 -1),
    Mod: ( 2 -1 -1  0  0 -1 -1 -1  0),
    Mod: ( 3 -1 -1 -1 -1 -1 -1 -2  0),
    Mod: ( 5 -2 -2 -2 -1 -2 -2 -2 -1),
    Mod: ( 4 -2 -1 -1 -1 -1 -2 -2 -1)
@}
Intersection Matrix:
[-1  1  0  0  0  0  0  0  0  0]
[ 1 -1  0  0  0  0  0  0  0  0]
[ 0  0 -1  0  0  0  1  0  0  0]
[ 0  0  0 -1  0  0  0  1  0  0]
[ 0  0  0  0 -1  0  0  0  0  1]
[ 0  0  0  0  0 -1  0  0  1  0]
[ 0  0  1  0  0  0 -1  0  0  0]
[ 0  0  0  1  0  0  0 -1  0  0]
[ 0  0  0  0  0  1  0  0 -1  0]
[ 0  0  0  0  1  0  0  0  0 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  0  2  1  1  0  0]
    [-1  0 -1  0 -1  0  0  0  0]
    [-1 -1  0  0 -1  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [-2 -1 -1  0 -1 -1 -1  0  0]
    [-1  0  0  0 -1  0 -1  0  0]
    [-1  0  0  0 -1 -1  0  0  0]
    [ 0  0  0  0  0  0  0  1  0]
    [ 0  0  0  0  0  0  0  0  1]

16
{@
    Mod: ( 5 -2 -2 -1 -2 -2 -2 -1 -2),
    Mod: ( 1  0  0 -1  0  0  0 -1  0),
    Mod: ( 1  0  0  0  0  0  0 -1 -1),
    Mod: ( 6 -2 -2 -2 -3 -2 -2 -2 -2),
    Mod: ( 4 -2 -1 -1 -2 -1 -2 -1 -1),
    Mod: (0 0 0 0 1 0 0 0 0),
    Mod: ( 4 -1 -2 -1 -2 -1 -2 -1 -1),
    Mod: ( 2 -1  0 -1  0 -1  0 -1 -1),
    Mod: ( 2  0 -1 -1  0  0 -1 -1 -1),
    Mod: ( 3 -1 -1 -1  0 -1 -1 -1 -2),
    Mod: ( 4 -1 -1 -2 -1 -1 -1 -2 -2),
    Mod: ( 4 -2 -1 -1 -2 -2 -1 -1 -1),
    Mod: ( 3 -1 -1 -2  0 -1 -1 -1 -1),
    Mod: ( 4 -1 -2 -1 -2 -2 -1 -1 -1),
    Mod: ( 2 -1  0 -1  0  0 -1 -1 -1),
    Mod: ( 2  0 -1 -1  0 -1  0 -1 -1),
    Mod: ( 3 -1 -1 -1 -2 -1 -1 -1  0),
    Mod: ( 2 -1 -1  0 -1 -1 -1  0  0),
    Mod: ( 3 -1 -1  0 -2 -1 -1 -1 -1),
    Mod: ( 5 -2 -2 -2 -2 -2 -2 -1 -1)
@}
Intersection Matrix:
[-1  3  2  0  0  2  0  2  2  1  2  0  2  0  2  2  1  0  0  0]
[ 3 -1  0  2  2  0  2  0  0  1  0  2  0  2  0  0  1  2  2  2]
[ 2  0 -1  2  2  0  2  0  0  0  0  2  1  2  0  0  2  2  1  3]
[ 0  2  2 -1  0  3  0  2  2  2  1  0  2  0  2  2  0  1  0  0]
[ 0  2  2  0 -1  2  0  2  2  2  2  0  2  1  1  3  0  0  0  0]
[ 2  0  0  3  2 -1  2  0  0  0  1  2  0  2  0  0  2  1  2  2]
[ 0  2  2  0  0  2 -1  3  1  2  2  1  2  0  2  2  0  0  0  0]
[ 2  0  0  2  2  0  3 -1  1  0  0  1  0  2  0  0  2  2  2  2]
[ 2  0  0  2  2  0  1  1 -1  0  0  3  0  2  0  0  2  2  2  2]
[ 1  1  0  2  2  0  2  0  0 -1  0  2  0  2  0  0  3  2  2  2]
[ 2  0  0  1  2  1  2  0  0  0 -1  2  0  2  0  0  2  3  2  2]
[ 0  2  2  0  0  2  1  1  3  2  2 -1  2  0  2  2  0  0  0  0]
[ 2  0  1  2  2  0  2  0  0  0  0  2 -1  2  0  0  2  2  3  1]
[ 0  2  2  0  1  2  0  2  2  2  2  0  2 -1  3  1  0  0  0  0]
[ 2  0  0  2  1  0  2  0  0  0  0  2  0  3 -1  1  2  2  2  2]
[ 2  0  0  2  3  0  2  0  0  0  0  2  0  1  1 -1  2  2  2  2]
[ 1  1  2  0  0  2  0  2  2  3  2  0  2  0  2  2 -1  0  0  0]
[ 0  2  2  1  0  1  0  2  2  2  3  0  2  0  2  2  0 -1  0  0]
[ 0  2  1  0  0  2  0  2  2  2  2  0  3  0  2  2  0  0 -1  1]
[ 0  2  3  0  0  2  0  2  2  2  2  0  1  0  2  2  0  0  1 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

17
{@
    Mod: ( 3 -1  0 -1 -1 -1 -2 -1 -1),
    Mod: ( 3 -1 -2 -1 -1 -1  0 -1 -1),
    Mod: ( 3 -2 -1 -1 -1 -1  0 -1 -1),
    Mod: ( 4 -2 -2 -2 -1 -1 -1 -1 -1),
    Mod: ( 4 -1 -1 -2 -1 -2 -2 -1 -1),
    Mod: ( 3  0 -1 -1 -1 -2 -1 -1 -1),
    Mod: ( 1  0  0  0  0 -1 -1  0  0),
    Mod: ( 4 -2 -2 -1 -1 -1 -1 -1 -2),
    Mod: ( 4 -1 -1 -1 -1 -2 -2 -1 -2),
    Mod: ( 2 -1 -1 -1 -1  0  0 -1  0),
    Mod: ( 1 -1 -1  0  0  0  0  0  0),
    Mod: ( 5 -2 -2 -2 -2 -1 -1 -2 -2),
    Mod: ( 2  0  0 -1 -1 -1 -1 -1  0),
    Mod: ( 3 -1 -2 -1 -1  0 -1 -1 -1),
    Mod: ( 5 -1 -1 -2 -2 -2 -2 -2 -2),
    Mod: ( 3 -2 -1 -1 -1  0 -1 -1 -1),
    Mod: ( 3 -1  0 -1 -1 -2 -1 -1 -1),
    Mod: ( 3  0 -1 -1 -1 -1 -2 -1 -1),
    Mod: ( 2 -1 -1  0 -1  0  0 -1 -1),
    Mod: ( 2  0  0  0 -1 -1 -1 -1 -1)
@}
Intersection Matrix:
[-1  3  2  2  0  1  0  2  0  2  2  2  0  2  0  1  0  0  2  0]
[ 3 -1  0  0  2  1  2  0  2  0  0  0  2  0  2  1  2  2  0  2]
[ 2  0 -1  0  2  2  2  0  2  0  0  0  2  1  2  0  1  3  0  2]
[ 2  0  0 -1  1  2  2  0  2  0  0  0  2  0  2  0  2  2  1  3]
[ 0  2  2  1 -1  0  0  2  0  2  2  2  0  2  0  2  0  0  3  1]
[ 1  1  2  2  0 -1  0  2  0  2  2  2  0  2  0  3  0  0  2  0]
[ 0  2  2  2  0  0 -1  2  0  2  1  3  0  2  1  2  0  0  2  0]
[ 2  0  0  0  2  2  2 -1  1  1  0  0  3  0  2  0  2  2  0  2]
[ 0  2  2  2  0  0  0  1 -1  3  2  2  1  2  0  2  0  0  2  0]
[ 2  0  0  0  2  2  2  1  3 -1  0  0  1  0  2  0  2  2  0  2]
[ 2  0  0  0  2  2  1  0  2  0 -1  1  2  0  3  0  2  2  0  2]
[ 2  0  0  0  2  2  3  0  2  0  1 -1  2  0  1  0  2  2  0  2]
[ 0  2  2  2  0  0  0  3  1  1  2  2 -1  2  0  2  0  0  2  0]
[ 2  0  1  0  2  2  2  0  2  0  0  0  2 -1  2  0  3  1  0  2]
[ 0  2  2  2  0  0  1  2  0  2  3  1  0  2 -1  2  0  0  2  0]
[ 1  1  0  0  2  3  2  0  2  0  0  0  2  0  2 -1  2  2  0  2]
[ 0  2  1  2  0  0  0  2  0  2  2  2  0  3  0  2 -1  1  2  0]
[ 0  2  3  2  0  0  0  2  0  2  2  2  0  1  0  2  1 -1  2  0]
[ 2  0  0  1  3  2  2  0  2  0  0  0  2  0  2  0  2  2 -1  1]
[ 0  2  2  3  1  0  0  2  0  2  2  2  0  2  0  2  0  0  1 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

18
{@
    Mod: ( 2 -1  0 -1  0 -1 -1  0 -1),
    Mod: ( 1  0  0  0  0 -1  0  0 -1),
    Mod: ( 4 -1 -2 -2 -2 -1 -1 -1 -1),
    Mod: ( 2  0 -1 -1 -1  0  0 -1 -1),
    Mod: ( 2  0 -1  0 -1 -1 -1  0 -1),
    Mod: ( 4 -1 -1 -2 -2 -1 -2 -1 -1),
    Mod: ( 1  0 -1  0  0  0  0  0 -1),
    Mod: ( 3 -2 -1 -1 -1 -1 -1  0 -1),
    Mod: ( 4 -2 -1 -2 -1 -1 -1 -1 -2),
    Mod: ( 2 -1  0  0 -1 -1 -1  0 -1),
    Mod: ( 3  0 -1 -1 -2 -1 -1 -1 -1),
    Mod: ( 1 -1  0  0  0  0  0  0 -1),
    Mod: ( 4 -2 -1 -2 -2 -1 -1 -1 -1),
    Mod: ( 3 -1  0 -2 -1 -1 -1 -1 -1),
    Mod: ( 2 -1 -1  0 -1 -1  0  0 -1),
    Mod: ( 1  0 -1  0 -1  0  0  0  0),
    Mod: ( 3 -1 -1 -2 -1  0 -1 -1 -1),
    Mod: ( 3  0 -1 -2 -1 -1 -1 -1 -1),
    Mod: ( 5 -2 -1 -2 -2 -2 -2 -1 -2),
    Mod: (0 1 0 0 0 0 0 0 0)
@}
Intersection Matrix:
[-1  0  2  2  1  1  1  0  0  0  2  0  1  0  1  2  1  1  0  1]
[ 0 -1  2  1  0  2  0  1  1  0  1  0  2  1  0  1  2  1  1  0]
[ 2  2 -1  0  1  0  1  1  1  2  0  2  0  1  1  0  0  0  1  1]
[ 2  1  0 -1  1  1  0  2  1  2  0  1  1  1  1  0  0  0  2  0]
[ 1  0  1  1 -1  1  0  1  2  0  0  1  2  2  0  0  2  1  1  0]
[ 1  2  0  1  1 -1  2  1  1  1  0  2  0  0  2  1  0  0  0  1]
[ 1  0  1  0  0  2 -1  1  1  1  1  0  2  2  0  0  1  1  2  0]
[ 0  1  1  2  1  1  1 -1  0  0  2  0  0  1  0  1  1  2  0  2]
[ 0  1  1  1  2  1  1  0 -1  1  2  0  0  0  1  2  0  1  0  2]
[ 0  0  2  2  0  1  1  0  1 -1  1  0  1  1  0  1  2  2  0  1]
[ 2  1  0  0  0  0  1  2  2  1 -1  2  1  1  1  0  1  0  1  0]
[ 0  0  2  1  1  2  0  0  0  0  2 -1  1  1  0  1  1  2  1  1]
[ 1  2  0  1  2  0  2  0  0  1  1  1 -1  0  1  1  0  1  0  2]
[ 0  1  1  1  2  0  2  1  0  1  1  1  0 -1  2  2  0  0  0  1]
[ 1  0  1  1  0  2  0  0  1  0  1  0  1  2 -1  0  2  2  1  1]
[ 2  1  0  0  0  1  0  1  2  1  0  1  1  2  0 -1  1  1  2  0]
[ 1  2  0  0  2  0  1  1  0  2  1  1  0  0  2  1 -1  0  1  1]
[ 1  1  0  0  1  0  1  2  1  2  0  2  1  0  2  1  0 -1  1  0]
[ 0  1  1  2  1  0  2  0  0  0  1  1  0  0  1  2  1  1 -1  2]
[ 1  0  1  0  0  1  0  2  2  1  0  1  2  1  1  0  1  0  2 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

19
{@
    Mod: ( 4 -1 -2 -2 -1 -1 -1 -2 -1),
    Mod: ( 3 -1 -1  0 -1 -2 -1 -1 -1),
    Mod: ( 2 -1 -1  0  0 -1  0 -1 -1),
    Mod: ( 3 -2 -1 -1  0 -1 -1 -1 -1),
    Mod: ( 3 -1 -2  0 -1 -1 -1 -1 -1),
    Mod: ( 3 -2 -1  0 -1 -1 -1 -1 -1),
    Mod: ( 4 -1 -2 -1 -2 -1 -1 -2 -1),
    Mod: ( 6 -3 -2 -2 -2 -2 -2 -2 -2),
    Mod: ( 2  0 -1  0  0 -1 -1 -1 -1),
    Mod: ( 1  0 -1  0  0  0  0 -1  0),
    Mod: ( 2  0 -1  0 -1 -1 -1 -1  0),
    Mod: ( 3  0 -1 -1 -1 -1 -1 -2 -1),
    Mod: ( 5 -2 -1 -2 -1 -2 -2 -2 -2),
    Mod: ( 5 -2 -2 -2 -2 -1 -2 -2 -1),
    Mod: ( 4 -2 -1 -1 -1 -2 -2 -1 -1),
    Mod: ( 4 -1 -1 -2 -1 -1 -2 -2 -1),
    Mod: ( 5 -2 -1 -2 -2 -2 -2 -2 -1),
    Mod: ( 5 -1 -2 -2 -2 -2 -2 -2 -1),
    Mod: ( 2 -1  0  0  0 -1 -1 -1 -1),
    Mod: ( 4 -2 -1 -2 -1 -1 -1 -2 -1)
@}
Intersection Matrix:
[-1  2  1  1  1  2  0  1  1  0  1  0  1  0  2  0  1  0  2  0]
[ 2 -1  0  1  0  0  1  1  0  1  0  1  1  2  0  2  1  1  0  2]
[ 1  0 -1  0  0  0  1  1  0  0  1  1  1  2  1  2  2  2  0  1]
[ 1  1  0 -1  1  0  2  0  1  1  2  2  0  1  0  1  1  2  0  0]
[ 1  0  0  1 -1  0  0  1  0  0  0  1  2  1  1  2  2  1  1  2]
[ 2  0  0  0  0 -1  1  0  1  1  1  2  1  1  0  2  1  2  0  1]
[ 0  1  1  2  0  1 -1  1  1  0  0  0  2  0  2  1  1  0  2  1]
[ 1  1  1  0  1  0  1 -1  2  2  2  2  0  0  0  1  0  1  1  0]
[ 1  0  0  1  0  1  1  2 -1  0  0  0  1  2  1  1  2  1  0  2]
[ 0  1  0  1  0  1  0  2  0 -1  0  0  2  1  2  1  2  1  1  1]
[ 1  0  1  2  0  1  0  2  0  0 -1  0  2  1  1  1  1  0  1  2]
[ 0  1  1  2  1  2  0  2  0  0  0 -1  1  1  2  0  1  0  1  1]
[ 1  1  1  0  2  1  2  0  1  2  2  1 -1  1  0  0  0  1  0  0]
[ 0  2  2  1  1  1  0  0  2  1  1  1  1 -1  1  0  0  0  2  0]
[ 2  0  1  0  1  0  2  0  1  2  1  2  0  1 -1  1  0  1  0  1]
[ 0  2  2  1  2  2  1  1  1  1  1  0  0  0  1 -1  0  0  1  0]
[ 1  1  2  1  2  1  1  0  2  2  1  1  0  0  0  0 -1  0  1  0]
[ 0  1  2  2  1  2  0  1  1  1  0  0  1  0  1  0  0 -1  2  1]
[ 2  0  0  0  1  0  2  1  0  1  1  1  0  2  0  1  1  2 -1  1]
[ 0  2  1  0  2  1  1  0  2  1  2  1  0  0  1  0  0  1  1 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

20
{@
    Mod: ( 1 -1  0  0  0  0  0 -1  0),
    Mod: ( 5 -2 -2 -1 -2 -2 -1 -2 -2),
    Mod: ( 3 -1 -2 -1  0 -1 -1 -1 -1),
    Mod: ( 4 -2 -1 -1 -2 -1 -1 -2 -1),
    Mod: ( 4 -1 -1 -1 -1 -2 -1 -2 -2),
    Mod: ( 3 -1 -1 -1  0 -1 -2 -1 -1),
    Mod: ( 1  0  0  0  0  0 -1 -1  0),
    Mod: ( 6 -2 -3 -2 -2 -2 -2 -2 -2),
    Mod: ( 4 -2 -2 -1 -1 -1 -2 -1 -1),
    Mod: ( 4 -1 -1 -1 -2 -2 -1 -2 -1),
    Mod: ( 2 -1 -1  0 -1  0 -1 -1  0),
    Mod: ( 6 -2 -2 -2 -2 -3 -2 -2 -2),
    Mod: ( 5 -1 -2 -2 -1 -2 -2 -2 -2),
    Mod: ( 4 -1 -2 -1 -1 -2 -2 -1 -1),
    Mod: ( 2 -1 -1 -1  0  0 -1 -1  0),
    Mod: ( 3 -1 -1 -1 -1 -1  0 -2 -1),
    Mod: ( 5 -2 -2 -2 -1 -2 -1 -2 -2),
    Mod: ( 3 -1 -1 -1 -1 -1 -2 -1  0),
    Mod: ( 3 -1  0 -1 -1 -1 -1 -2 -1),
    Mod: ( 2 -1  0  0 -1 -1 -1 -1  0)
@}
Intersection Matrix:
[-1  1  1  0  1  1  0  2  1  1  0  2  2  2  0  0  1  1  0  0]
[ 1 -1  1  0  0  2  2  0  1  0  1  0  1  1  2  0  0  2  1  1]
[ 1  1 -1  2  1  0  1  0  0  2  1  1  0  0  0  1  0  1  2  2]
[ 0  0  2 -1  1  2  1  1  1  0  0  1  2  2  1  0  1  1  0  0]
[ 1  0  1  1 -1  1  1  1  2  0  2  0  0  1  2  0  0  2  0  1]
[ 1  2  0  2  1 -1  0  1  0  2  1  1  0  0  0  2  1  0  1  1]
[ 0  2  1  1  1  0 -1  2  1  1  0  2  1  1  0  1  2  0  0  0]
[ 2  0  0  1  1  1  2 -1  0  1  1  0  0  0  1  1  0  1  2  2]
[ 1  1  0  1  2  0  1  0 -1  2  0  1  1  0  0  2  1  0  2  1]
[ 1  0  2  0  0  2  1  1  2 -1  1  0  1  1  2  0  1  1  0  0]
[ 0  1  1  0  2  1  0  1  0  1 -1  2  2  1  0  1  2  0  1  0]
[ 2  0  1  1  0  1  2  0  1  0  2 -1  0  0  2  1  0  1  1  1]
[ 2  1  0  2  0  0  1  0  1  1  2  0 -1  0  1  1  0  1  1  2]
[ 2  1  0  2  1  0  1  0  0  1  1  0  0 -1  1  2  1  0  2  1]
[ 0  2  0  1  2  0  0  1  0  2  0  2  1  1 -1  1  1  0  1  1]
[ 0  0  1  0  0  2  1  1  2  0  1  1  1  2  1 -1  0  2  0  1]
[ 1  0  0  1  0  1  2  0  1  1  2  0  0  1  1  0 -1  2  1  2]
[ 1  2  1  1  2  0  0  1  0  1  0  1  1  0  0  2  2 -1  1  0]
[ 0  1  2  0  0  1  0  2  2  0  1  1  1  2  1  0  1  1 -1  0]
[ 0  1  2  0  1  1  0  2  1  0  0  1  2  1  1  1  2  0  0 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

21
{@
    Mod: ( 3 -1 -1 -1 -1 -1  0 -1 -2),
    Mod: ( 2  0 -1 -1  0 -1 -1  0 -1),
    Mod: ( 5 -1 -2 -2 -2 -2 -2 -1 -2),
    Mod: ( 2  0  0 -1 -1 -1  0 -1 -1),
    Mod: (0 0 1 0 0 0 0 0 0),
    Mod: ( 1 -1  0  0 -1  0  0  0  0),
    Mod: ( 4 -1 -1 -2 -1 -2 -1 -1 -2),
    Mod: ( 3 -1  0 -1 -2 -1 -1 -1 -1),
    Mod: ( 4 -1 -1 -1 -2 -2 -1 -1 -2),
    Mod: ( 1  0  0 -1  0  0 -1  0  0),
    Mod: ( 1  0  0  0 -1  0 -1  0  0),
    Mod: ( 3 -1 -1 -1 -2 -1  0 -1 -1),
    Mod: ( 3 -1 -1 -1 -1 -1 -2  0 -1),
    Mod: ( 2 -1 -1 -1 -1  0 -1  0  0),
    Mod: ( 5 -2 -2 -2 -2 -2 -1 -1 -2),
    Mod: ( 4 -1 -2 -2 -1 -1 -1 -1 -2),
    Mod: ( 2 -1 -1 -1  0  0 -1  0 -1),
    Mod: ( 3 -1 -2 -1 -1 -1 -1  0 -1),
    Mod: (0 0 0 0 0 1 0 0 0),
    Mod: ( 2 -1  0 -1 -1  0  0 -1 -1)
@}
Intersection Matrix:
[-1  1  1  0  1  1  0  1  0  2  2  0  2  2  0  0  1  1  1  0]
[ 1 -1  0  1  1  2  0  2  1  0  1  2  0  1  1  0  0  0  1  2]
[ 1  0 -1  1  2  2  0  1  0  1  1  1  0  1  0  0  1  0  2  2]
[ 0  1  1 -1  0  1  0  0  0  1  1  0  2  2  1  1  2  2  1  0]
[ 1  1  2  0 -1  0  1  0  1  0  0  1  1  1  2  2  1  2  0  0]
[ 1  2  2  1  0 -1  2  0  1  1  0  0  1  0  1  2  1  1  0  0]
[ 0  0  0  0  1  2 -1  1  0  1  2  1  1  2  0  0  1  1  2  1]
[ 1  2  1  0  0  0  1 -1  0  1  0  0  1  1  1  2  2  2  1  0]
[ 0  1  0  0  1  1  0  0 -1  2  1  0  1  2  0  1  2  1  2  1]
[ 2  0  1  1  0  1  1  1  2 -1  0  2  0  0  2  1  0  1  0  1]
[ 2  1  1  1  0  0  2  0  1  0 -1  1  0  0  2  2  1  1  0  1]
[ 0  2  1  0  1  0  1  0  0  2  1 -1  2  1  0  1  2  1  1  0]
[ 2  0  0  2  1  1  1  1  1  0  0  2 -1  0  1  1  0  0  1  2]
[ 2  1  1  2  1  0  2  1  2  0  0  1  0 -1  1  1  0  0  0  1]
[ 0  1  0  1  2  1  0  1  0  2  2  0  1  1 -1  0  1  0  2  1]
[ 0  0  0  1  2  2  0  2  1  1  2  1  1  1  0 -1  0  0  1  1]
[ 1  0  1  2  1  1  1  2  2  0  1  2  0  0  1  0 -1  0  0  1]
[ 1  0  0  2  2  1  1  2  1  1  1  1  0  0  0  0  0 -1  1  2]
[ 1  1  2  1  0  0  2  1  2  0  0  1  1  0  2  1  0  1 -1  0]
[ 0  2  2  0  0  0  1  0  1  1  1  0  2  1  1  1  1  2  0 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

22
{@
    Mod: ( 1  0  0  0  0  0 -1  0 -1),
    Mod: ( 1  0  0  0 -1 -1  0  0  0),
    Mod: ( 4 -1 -2 -1 -2 -1 -1 -1 -2),
    Mod: ( 2 -1 -1  0 -1  0 -1  0 -1),
    Mod: ( 1  0 -1 -1  0  0  0  0  0),
    Mod: ( 2  0  0 -1 -1  0 -1 -1 -1),
    Mod: ( 3 -1 -1 -1 -1 -2 -1  0 -1),
    Mod: ( 1 -1  0 -1  0  0  0  0  0),
    Mod: ( 5 -2 -2 -2 -2 -1 -2 -1 -2),
    Mod: (0 0 0 0 0 0 1 0 0),
    Mod: ( 4 -1 -1 -2 -2 -2 -1 -1 -1),
    Mod: ( 2 -1  0 -1 -1 -1 -1  0  0),
    Mod: ( 3 -1 -1 -1 -2  0 -1 -1 -1),
    Mod: ( 4 -2 -1 -1 -2 -1 -1 -1 -2),
    Mod: ( 3 -1  0 -1 -1 -1 -1 -1 -2),
    Mod: ( 2  0 -1 -1 -1 -1 -1  0  0),
    Mod: ( 2 -1 -1 -1  0 -1  0  0 -1),
    Mod: ( 3  0 -1 -1 -1 -1 -1 -1 -2),
    Mod: ( 4 -1 -1 -2 -1 -1 -2 -1 -2),
    Mod: ( 3 -1 -1 -2 -1 -1  0 -1 -1)
@}
Intersection Matrix:
[-1  1  1  0  1  0  1  1  1  1  2  1  1  1  0  1  1  0  0  2]
[ 1 -1  1  1  1  1  0  1  2  0  0  0  1  1  1  0  1  1  2  1]
[ 1  1 -1  0  1  1  1  2  0  1  1  2  0  0  1  1  1  0  1  1]
[ 0  1  0 -1  1  1  1  1  0  1  2  1  0  0  1  1  1  1  1  2]
[ 1  1  1  1 -1  1  1  0  1  0  1  1  1  2  2  0  0  1  1  0]
[ 0  1  1  1  1 -1  2  1  1  1  1  1  0  1  0  1  2  0  0  1]
[ 1  0  1  1  1  2 -1  1  1  1  0  0  2  1  1  0  0  1  1  1]
[ 1  1  2  1  0  1  1 -1  1  0  1  0  1  1  1  1  0  2  1  0]
[ 1  2  0  0  1  1  1  1 -1  2  1  1  0  0  1  1  1  1  0  1]
[ 1  0  1  1  0  1  1  0  2 -1  1  1  1  1  1  1  0  1  2  0]
[ 2  0  1  2  1  1  0  1  1  1 -1  0  1  1  1  0  1  1  1  0]
[ 1  0  2  1  1  1  0  0  1  1  0 -1  1  1  1  0  1  2  1  1]
[ 1  1  0  0  1  0  2  1  0  1  1  1 -1  0  1  1  2  1  1  1]
[ 1  1  0  0  2  1  1  1  0  1  1  1  0 -1  0  2  1  1  1  1]
[ 0  1  1  1  2  0  1  1  1  1  1  1  1  0 -1  2  1  0  0  1]
[ 1  0  1  1  0  1  0  1  1  1  0  0  1  2  2 -1  1  1  1  1]
[ 1  1  1  1  0  2  0  0  1  0  1  1  2  1  1  1 -1  1  1  0]
[ 0  1  0  1  1  0  1  2  1  1  1  2  1  1  0  1  1 -1  0  1]
[ 0  2  1  1  1  0  1  1  0  2  1  1  1  1  0  1  1  0 -1  1]
[ 2  1  1  2  0  1  1  0  1  0  0  1  1  1  1  1  0  1  1 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

23
{@
    Mod: ( 5 -2 -2 -2 -2 -2 -1 -2 -1),
    Mod: ( 4 -2 -1 -1 -1 -1 -1 -2 -2),
    Mod: ( 4 -1 -1 -1 -2 -1 -2 -2 -1),
    Mod: ( 4 -1 -2 -1 -1 -1 -1 -2 -2),
    Mod: ( 6 -2 -2 -2 -2 -2 -3 -2 -2),
    Mod: ( 2 -1 -1  0 -1 -1  0 -1  0),
    Mod: ( 4 -1 -1 -2 -1 -2 -1 -2 -1),
    Mod: ( 3 -1 -1 -1  0 -2 -1 -1 -1),
    Mod: ( 5 -2 -2 -2 -1 -1 -2 -2 -2),
    Mod: ( 3 -1 -1  0 -1 -1 -2 -1 -1),
    Mod: ( 2  0 -1 -1  0 -1 -1 -1  0),
    Mod: ( 3 -1 -1 -1 -1  0 -1 -2 -1),
    Mod: ( 2 -1 -1  0  0  0 -1 -1 -1),
    Mod: ( 3 -1 -2 -1 -1 -1 -1 -1  0),
    Mod: ( 3 -2 -1 -1 -1 -1 -1 -1  0),
    Mod: ( 5 -2 -1 -1 -2 -2 -2 -2 -2),
    Mod: ( 2 -1  0 -1  0 -1 -1 -1  0),
    Mod: ( 4 -2 -2 -1 -1 -2 -1 -1 -1),
    Mod: ( 1  0  0  0  0 -1  0 -1  0),
    Mod: ( 5 -1 -2 -1 -2 -2 -2 -2 -2)
@}
Intersection Matrix:
[-1  1  1  1  1  0  0  1  1  2  1  1  2  0  0  1  1  0  1  1]
[ 1 -1  1  0  1  1  1  1  0  1  2  0  0  2  1  0  1  1  1  1]
[ 1  1 -1  1  0  1  1  2  1  0  1  0  1  1  1  0  1  2  1  0]
[ 1  0  1 -1  1  1  1  1  0  1  1  0  0  1  2  1  2  1  1  0]
[ 1  1  0  1 -1  2  1  1  0  0  1  1  1  1  1  0  1  1  2  0]
[ 0  1  1  1  2 -1  1  1  2  1  1  1  1  0  0  1  1  0  0  1]
[ 0  1  1  1  1  1 -1  0  1  2  0  1  2  1  1  1  0  1  0  1]
[ 1  1  2  1  1  1  0 -1  1  1  0  2  1  1  1  1  0  0  0  1]
[ 1  0  1  0  0  2  1  1 -1  1  1  0  0  1  1  1  1  1  2  1]
[ 2  1  0  1  0  1  2  1  1 -1  1  1  0  1  1  0  1  1  1  0]
[ 1  2  1  1  1  1  0  0  1  1 -1  1  1  0  1  2  0  1  0  1]
[ 1  0  0  0  1  1  1  2  0  1  1 -1  0  1  1  1  1  2  1  1]
[ 2  0  1  0  1  1  2  1  0  0  1  0 -1  1  1  1  1  1  1  1]
[ 0  2  1  1  1  0  1  1  1  1  0  1  1 -1  0  2  1  0  1  1]
[ 0  1  1  2  1  0  1  1  1  1  1  1  1  0 -1  1  0  0  1  2]
[ 1  0  0  1  0  1  1  1  1  0  2  1  1  2  1 -1  1  1  1  0]
[ 1  1  1  2  1  1  0  0  1  1  0  1  1  1  0  1 -1  1  0  2]
[ 0  1  2  1  1  0  1  0  1  1  1  2  1  0  0  1  1 -1  1  1]
[ 1  1  1  1  2  0  0  0  2  1  0  1  1  1  1  1  0  1 -1  1]
[ 1  1  0  0  0  1  1  1  1  0  1  1  1  1  2  0  2  1  1 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

D7(3):C2*F5

    order := 40,
    length := 2177280,
    subgroup := MatrixGroup(9, Integer Ring) of order 2^3 * 5
    Generators:
        [ 6  3  2  0  2  2  3  2  1]
        [-3 -2 -1  0 -1 -1 -1 -1 -1]
        [-2 -1 -1  0 -1  0 -1 -1  0]
        [ 0  0  0  1  0  0  0  0  0]
        [-2 -1 -1  0  0 -1 -1 -1  0]
        [-2 -1  0  0 -1 -1 -1 -1  0]
        [-3 -1 -1  0 -1 -1 -2 -1 -1]
        [-1 -1  0  0  0  0 -1  0  0]
        [-2 -1 -1  0 -1 -1 -1  0  0]

        [ 4  1  2  2  1  2  1  0  0]
        [-1  0 -1 -1  0  0  0  0  0]
        [-2 -1 -1 -1 -1 -1  0  0  0]
        [-2 -1 -1 -1  0 -1 -1  0  0]
        [-1  0 -1  0  0 -1  0  0  0]
        [-2  0 -1 -1 -1 -1 -1  0  0]
        [-1  0  0 -1  0 -1  0  0  0]
        [ 0  0  0  0  0  0  0  0  1]
        [ 0  0  0  0  0  0  0  1  0]

        [ 2  1  0  0  0  1  0  1  0]
        [ 0  0  1  0  0  0  0  0  0]
        [-1  0  0  0  0 -1  0 -1  0]
        [ 0  0  0  1  0  0  0  0  0]
        [-1 -1  0  0  0 -1  0  0  0]
        [-1 -1  0  0  0  0  0 -1  0]
        [ 0  0  0  0  0  0  1  0  0]
        [ 0  0  0  0  0  0  0  0  1]
        [ 0  0  0  0  1  0  0  0  0]

        [ 3  1  1  2  0  1  1  0  0]
        [-1  0 -1 -1  0  0  0  0  0]
        [-1 -1  0 -1  0  0  0  0  0]
        [-2 -1 -1 -1  0 -1 -1  0  0]
        [ 0  0  0  0  1  0  0  0  0]
        [-1  0  0 -1  0  0 -1  0  0]
        [-1  0  0 -1  0 -1  0  0  0]
        [ 0  0  0  0  0  0  0  1  0]
        [ 0  0  0  0  0  0  0  0  1]>
Orbit type:{2,2,2,2,4,4,4,10,10,10,10,20,20,20,20,20,20,20,20,20}

Orbit:
1
{@
    Mod: ( 4 -1 -1 -1 -2 -1 -1 -2 -2),
    Mod: ( 6 -2 -2 -3 -2 -2 -2 -2 -2)
@}
Intersection Matrix:
[-1  1]
[ 1 -1]
Stabilizer Group Name:
F5
MatrixGroup(9, Integer Ring)
Generators:
    [ 2  1  0  0  0  1  0  1  0]
    [ 0  0  1  0  0  0  0  0  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [ 0  0  0  0  0  0  0  0  1]
    [ 0  0  0  0  1  0  0  0  0]

    [ 6  3  2  0  2  2  3  2  1]
    [-3 -2 -1  0 -1 -1 -1 -1 -1]
    [-2 -1 -1  0 -1  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [-2 -1 -1  0  0 -1 -1 -1  0]
    [-2 -1  0  0 -1 -1 -1 -1  0]
    [-3 -1 -1  0 -1 -1 -2 -1 -1]
    [-1 -1  0  0  0  0 -1  0  0]
    [-2 -1 -1  0 -1 -1 -1  0  0]

    [1 0 0 0 0 0 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 0 0 1]

2
{@
    Mod: ( 2 -1 -1 -1  0 -1 -1  0  0),
    Mod: (0 0 0 1 0 0 0 0 0)
@}
Intersection Matrix:
[-1  1]
[ 1 -1]
Stabilizer Group Name:
F5
MatrixGroup(9, Integer Ring)
Generators:
    [ 2  1  0  0  0  1  0  1  0]
    [ 0  0  1  0  0  0  0  0  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [ 0  0  0  0  0  0  0  0  1]
    [ 0  0  0  0  1  0  0  0  0]

    [ 6  3  2  0  2  2  3  2  1]
    [-3 -2 -1  0 -1 -1 -1 -1 -1]
    [-2 -1 -1  0 -1  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [-2 -1 -1  0  0 -1 -1 -1  0]
    [-2 -1  0  0 -1 -1 -1 -1  0]
    [-3 -1 -1  0 -1 -1 -2 -1 -1]
    [-1 -1  0  0  0  0 -1  0  0]
    [-2 -1 -1  0 -1 -1 -1  0  0]

    [1 0 0 0 0 0 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 0 0 1]

3
{@
    Mod: ( 1 -1 -1  0  0  0  0  0  0),
    Mod: ( 1  0  0  0  0 -1 -1  0  0)
@}
Intersection Matrix:
[-1  1]
[ 1 -1]
Stabilizer Group Name:
F5
MatrixGroup(9, Integer Ring)
Generators:
    [ 2  1  0  0  0  1  0  1  0]
    [ 0  0  1  0  0  0  0  0  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [ 0  0  0  0  0  0  0  0  1]
    [ 0  0  0  0  1  0  0  0  0]

    [ 8  3  4  2  2  3  4  2  1]
    [-3 -1 -1 -1 -1 -1 -2 -1  0]
    [-4 -1 -2 -1 -1 -2 -2 -1 -1]
    [-2 -1 -1 -1  0 -1 -1  0  0]
    [-1  0 -1  0  0  0 -1  0  0]
    [-3 -1 -2 -1 -1 -1 -1 -1  0]
    [-4 -2 -2 -1 -1 -1 -2 -1 -1]
    [-2 -1 -1  0 -1 -1 -1  0  0]
    [-2 -1 -1  0  0 -1 -1 -1  0]

    [1 0 0 0 0 0 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 0 0 1]

4
{@
    Mod: ( 5 -2 -2 -2 -2 -1 -1 -2 -2),
    Mod: ( 5 -1 -1 -2 -2 -2 -2 -2 -2)
@}
Intersection Matrix:
[-1  1]
[ 1 -1]
Stabilizer Group Name:
F5
MatrixGroup(9, Integer Ring)
Generators:
    [ 2  1  0  0  0  1  0  1  0]
    [ 0  0  1  0  0  0  0  0  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [ 0  0  0  0  0  0  0  0  1]
    [ 0  0  0  0  1  0  0  0  0]

    [ 8  3  4  2  1  3  4  2  2]
    [-3 -1 -1 -1  0 -1 -2 -1 -1]
    [-4 -1 -2 -1 -1 -2 -2 -1 -1]
    [-2 -1 -1 -1  0 -1 -1  0  0]
    [-2 -1 -1  0  0 -1 -1 -1  0]
    [-3 -1 -2 -1  0 -1 -1 -1 -1]
    [-4 -2 -2 -1 -1 -1 -2 -1 -1]
    [-2 -1 -1  0  0 -1 -1  0 -1]
    [-1  0 -1  0  0  0 -1  0  0]

    [1 0 0 0 0 0 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 0 0 1]

5
{@
    Mod: ( 3 -1 -1 -2 -1 -1  0 -1 -1),
    Mod: ( 6 -2 -2 -2 -2 -2 -3 -2 -2),
    Mod: ( 2  0  0 -1 -1 -1  0 -1 -1),
    Mod: ( 5 -2 -2 -1 -2 -1 -2 -2 -2)
@}
Intersection Matrix:
[-1  2  0  2]
[ 2 -1  2  0]
[ 0  2 -1  2]
[ 2  0  2 -1]
Stabilizer Group Name:
D5
MatrixGroup(9, Integer Ring)
Generators:
    [ 2  1  0  0  0  1  0  1  0]
    [ 0  0  1  0  0  0  0  0  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [ 0  0  0  0  0  0  0  0  1]
    [ 0  0  0  0  1  0  0  0  0]

    [1 0 0 0 0 0 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 0 0 1]

6
{@
    Mod: ( 3 -1 -1  0 -1 -1 -2 -1 -1),
    Mod: (0 0 0 0 0 0 1 0 0),
    Mod: ( 4 -2 -2 -1 -1 -1 -2 -1 -1),
    Mod: ( 1  0  0 -1  0 -1  0  0  0)
@}
Intersection Matrix:
[-1  2  0  2]
[ 2 -1  2  0]
[ 0  2 -1  2]
[ 2  0  2 -1]
Stabilizer Group Name:
D5
MatrixGroup(9, Integer Ring)
Generators:
    [ 2  1  0  0  0  1  0  1  0]
    [ 0  0  1  0  0  0  0  0  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [ 0  0  0  0  0  0  0  0  1]
    [ 0  0  0  0  1  0  0  0  0]

    [1 0 0 0 0 0 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 0 0 1]

7
{@
    Mod: ( 2  0  0  0 -1 -1 -1 -1 -1),
    Mod: ( 4 -1 -1 -2 -1 -2 -2 -1 -1),
    Mod: ( 2 -1 -1  0 -1  0  0 -1 -1),
    Mod: ( 4 -2 -2 -2 -1 -1 -1 -1 -1)
@}
Intersection Matrix:
[-1  1  1  3]
[ 1 -1  3  1]
[ 1  3 -1  1]
[ 3  1  1 -1]
Stabilizer Group Name:
D5
MatrixGroup(9, Integer Ring)
Generators:
    [ 2  1  0  0  0  1  0  1  0]
    [ 0  0  1  0  0  0  0  0  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [ 0  0  0  0  0  0  0  0  1]
    [ 0  0  0  0  1  0  0  0  0]

    [1 0 0 0 0 0 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 0 0 1]

8
{@
    Mod: ( 1  0  0 -1  0  0  0 -1  0),
    Mod: ( 4 -1 -2 -1 -1 -1 -2 -2 -1),
    Mod: ( 2 -1  0 -1  0 -1  0 -1 -1),
    Mod: ( 2  0 -1 -1 -1 -1  0  0 -1),
    Mod: ( 5 -2 -2 -1 -2 -2 -2 -2 -1),
    Mod: ( 4 -2 -1 -1 -2 -1 -2 -1 -1),
    Mod: ( 4 -2 -1 -1 -1 -1 -2 -1 -2),
    Mod: ( 1  0  0 -1 -1  0  0  0  0),
    Mod: ( 4 -1 -2 -1 -1 -1 -2 -1 -2),
    Mod: ( 3 -1 -1 -1 -1 -2  0 -1 -1)
@}
Intersection Matrix:
[-1  1  0  1  2  2  2  0  2  1]
[ 1 -1  2  2  0  1  1  2  0  2]
[ 0  2 -1  1  2  2  1  1  2  0]
[ 1  2  1 -1  2  2  2  0  1  0]
[ 2  0  2  2 -1  0  1  2  1  1]
[ 2  1  2  2  0 -1  0  1  1  2]
[ 2  1  1  2  1  0 -1  2  0  2]
[ 0  2  1  0  2  1  2 -1  2  1]
[ 2  0  2  1  1  1  0  2 -1  2]
[ 1  2  0  0  1  2  2  1  2 -1]
Stabilizer Group Name:
C2^2
MatrixGroup(9, Integer Ring)
Generators:
    [ 2  1  0  0  0  1  0  1  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  1  0  0  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]

    [ 3  1  1  2  0  1  1  0  0]
    [-1  0 -1 -1  0  0  0  0  0]
    [-1 -1  0 -1  0  0  0  0  0]
    [-2 -1 -1 -1  0 -1 -1  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1  0  0 -1  0  0 -1  0  0]
    [-1  0  0 -1  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  1  0]
    [ 0  0  0  0  0  0  0  0  1]


9
{@
    Mod: ( 2  0 -1 -1  0 -1  0 -1 -1),
    Mod: ( 3 -1 -1 -1 -1  0 -2 -1 -1),
    Mod: ( 2  0 -1 -1 -1 -1  0 -1  0),
    Mod: ( 2 -1  0 -1 -1 -1  0 -1  0),
    Mod: ( 5 -2 -2 -1 -1 -2 -2 -2 -2),
    Mod: ( 2 -1  0 -1 -1 -1  0  0 -1),
    Mod: ( 4 -1 -2 -1 -2 -1 -2 -1 -1),
    Mod: ( 5 -2 -2 -1 -2 -2 -2 -1 -2),
    Mod: ( 4 -2 -1 -1 -1 -1 -2 -2 -1),
    Mod: ( 1  0  0 -1  0  0  0  0 -1)
@}
Intersection Matrix:
[-1  2  0  1  1  1  2  2  2  0]
[ 2 -1  2  2  1  2  0  1  0  1]
[ 0  2 -1  0  2  1  1  2  2  1]
[ 1  2  0 -1  2  0  2  2  1  1]
[ 1  1  2  2 -1  2  1  0  0  2]
[ 1  2  1  0  2 -1  2  1  2  0]
[ 2  0  1  2  1  2 -1  0  1  2]
[ 2  1  2  2  0  1  0 -1  1  2]
[ 2  0  2  1  0  2  1  1 -1  2]
[ 0  1  1  1  2  0  2  2  2 -1]
Stabilizer Group Name:
C2^2
MatrixGroup(9, Integer Ring)
Generators:
    [ 4  1  2  2  1  2  1  0  0]
    [-1  0 -1 -1  0  0  0  0  0]
    [-2 -1 -1 -1 -1 -1  0  0  0]
    [-2 -1 -1 -1  0 -1 -1  0  0]
    [-1  0 -1  0  0 -1  0  0  0]
    [-2  0 -1 -1 -1 -1 -1  0  0]
    [-1  0  0 -1  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]
    [ 0  0  0  0  0  0  0  1  0]

    [ 3  1  1  2  0  1  1  0  0]
    [-1  0 -1 -1  0  0  0  0  0]
    [-1 -1  0 -1  0  0  0  0  0]
    [-2 -1 -1 -1  0 -1 -1  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1  0  0 -1  0  0 -1  0  0]
    [-1  0  0 -1  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  1  0]
    [ 0  0  0  0  0  0  0  0  1]

10
{@
    Mod: (0 0 0 0 0 0 0 0 1),
    Mod: ( 1  0 -1  0  0  0 -1  0  0),
    Mod: ( 1 -1  0  0  0 -1  0  0  0),
    Mod: ( 2 -1 -1  0 -1 -1 -1  0  0),
    Mod: ( 2 -1 -1  0  0 -1 -1  0 -1),
    Mod: (0 0 0 0 0 0 0 1 0),
    Mod: ( 1 -1  0  0  0  0 -1  0  0),
    Mod: ( 1  0 -1  0  0 -1  0  0  0),
    Mod: ( 2 -1 -1  0  0 -1 -1 -1  0),
    Mod: (0 0 0 0 1 0 0 0 0)
@}
Intersection Matrix:
[-1  0  0  0  1  0  0  0  0  0]
[ 0 -1  1  0  0  0  0  0  0  0]
[ 0  1 -1  0  0  0  0  0  0  0]
[ 0  0  0 -1  0  0  0  0  0  1]
[ 1  0  0  0 -1  0  0  0  0  0]
[ 0  0  0  0  0 -1  0  0  1  0]
[ 0  0  0  0  0  0 -1  1  0  0]
[ 0  0  0  0  0  0  1 -1  0  0]
[ 0  0  0  0  0  1  0  0 -1  0]
[ 0  0  0  1  0  0  0  0  0 -1]
Stabilizer Group Name:
C2^2
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  2  0  1  1  0  0]
    [-1  0 -1 -1  0  0  0  0  0]
    [-1 -1  0 -1  0  0  0  0  0]
    [-2 -1 -1 -1  0 -1 -1  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1  0  0 -1  0  0 -1  0  0]
    [-1  0  0 -1  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [1 0 0 0 0 0 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 0 0 1]

11
{@
    Mod: ( 6 -2 -2 -2 -2 -2 -2 -3 -2),
    Mod: ( 5 -2 -1 -2 -2 -1 -2 -2 -2),
    Mod: ( 5 -1 -2 -2 -2 -2 -1 -2 -2),
    Mod: ( 4 -1 -1 -2 -2 -1 -1 -1 -2),
    Mod: ( 6 -2 -2 -2 -2 -2 -2 -2 -3),
    Mod: ( 5 -1 -2 -2 -2 -1 -2 -2 -2),
    Mod: ( 4 -1 -1 -2 -1 -1 -1 -2 -2),
    Mod: ( 6 -2 -2 -2 -3 -2 -2 -2 -2),
    Mod: ( 5 -2 -1 -2 -2 -2 -1 -2 -2),
    Mod: ( 4 -1 -1 -2 -2 -1 -1 -2 -1)
@}
Intersection Matrix:
[-1  0  0  1  0  0  0  0  0  0]
[ 0 -1  1  0  0  0  0  0  0  0]
[ 0  1 -1  0  0  0  0  0  0  0]
[ 1  0  0 -1  0  0  0  0  0  0]
[ 0  0  0  0 -1  0  0  0  0  1]
[ 0  0  0  0  0 -1  0  0  1  0]
[ 0  0  0  0  0  0 -1  1  0  0]
[ 0  0  0  0  0  0  1 -1  0  0]
[ 0  0  0  0  0  1  0  0 -1  0]
[ 0  0  0  0  1  0  0  0  0 -1]
Stabilizer Group Name:
C2^2
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  2  0  1  1  0  0]
    [-1  0 -1 -1  0  0  0  0  0]
    [-1 -1  0 -1  0  0  0  0  0]
    [-2 -1 -1 -1  0 -1 -1  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1  0  0 -1  0  0 -1  0  0]
    [-1  0  0 -1  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [ 5  2  2  2  1  3  1  0  1]
    [-2 -1 -1 -1 -1 -1  0  0  0]
    [-2 -1 -1 -1  0 -1  0  0 -1]
    [-2 -1 -1 -1  0 -1 -1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [-3 -1 -1 -1 -1 -2 -1  0 -1]
    [-1  0  0 -1  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  1  0]
    [-1  0 -1  0  0 -1  0  0  0]

12
{@
    Mod: ( 3 -1  0 -1 -1 -1 -2 -1 -1),
    Mod: ( 3 -1 -2 -1 -1 -1  0 -1 -1),
    Mod: ( 3 -2 -1 -1 -1 -1  0 -1 -1),
    Mod: ( 3  0 -1 -1 -1 -2 -1 -1 -1),
    Mod: ( 4 -2 -2 -1 -1 -1 -1 -1 -2),
    Mod: ( 4 -1 -1 -1 -1 -2 -2 -1 -2),
    Mod: ( 2 -1 -1 -1 -1  0  0 -1  0),
    Mod: ( 3 -1 -2 -1 -1  0 -1 -1 -1),
    Mod: ( 2  0  0 -1 -1 -1 -1 -1  0),
    Mod: ( 3 -2 -1 -1 -1  0 -1 -1 -1),
    Mod: ( 4 -2 -2 -1 -2 -1 -1 -1 -1),
    Mod: ( 4 -1 -1 -1 -2 -2 -2 -1 -1),
    Mod: ( 4 -1 -1 -1 -1 -2 -2 -2 -1),
    Mod: ( 4 -2 -2 -1 -1 -1 -1 -2 -1),
    Mod: ( 3 -1  0 -1 -1 -2 -1 -1 -1),
    Mod: ( 3  0 -1 -1 -1 -1 -2 -1 -1),
    Mod: ( 2 -1 -1 -1 -1  0  0  0 -1),
    Mod: ( 2  0  0 -1  0 -1 -1 -1 -1),
    Mod: ( 2 -1 -1 -1  0  0  0 -1 -1),
    Mod: ( 2  0  0 -1 -1 -1 -1  0 -1)
@}
Intersection Matrix:
[-1  3  2  1  2  0  2  2  0  1  2  0  0  2  0  0  2  0  2  0]
[ 3 -1  0  1  0  2  0  0  2  1  0  2  2  0  2  2  0  2  0  2]
[ 2  0 -1  2  0  2  0  1  2  0  0  2  2  0  1  3  0  2  0  2]
[ 1  1  2 -1  2  0  2  2  0  3  2  0  0  2  0  0  2  0  2  0]
[ 2  0  0  2 -1  1  1  0  3  0  0  2  2  0  2  2  0  2  0  2]
[ 0  2  2  0  1 -1  3  2  1  2  2  0  0  2  0  0  2  0  2  0]
[ 2  0  0  2  1  3 -1  0  1  0  0  2  2  0  2  2  0  2  0  2]
[ 2  0  1  2  0  2  0 -1  2  0  0  2  2  0  3  1  0  2  0  2]
[ 0  2  2  0  3  1  1  2 -1  2  2  0  0  2  0  0  2  0  2  0]
[ 1  1  0  3  0  2  0  0  2 -1  0  2  2  0  2  2  0  2  0  2]
[ 2  0  0  2  0  2  0  0  2  0 -1  1  2  0  2  2  0  3  1  2]
[ 0  2  2  0  2  0  2  2  0  2  1 -1  0  2  0  0  2  1  3  0]
[ 0  2  2  0  2  0  2  2  0  2  2  0 -1  1  0  0  3  0  2  1]
[ 2  0  0  2  0  2  0  0  2  0  0  2  1 -1  2  2  1  2  0  3]
[ 0  2  1  0  2  0  2  3  0  2  2  0  0  2 -1  1  2  0  2  0]
[ 0  2  3  0  2  0  2  1  0  2  2  0  0  2  1 -1  2  0  2  0]
[ 2  0  0  2  0  2  0  0  2  0  0  2  3  1  2  2 -1  2  0  1]
[ 0  2  2  0  2  0  2  2  0  2  3  1  0  2  0  0  2 -1  1  0]
[ 2  0  0  2  0  2  0  0  2  0  1  3  2  0  2  2  0  1 -1  2]
[ 0  2  2  0  2  0  2  2  0  2  2  0  1  3  0  0  1  0  2 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 2  1  0  0  0  1  0  1  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  1  0  0  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]

13
{@
    Mod: ( 5 -2 -2 -2 -1 -2 -2 -1 -2),
    Mod: ( 3 -1 -1 -2 -1 -1 -1  0 -1),
    Mod: ( 5 -2 -2 -2 -1 -2 -2 -2 -1),
    Mod: ( 4 -1 -2 -2 -1 -1 -2 -1 -1),
    Mod: ( 5 -2 -2 -2 -2 -2 -2 -1 -1),
    Mod: ( 4 -2 -1 -2 -1 -2 -1 -1 -1),
    Mod: ( 2 -1  0  0 -1  0 -1 -1 -1),
    Mod: ( 1  0  0  0 -1  0  0 -1  0),
    Mod: ( 1  0  0  0  0  0  0 -1 -1),
    Mod: ( 1  0  0  0 -1  0  0  0 -1),
    Mod: ( 3 -1 -1  0 -1 -1 -1 -2 -1),
    Mod: ( 2 -1  0  0 -1 -1  0 -1 -1),
    Mod: ( 3 -1 -1 -2  0 -1 -1 -1 -1),
    Mod: ( 3 -1 -1  0 -1 -1 -1 -1 -2),
    Mod: ( 4 -1 -2 -2 -1 -2 -1 -1 -1),
    Mod: ( 3 -1 -1 -2 -1 -1 -1 -1  0),
    Mod: ( 3 -1 -1  0 -2 -1 -1 -1 -1),
    Mod: ( 2  0 -1  0 -1  0 -1 -1 -1),
    Mod: ( 2  0 -1  0 -1 -1  0 -1 -1),
    Mod: ( 4 -2 -1 -2 -1 -1 -2 -1 -1)
@}
Intersection Matrix:
[-1  0  0  0  0  0  2  3  2  2  2  2  0  1  0  1  2  2  2  0]
[ 0 -1  1  0  0  0  2  2  2  1  3  2  0  2  0  0  2  2  2  0]
[ 0  1 -1  0  0  0  2  2  2  3  1  2  0  2  0  0  2  2  2  0]
[ 0  0  0 -1  0  1  2  2  2  2  2  3  0  2  0  0  2  1  2  0]
[ 0  0  0  0 -1  0  2  2  3  2  2  2  1  2  0  0  1  2  2  0]
[ 0  0  0  1  0 -1  2  2  2  2  2  1  0  2  0  0  2  3  2  0]
[ 2  2  2  2  2  2 -1  0  0  0  0  0  2  0  3  2  0  0  1  1]
[ 3  2  2  2  2  2  0 -1  0  0  0  0  2  1  2  1  0  0  0  2]
[ 2  2  2  2  3  2  0  0 -1  0  0  0  1  0  2  2  1  0  0  2]
[ 2  1  3  2  2  2  0  0  0 -1  1  0  2  0  2  2  0  0  0  2]
[ 2  3  1  2  2  2  0  0  0  1 -1  0  2  0  2  2  0  0  0  2]
[ 2  2  2  3  2  1  0  0  0  0  0 -1  2  0  2  2  0  1  0  2]
[ 0  0  0  0  1  0  2  2  1  2  2  2 -1  2  0  0  3  2  2  0]
[ 1  2  2  2  2  2  0  1  0  0  0  0  2 -1  2  3  0  0  0  2]
[ 0  0  0  0  0  0  3  2  2  2  2  2  0  2 -1  0  2  2  1  1]
[ 1  0  0  0  0  0  2  1  2  2  2  2  0  3  0 -1  2  2  2  0]
[ 2  2  2  2  1  2  0  0  1  0  0  0  3  0  2  2 -1  0  0  2]
[ 2  2  2  1  2  3  0  0  0  0  0  1  2  0  2  2  0 -1  0  2]
[ 2  2  2  2  2  2  1  0  0  0  0  0  2  0  1  2  0  0 -1  3]
[ 0  0  0  0  0  0  1  2  2  2  2  2  0  2  1  0  2  2  3 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [1 0 0 0 0 0 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 0 0 1]

14
{@
    Mod: ( 2 -1  0 -1 -1  0 -1 -1  0),
    Mod: ( 3 -1 -1 -1 -2 -1 -1  0 -1),
    Mod: ( 2  0 -1 -1 -1  0 -1 -1  0),
    Mod: ( 3 -1 -1 -1 -1 -1 -1  0 -2),
    Mod: ( 3  0 -2 -1 -1 -1 -1 -1 -1),
    Mod: ( 4 -2 -1 -1 -1 -2 -1 -1 -2),
    Mod: ( 2 -1  0 -1 -1  0 -1  0 -1),
    Mod: ( 3 -1 -1 -1  0 -1 -1 -2 -1),
    Mod: ( 2 -1  0 -1  0  0 -1 -1 -1),
    Mod: ( 4 -2 -1 -1 -1 -2 -1 -2 -1),
    Mod: ( 2  0 -1 -1 -1  0 -1  0 -1),
    Mod: ( 2  0 -1 -1  0  0 -1 -1 -1),
    Mod: ( 3 -1 -1 -1  0 -1 -1 -1 -2),
    Mod: ( 4 -2 -1 -1 -2 -2 -1 -1 -1),
    Mod: ( 3 -1 -1 -1 -2 -1 -1 -1  0),
    Mod: ( 4 -1 -2 -1 -1 -2 -1 -1 -2),
    Mod: ( 3 -1 -1 -1 -1 -1 -1 -2  0),
    Mod: ( 3 -2  0 -1 -1 -1 -1 -1 -1),
    Mod: ( 4 -1 -2 -1 -1 -2 -1 -2 -1),
    Mod: ( 4 -1 -2 -1 -2 -2 -1 -1 -1)
@}
Intersection Matrix:
[-1  1  0  2  2  2  0  1  0  1  1  1  2  1  0  3  0  0  2  2]
[ 1 -1  1  0  1  1  0  3  2  2  0  2  2  0  0  1  2  1  2  0]
[ 0  1 -1  2  0  3  1  1  1  2  0  0  2  2  0  2  0  2  1  1]
[ 2  0  2 -1  1  0  0  2  1  2  0  1  0  1  2  0  3  1  2  1]
[ 2  1  0  1 -1  2  2  1  2  2  0  0  1  2  1  0  1  3  0  0]
[ 2  1  3  0  2 -1  1  1  1  0  2  2  0  0  2  0  2  0  1  1]
[ 0  0  1  0  2  1 -1  2  0  2  0  1  1  1  1  2  2  0  3  2]
[ 1  3  1  2  1  1  2 -1  0  0  2  0  0  2  2  1  0  1  0  2]
[ 0  2  1  1  2  1  0  0 -1  1  1  0  0  2  2  2  1  0  2  3]
[ 1  2  2  2  2  0  2  0  1 -1  3  2  1  0  1  1  0  0  0  1]
[ 1  0  0  0  0  2  0  2  1  3 -1  0  1  2  1  1  2  2  2  1]
[ 1  2  0  1  0  2  1  0  0  2  0 -1  0  3  2  1  1  2  1  2]
[ 2  2  2  0  1  0  1  0  0  1  1  0 -1  2  3  0  2  1  1  2]
[ 1  0  2  1  2  0  1  2  2  0  2  3  2 -1  0  1  1  0  1  0]
[ 0  0  0  2  1  2  1  2  2  1  1  2  3  0 -1  2  0  1  1  0]
[ 3  1  2  0  0  0  2  1  2  1  1  1  0  1  2 -1  2  2  0  0]
[ 0  2  0  3  1  2  2  0  1  0  2  1  2  1  0  2 -1  1  0  1]
[ 0  1  2  1  3  0  0  1  0  0  2  2  1  0  1  2  1 -1  2  2]
[ 2  2  1  2  0  1  3  0  2  0  2  1  1  1  1  0  0  2 -1  0]
[ 2  0  1  1  0  1  2  2  3  1  1  2  2  0  0  0  1  2  0 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  2  0  1  1  0  0]
    [-1  0 -1 -1  0  0  0  0  0]
    [-1 -1  0 -1  0  0  0  0  0]
    [-2 -1 -1 -1  0 -1 -1  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1  0  0 -1  0  0 -1  0  0]
    [-1  0  0 -1  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  1  0]
    [ 0  0  0  0  0  0  0  0  1]

15
{@
    Mod: ( 4 -1 -2 -1 -1 -1 -1 -2 -2),
    Mod: ( 4 -1 -2 -2 -2 -1 -1 -1 -1),
    Mod: ( 5 -2 -1 -2 -2 -2 -2 -2 -1),
    Mod: ( 4 -1 -2 -1 -2 -1 -1 -2 -1),
    Mod: ( 5 -1 -2 -2 -1 -2 -2 -2 -2),
    Mod: ( 2  0  0 -1 -1  0 -1 -1 -1),
    Mod: ( 5 -1 -2 -2 -2 -2 -2 -2 -1),
    Mod: ( 4 -1 -1 -1 -1 -2 -1 -2 -2),
    Mod: ( 4 -1 -1 -1 -2 -2 -1 -1 -2),
    Mod: ( 3 -1  0 -1 -1 -1 -1 -2 -1),
    Mod: ( 4 -2 -1 -2 -1 -1 -1 -2 -1),
    Mod: ( 4 -2 -1 -1 -2 -1 -1 -1 -2),
    Mod: ( 3  0 -1 -1 -2 -1 -1 -1 -1),
    Mod: ( 5 -2 -2 -2 -1 -2 -1 -2 -2),
    Mod: ( 5 -2 -2 -2 -2 -2 -1 -1 -2),
    Mod: ( 4 -2 -1 -1 -2 -1 -1 -2 -1),
    Mod: ( 3 -1 -1 -2 -1  0 -1 -1 -1),
    Mod: ( 3 -1 -1 -1 -1  0 -1 -1 -2),
    Mod: ( 5 -2 -1 -2 -2 -2 -2 -1 -2),
    Mod: ( 4 -1 -1 -2 -1 -1 -2 -1 -2)
@}
Intersection Matrix:
[-1  1  2  0  0  1  1  0  1  1  1  1  1  0  1  1  1  0  2  1]
[ 1 -1  1  0  1  1  0  2  1  2  1  1  0  1  0  1  0  1  1  1]
[ 2  1 -1  1  1  1  0  1  1  0  0  1  1  1  1  0  1  2  0  1]
[ 0  0  1 -1  1  1  0  1  1  1  1  1  0  1  1  0  1  1  2  2]
[ 0  1  1  1 -1  1  0  0  1  1  1  2  1  0  1  2  1  1  1  0]
[ 1  1  1  1  1 -1  1  1  1  0  1  1  0  2  2  1  0  0  1  0]
[ 1  0  0  0  0  1 -1  1  1  1  1  2  0  1  1  1  1  2  1  1]
[ 0  2  1  1  0  1  1 -1  0  0  1  1  1  0  1  1  2  1  1  1]
[ 1  1  1  1  1  1  1  0 -1  1  2  0  0  1  0  1  2  1  0  1]
[ 1  2  0  1  1  0  1  0  1 -1  0  1  1  1  2  0  1  1  1  1]
[ 1  1  0  1  1  1  1  1  2  0 -1  1  2  0  1  0  0  1  1  1]
[ 1  1  1  1  2  1  2  1  0  1  1 -1  1  1  0  0  1  0  0  1]
[ 1  0  1  0  1  0  0  1  0  1  2  1 -1  2  1  1  1  1  1  1]
[ 0  1  1  1  0  2  1  0  1  1  0  1  2 -1  0  1  1  1  1  1]
[ 1  0  1  1  1  2  1  1  0  2  1  0  1  0 -1  1  1  1  0  1]
[ 1  1  0  0  2  1  1  1  1  0  0  0  1  1  1 -1  1  1  1  2]
[ 1  0  1  1  1  0  1  2  2  1  0  1  1  1  1  1 -1  0  1  0]
[ 0  1  2  1  1  0  2  1  1  1  1  0  1  1  1  1  0 -1  1  0]
[ 2  1  0  2  1  1  1  1  0  1  1  0  1  1  0  1  1  1 -1  0]
[ 1  1  1  2  0  0  1  1  1  1  1  1  1  1  1  2  0  0  0 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 2  0  1  0  1  1  0  0  0]
    [ 0  1  0  0  0  0  0  0  0]
    [-1  0  0  0 -1 -1  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [-1  0 -1  0  0 -1  0  0  0]
    [-1  0 -1  0 -1  0  0  0  0]
    [ 0  0  0  0  0  0  1  0  0]
    [ 0  0  0  0  0  0  0  0  1]
    [ 0  0  0  0  0  0  0  1  0]

16
{@
    Mod: ( 1  0  0  0  0  0 -1  0 -1),
    Mod: ( 2  0 -1  0  0 -1 -1 -1 -1),
    Mod: ( 2 -1 -1  0  0 -1  0 -1 -1),
    Mod: ( 3 -1 -2 -1  0 -1 -1 -1 -1),
    Mod: ( 3 -2 -1 -1 -1 -1 -1  0 -1),
    Mod: ( 2 -1  0  0 -1 -1 -1 -1  0),
    Mod: ( 3 -1 -1 -1 -1 -2 -1  0 -1),
    Mod: ( 3 -1 -1 -1  0 -2 -1 -1 -1),
    Mod: ( 3 -1 -2 -1 -1 -1 -1 -1  0),
    Mod: ( 1  0  0 -1  0  0 -1  0  0),
    Mod: ( 2 -1  0 -1  0 -1 -1 -1  0),
    Mod: ( 2 -1  0  0 -1 -1 -1  0 -1),
    Mod: ( 1 -1  0  0  0  0  0 -1  0),
    Mod: ( 2  0 -1 -1 -1 -1 -1  0  0),
    Mod: ( 2  0 -1  0 -1 -1 -1 -1  0),
    Mod: ( 2 -1 -1  0 -1 -1  0  0 -1),
    Mod: ( 2 -1 -1 -1  0  0 -1  0 -1),
    Mod: ( 3 -2 -1 -1 -1 -1 -1 -1  0),
    Mod: ( 1  0 -1  0 -1  0  0  0  0),
    Mod: (0 0 0 0 0 1 0 0 0)
@}
Intersection Matrix:
[-1  0  1  1  1  1  1  1  2  0  1  0  1  1  1  1  0  2  1  0]
[ 0 -1  0  0  2  1  1  0  1  1  1  1  1  1  0  1  1  2  1  1]
[ 1  0 -1  0  1  1  1  0  1  2  1  1  0  2  1  0  1  1  1  1]
[ 1  0  0 -1  1  2  1  0  0  1  1  2  1  1  1  1  0  1  1  1]
[ 1  2  1  1 -1  1  0  1  1  1  1  0  1  1  2  0  0  0  1  1]
[ 1  1  1  2  1 -1  1  1  1  1  0  0  0  1  0  1  2  0  1  1]
[ 1  1  1  1  0  1 -1  0  1  1  1  0  2  0  1  0  1  1  1  2]
[ 1  0  0  0  1  1  0 -1  1  1  0  1  1  1  1  1  1  1  2  2]
[ 2  1  1  0  1  1  1  1 -1  1  1  2  1  0  0  1  1  0  0  1]
[ 0  1  2  1  1  1  1  1  1 -1  0  1  1  0  1  2  0  1  1  0]
[ 1  1  1  1  1  0  1  0  1  0 -1  1  0  1  1  2  1  0  2  1]
[ 0  1  1  2  0  0  0  1  2  1  1 -1  1  1  1  0  1  1  1  1]
[ 1  1  0  1  1  0  2  1  1  1  0  1 -1  2  1  1  1  0  1  0]
[ 1  1  2  1  1  1  0  1  0  0  1  1  2 -1  0  1  1  1  0  1]
[ 1  0  1  1  2  0  1  1  0  1  1  1  1  0 -1  1  2  1  0  1]
[ 1  1  0  1  0  1  0  1  1  2  2  0  1  1  1 -1  1  1  0  1]
[ 0  1  1  0  0  2  1  1  1  0  1  1  1  1  2  1 -1  1  1  0]
[ 2  2  1  1  0  0  1  1  0  1  0  1  0  1  1  1  1 -1  1  1]
[ 1  1  1  1  1  1  1  2  0  1  2  1  1  0  0  0  1  1 -1  0]
[ 0  1  1  1  1  1  2  2  1  0  1  1  0  1  1  1  0  1  0 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [1 0 0 0 0 0 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 0 0 1]

17
{@
    Mod: ( 1  0  0  0 -1 -1  0  0  0),
    Mod: ( 1  0  0  0  0 -1  0 -1  0),
    Mod: ( 1  0  0  0  0 -1  0  0 -1),
    Mod: ( 3 -1 -1 -1  0 -1 -2 -1 -1),
    Mod: ( 4 -1 -2 -1 -1 -2 -2 -1 -1),
    Mod: ( 2 -1 -1  0 -1  0 -1  0 -1),
    Mod: ( 1  0 -1 -1  0  0  0  0  0),
    Mod: ( 3 -1 -2  0 -1 -1 -1 -1 -1),
    Mod: ( 1 -1  0 -1  0  0  0  0  0),
    Mod: (0 0 1 0 0 0 0 0 0),
    Mod: ( 3 -1 -1 -1 -1 -1 -2 -1  0),
    Mod: ( 2 -1 -1 -1 -1 -1  0  0  0),
    Mod: ( 3 -2 -1  0 -1 -1 -1 -1 -1),
    Mod: ( 3 -1 -1 -1 -1 -1 -2  0 -1),
    Mod: ( 2 -1 -1  0  0  0 -1 -1 -1),
    Mod: ( 2 -1 -1  0 -1  0 -1 -1  0),
    Mod: ( 4 -2 -1 -1 -1 -2 -2 -1 -1),
    Mod: ( 2 -1 -1 -1  0 -1  0  0 -1),
    Mod: ( 2 -1 -1 -1  0 -1  0 -1  0),
    Mod: (0 1 0 0 0 0 0 0 0)
@}
Intersection Matrix:
[-1  0  0  2  1  1  1  1  1  0  1  0  1  1  2  1  1  1  1  0]
[ 0 -1  0  1  1  2  1  1  1  0  1  1  1  2  1  1  1  1  0  0]
[ 0  0 -1  1  1  1  1  1  1  0  2  1  1  1  1  2  1  0  1  0]
[ 2  1  1 -1  0  1  1  1  1  1  0  2  1  0  0  1  0  1  1  1]
[ 1  1  1  0 -1  1  1  0  2  2  0  1  1  0  1  1  0  1  1  1]
[ 1  2  1  1  1 -1  1  0  1  1  1  1  0  0  0  0  1  1  2  1]
[ 1  1  1  1  1  1 -1  1  0  1  1  0  2  1  1  1  2  0  0  0]
[ 1  1  1  1  0  0  1 -1  2  2  1  1  0  1  0  0  1  1  1  1]
[ 1  1  1  1  2  1  0  2 -1  0  1  0  1  1  1  1  1  0  0  1]
[ 0  0  0  1  2  1  1  2  0 -1  1  1  1  1  1  1  1  1  1  0]
[ 1  1  2  0  0  1  1  1  1  1 -1  1  1  0  1  0  0  2  1  1]
[ 0  1  1  2  1  1  0  1  0  1  1 -1  1  1  2  1  1  0  0  1]
[ 1  1  1  1  1  0  2  0  1  1  1  1 -1  1  0  0  0  1  1  2]
[ 1  2  1  0  0  0  1  1  1  1  0  1  1 -1  1  1  0  1  2  1]
[ 2  1  1  0  1  0  1  0  1  1  1  2  0  1 -1  0  1  1  1  1]
[ 1  1  2  1  1  0  1  0  1  1  0  1  0  1  0 -1  1  2  1  1]
[ 1  1  1  0  0  1  2  1  1  1  0  1  0  0  1  1 -1  1  1  2]
[ 1  1  0  1  1  1  0  1  0  1  2  0  1  1  1  2  1 -1  0  1]
[ 1  0  1  1  1  2  0  1  0  1  1  0  1  2  1  1  1  0 -1  1]
[ 0  0  0  1  1  1  0  1  1  0  1  1  2  1  1  1  2  1  1 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  0  0  2  0  1  1]
    [-1  0  0  0  0 -1  0  0 -1]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-2 -1 -1  0  0 -1  0 -1 -1]
    [ 0  0  0  0  0  0  1  0  0]
    [-1  0 -1  0  0 -1  0  0  0]
    [-1 -1  0  0  0 -1  0  0  0]

18
{@
    Mod: ( 2  0 -1 -1 -1  0  0 -1 -1),
    Mod: ( 4 -1 -1 -1 -2 -1 -2 -2 -1),
    Mod: ( 3 -1  0 -2 -1 -1 -1 -1 -1),
    Mod: ( 4 -1 -1 -2 -2 -2 -1 -1 -1),
    Mod: ( 4 -1 -1 -2 -1 -2 -1 -2 -1),
    Mod: ( 3 -1 -1 -1 -2 -1  0 -1 -1),
    Mod: ( 5 -2 -2 -2 -2 -1 -2 -1 -2),
    Mod: ( 6 -3 -2 -2 -2 -2 -2 -2 -2),
    Mod: ( 5 -2 -2 -2 -1 -1 -2 -2 -2),
    Mod: ( 2 -1  0 -1 -1  0  0 -1 -1),
    Mod: ( 6 -2 -3 -2 -2 -2 -2 -2 -2),
    Mod: ( 3 -1 -1 -1 -1 -1  0 -1 -2),
    Mod: ( 5 -2 -2 -2 -2 -1 -2 -2 -1),
    Mod: ( 3 -1 -1 -1 -1 -1  0 -2 -1),
    Mod: ( 4 -1 -1 -1 -2 -1 -2 -1 -2),
    Mod: ( 5 -2 -1 -1 -2 -2 -2 -2 -2),
    Mod: ( 4 -1 -1 -1 -1 -1 -2 -2 -2),
    Mod: ( 3  0 -1 -2 -1 -1 -1 -1 -1),
    Mod: ( 5 -1 -2 -1 -2 -2 -2 -2 -2),
    Mod: ( 4 -1 -1 -2 -1 -2 -1 -1 -2)
@}
Intersection Matrix:
[-1  1  1  1  1  0  1  2  1  0  1  0  1  0  1  2  1  0  1  1]
[ 1 -1  1  1  1  1  1  1  1  1  1  2  0  1  0  0  0  1  0  2]
[ 1  1 -1  0  0  1  1  1  1  0  2  1  1  1  1  1  1  0  2  0]
[ 1  1  0 -1  0  0  1  1  2  1  1  1  1  1  1  1  2  0  1  0]
[ 1  1  0  0 -1  1  2  1  1  1  1  1  1  0  2  1  1  0  1  0]
[ 0  1  1  0  1 -1  1  1  2  0  1  0  1  0  1  1  2  1  1  1]
[ 1  1  1  1  2  1 -1  0  0  1  0  1  0  2  0  1  1  1  1  1]
[ 2  1  1  1  1  1  0 -1  0  1  0  1  0  1  1  0  1  2  1  1]
[ 1  1  1  2  1  2  0  0 -1  1  0  1  0  1  1  1  0  1  1  1]
[ 0  1  0  1  1  0  1  1  1 -1  2  0  1  0  1  1  1  1  2  1]
[ 1  1  2  1  1  1  0  0  0  2 -1  1  0  1  1  1  1  1  0  1]
[ 0  2  1  1  1  0  1  1  1  0  1 -1  2  0  1  1  1  1  1  0]
[ 1  0  1  1  1  1  0  0  0  1  0  2 -1  1  1  1  1  1  1  2]
[ 0  1  1  1  0  0  2  1  1  0  1  0  1 -1  2  1  1  1  1  1]
[ 1  0  1  1  2  1  0  1  1  1  1  1  1  2 -1  0  0  1  0  1]
[ 2  0  1  1  1  1  1  0  1  1  1  1  1  1  0 -1  0  2  0  1]
[ 1  0  1  2  1  2  1  1  0  1  1  1  1  1  0  0 -1  1  0  1]
[ 0  1  0  0  0  1  1  2  1  1  1  1  1  1  1  2  1 -1  1  0]
[ 1  0  2  1  1  1  1  1  1  2  0  1  1  1  0  0  0  1 -1  1]
[ 1  2  0  0  0  1  1  1  1  1  1  0  2  1  1  1  1  0  1 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 2  0  1  0  1  1  0  0  0]
    [ 0  1  0  0  0  0  0  0  0]
    [-1  0  0  0 -1 -1  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [-1  0 -1  0  0 -1  0  0  0]
    [-1  0 -1  0 -1  0  0  0  0]
    [ 0  0  0  0  0  0  1  0  0]
    [ 0  0  0  0  0  0  0  0  1]
    [ 0  0  0  0  0  0  0  1  0]

19
{@
    Mod: ( 5 -2 -2 -1 -2 -2 -1 -2 -2),
    Mod: ( 4 -1 -2 -2 -1 -1 -1 -2 -1),
    Mod: ( 5 -2 -2 -2 -2 -2 -1 -2 -1),
    Mod: ( 4 -1 -2 -1 -2 -1 -1 -1 -2),
    Mod: ( 4 -1 -1 -2 -1 -1 -2 -2 -1),
    Mod: ( 4 -1 -1 -2 -2 -1 -2 -1 -1),
    Mod: ( 6 -2 -2 -2 -2 -3 -2 -2 -2),
    Mod: ( 5 -1 -2 -2 -2 -2 -2 -1 -2),
    Mod: ( 4 -2 -1 -2 -1 -1 -1 -1 -2),
    Mod: ( 3 -1  0 -1 -2 -1 -1 -1 -1),
    Mod: ( 4 -2 -1 -1 -1 -1 -1 -2 -2),
    Mod: ( 3 -1 -1 -1 -2  0 -1 -1 -1),
    Mod: ( 4 -2 -1 -2 -2 -1 -1 -1 -1),
    Mod: ( 4 -1 -1 -1 -2 -2 -1 -2 -1),
    Mod: ( 3 -1 -1 -1 -1  0 -1 -2 -1),
    Mod: ( 3 -1  0 -1 -1 -1 -1 -1 -2),
    Mod: ( 3  0 -1 -1 -1 -1 -1 -2 -1),
    Mod: ( 4 -1 -2 -2 -1 -1 -1 -1 -2),
    Mod: ( 5 -2 -1 -2 -1 -2 -2 -2 -2),
    Mod: ( 3  0 -1 -1 -1 -1 -1 -1 -2)
@}
Intersection Matrix:
[-1  1  0  0  2  2  0  1  1  1  0  1  1  0  1  1  1  1  1  1]
[ 1 -1  0  1  0  1  1  1  1  2  1  1  1  1  0  2  0  0  1  1]
[ 0  0 -1  1  1  1  0  1  1  1  1  1  0  0  1  2  1  1  1  2]
[ 0  1  1 -1  2  1  1  0  1  1  1  0  1  1  1  1  1  0  2  0]
[ 2  0  1  2 -1  0  1  1  1  1  1  1  1  1  0  1  0  1  0  1]
[ 2  1  1  1  0 -1  1  0  1  0  2  0  0  1  1  1  1  1  1  1]
[ 0  1  0  1  1  1 -1  0  1  1  1  2  1  0  2  1  1  1  0  1]
[ 1  1  1  0  1  0  0 -1  1  1  2  1  1  1  2  1  1  0  1  0]
[ 1  1  1  1  1  1  1  1 -1  1  0  1  0  2  1  0  2  0  0  1]
[ 1  2  1  1  1  0  1  1  1 -1  1  0  0  0  1  0  1  2  1  1]
[ 0  1  1  1  1  2  1  2  0  1 -1  1  1  1  0  0  1  1  0  1]
[ 1  1  1  0  1  0  2  1  1  0  1 -1  0  1  0  1  1  1  2  1]
[ 1  1  0  1  1  0  1  1  0  0  1  0 -1  1  1  1  2  1  1  2]
[ 0  1  0  1  1  1  0  1  2  0  1  1  1 -1  1  1  0  2  1  1]
[ 1  0  1  1  0  1  2  2  1  1  0  0  1  1 -1  1  0  1  1  1]
[ 1  2  2  1  1  1  1  1  0  0  0  1  1  1  1 -1  1  1  0  0]
[ 1  0  1  1  0  1  1  1  2  1  1  1  2  0  0  1 -1  1  1  0]
[ 1  0  1  0  1  1  1  0  0  2  1  1  1  2  1  1  1 -1  1  0]
[ 1  1  1  2  0  1  0  1  0  1  0  2  1  1  1  0  1  1 -1  1]
[ 1  1  2  0  1  1  1  0  1  1  1  1  2  1  1  0  0  0  1 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [1 0 0 0 0 0 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 0 0 1]

20
{@
    Mod: ( 3 -1 -1 -1 -1 -2 -1 -1  0),
    Mod: ( 2 -1  0 -1  0 -1 -1  0 -1),
    Mod: ( 2  0 -1 -1  0 -1 -1  0 -1),
    Mod: ( 1  0 -1  0  0  0  0 -1  0),
    Mod: ( 2  0 -1  0 -1 -1 -1  0 -1),
    Mod: ( 1  0 -1  0  0  0  0  0 -1),
    Mod: ( 1 -1  0  0 -1  0  0  0  0),
    Mod: ( 1  0  0  0  0  0 -1 -1  0),
    Mod: ( 2 -1 -1 -1  0  0 -1 -1  0),
    Mod: ( 3 -2 -1 -1  0 -1 -1 -1 -1),
    Mod: ( 2 -1  0  0  0 -1 -1 -1 -1),
    Mod: ( 2 -1  0 -1 -1 -1 -1  0  0),
    Mod: ( 1  0  0  0 -1  0 -1  0  0),
    Mod: ( 3 -1 -1  0 -1 -2 -1 -1 -1),
    Mod: ( 4 -2 -2 -1 -1 -2 -1 -1 -1),
    Mod: ( 1 -1  0  0  0  0  0  0 -1),
    Mod: ( 2 -1 -1 -1 -1  0 -1  0  0),
    Mod: ( 2  0 -1 -1  0 -1 -1 -1  0),
    Mod: ( 2 -1 -1  0 -1 -1  0 -1  0),
    Mod: ( 3 -1 -2 -1 -1 -1 -1  0 -1)
@}
Intersection Matrix:
[-1  1  1  1  1  2  1  1  1  1  1  0  1  0  0  2  1  0  0  1]
[ 1 -1  0  2  1  1  1  1  1  0  0  0  1  1  1  0  1  1  2  1]
[ 1  0 -1  1  0  0  2  1  1  1  1  1  1  1  1  1  1  0  2  0]
[ 1  2  1 -1  1  0  1  0  0  1  1  2  1  1  1  1  1  0  0  1]
[ 1  1  0  1 -1  0  1  1  2  2  1  1  0  0  1  1  1  1  1  0]
[ 2  1  0  0  0 -1  1  1  1  1  1  2  1  1  1  0  1  1  1  0]
[ 1  1  2  1  1  1 -1  1  1  1  1  0  0  1  1  0  0  2  0  1]
[ 1  1  1  0  1  1  1 -1  0  1  0  1  0  1  2  1  1  0  1  2]
[ 1  1  1  0  2  1  1  0 -1  0  1  1  1  2  1  1  0  0  1  1]
[ 1  0  1  1  2  1  1  1  0 -1  0  1  2  1  0  0  1  1  1  1]
[ 1  0  1  1  1  1  1  0  1  0 -1  1  1  0  1  0  2  1  1  2]
[ 0  0  1  2  1  2  0  1  1  1  1 -1  0  1  1  1  0  1  1  1]
[ 1  1  1  1  0  1  0  0  1  2  1  0 -1  1  2  1  0  1  1  1]
[ 0  1  1  1  0  1  1  1  2  1  0  1  1 -1  0  1  2  1  0  1]
[ 0  1  1  1  1  1  1  2  1  0  1  1  2  0 -1  1  1  1  0  0]
[ 2  0  1  1  1  0  0  1  1  0  0  1  1  1  1 -1  1  2  1  1]
[ 1  1  1  1  1  1  0  1  0  1  2  0  0  2  1  1 -1  1  1  0]
[ 0  1  0  0  1  1  2  0  0  1  1  1  1  1  1  2  1 -1  1  1]
[ 0  2  2  0  1  1  0  1  1  1  1  1  1  0  0  1  1  1 -1  1]
[ 1  1  0  1  0  0  1  2  1  1  2  1  1  1  0  1  0  1  1 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [1 0 0 0 0 0 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 0 0 1]

D7(4):C5⋊C4

    order := 20,
    length := 2177280,
    subgroup := MatrixGroup(9, Integer Ring) of order 2^2 * 5
    Generators:
        [14  5  5  5  6  4  6  4  4]
        [-6 -2 -2 -2 -2 -2 -3 -2 -2]
        [-4 -1 -1 -2 -2 -1 -2 -1 -1]
        [-5 -2 -2 -2 -2 -2 -2 -1 -1]
        [-6 -2 -2 -2 -3 -2 -2 -2 -2]
        [-5 -2 -2 -2 -2 -1 -2 -2 -1]
        [-5 -2 -2 -2 -2 -1 -2 -1 -2]
        [-4 -1 -2 -1 -2 -1 -2 -1 -1]
        [-4 -2 -1 -1 -2 -1 -2 -1 -1]

        [ 6  1  3  2  1  3  1  1  3]
        [-2  0 -1 -1  0 -1 -1  0 -1]
        [-1  0  0  0  0 -1  0  0 -1]
        [-4 -1 -2 -1 -1 -2 -1 -1 -2]
        [-1  0 -1  0  0 -1  0  0  0]
        [-1  0 -1  0  0  0  0  0 -1]
        [-2 -1 -1 -1  0 -1  0  0 -1]
        [-2  0 -1 -1 -1 -1  0  0 -1]
        [-2  0 -1 -1  0 -1  0 -1 -1]

        [ 3  1  1  0  0  1  1  2  0]
        [-1  0  0  0  0 -1  0 -1  0]
        [-1  0  0  0  0  0 -1 -1  0]
        [ 0  0  0  1  0  0  0  0  0]
        [ 0  0  0  0  1  0  0  0  0]
        [-1 -1  0  0  0  0  0 -1  0]
        [-1  0 -1  0  0  0  0 -1  0]
        [-2 -1 -1  0  0 -1 -1 -1  0]
        [ 0  0  0  0  0  0  0  0  1]>

Orbit type:{4,4,4,4,4,5,5,5,5,10,10,10,10,20,20,20,20,20,20,20,20}

Orbit:
1
{@
    Mod: ( 4 -1 -1 -1 -2 -1 -2 -1 -2),
    Mod: ( 2  0 -1 -1  0 -1 -1 -1  0),
    Mod: ( 5 -2 -1 -1 -2 -2 -2 -2 -2),
    Mod: ( 1  0  0 -1  0 -1  0  0  0)
@}
Intersection Matrix:
[-1  2  0  2]
[ 2 -1  2  0]
[ 0  2 -1  2]
[ 2  0  2 -1]
Stabilizer Group Name:
C5
MatrixGroup(9, Integer Ring)
Generators:
    [ 6  1  3  2  1  3  1  1  3]
    [-2  0 -1 -1  0 -1 -1  0 -1]
    [-1  0  0  0  0 -1  0  0 -1]
    [-4 -1 -2 -1 -1 -2 -1 -1 -2]
    [-1  0 -1  0  0 -1  0  0  0]
    [-1  0 -1  0  0  0  0  0 -1]
    [-2 -1 -1 -1  0 -1  0  0 -1]
    [-2  0 -1 -1 -1 -1  0  0 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]

2
{@
    Mod: ( 4 -2 -1 -1 -2 -1 -1 -1 -2),
    Mod: ( 2 -1 -1 -1  0 -1  0 -1  0),
    Mod: ( 5 -2 -2 -1 -2 -1 -2 -2 -2),
    Mod: ( 1  0 -1 -1  0  0  0  0  0)
@}
Intersection Matrix:
[-1  2  0  2]
[ 2 -1  2  0]
[ 0  2 -1  2]
[ 2  0  2 -1]
Stabilizer Group Name:
C5
MatrixGroup(9, Integer Ring)
Generators:
    [ 6  1  3  2  1  3  1  1  3]
    [-2  0 -1 -1  0 -1 -1  0 -1]
    [-1  0  0  0  0 -1  0  0 -1]
    [-4 -1 -2 -1 -1 -2 -1 -1 -2]
    [-1  0 -1  0  0 -1  0  0  0]
    [-1  0 -1  0  0  0  0  0 -1]
    [-2 -1 -1 -1  0 -1  0  0 -1]
    [-2  0 -1 -1 -1 -1  0  0 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]

3
{@
    Mod: ( 4 -2 -1 -1 -1 -2 -1 -2 -1),
    Mod: ( 2  0 -1 -1 -1  0 -1  0 -1),
    Mod: ( 2 -1  0 -1 -1 -1  0  0 -1),
    Mod: ( 4 -1 -2 -1 -1 -1 -2 -2 -1)
@}
Intersection Matrix:
[-1  3  1  1]
[ 3 -1  1  1]
[ 1  1 -1  3]
[ 1  1  3 -1]
Stabilizer Group Name:
C5
MatrixGroup(9, Integer Ring)
Generators:
    [ 6  1  3  2  1  3  1  1  3]
    [-2  0 -1 -1  0 -1 -1  0 -1]
    [-1  0  0  0  0 -1  0  0 -1]
    [-4 -1 -2 -1 -1 -2 -1 -1 -2]
    [-1  0 -1  0  0 -1  0  0  0]
    [-1  0 -1  0  0  0  0  0 -1]
    [-2 -1 -1 -1  0 -1  0  0 -1]
    [-2  0 -1 -1 -1 -1  0  0 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]

4
{@
    Mod: ( 3 -1 -2 -1 -1  0 -1 -1 -1),
    Mod: ( 3 -2 -1 -1 -1 -1  0 -1 -1),
    Mod: ( 4 -2 -2 -1 -1 -1 -1 -2 -1),
    Mod: ( 2 -1 -1 -1 -1  0  0  0 -1)
@}
Intersection Matrix:
[-1  1  0  0]
[ 1 -1  0  0]
[ 0  0 -1  1]
[ 0  0  1 -1]
Stabilizer Group Name:
C5
MatrixGroup(9, Integer Ring)
Generators:
    [ 6  1  3  2  1  3  1  1  3]
    [-2  0 -1 -1  0 -1 -1  0 -1]
    [-1  0  0  0  0 -1  0  0 -1]
    [-4 -1 -2 -1 -1 -2 -1 -1 -2]
    [-1  0 -1  0  0 -1  0  0  0]
    [-1  0 -1  0  0  0  0  0 -1]
    [-2 -1 -1 -1  0 -1  0  0 -1]
    [-2  0 -1 -1 -1 -1  0  0 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]

5
{@
    Mod: ( 3 -1  0 -1 -1 -2 -1 -1 -1),
    Mod: ( 4 -1 -1 -1 -1 -2 -2 -2 -1),
    Mod: ( 3  0 -1 -1 -1 -1 -2 -1 -1),
    Mod: ( 2  0  0 -1 -1 -1 -1  0 -1)
@}
Intersection Matrix:
[-1  0  1  0]
[ 0 -1  0  1]
[ 1  0 -1  0]
[ 0  1  0 -1]
Stabilizer Group Name:
C5
MatrixGroup(9, Integer Ring)
Generators:
    [ 6  1  3  2  1  3  1  1  3]
    [-2  0 -1 -1  0 -1 -1  0 -1]
    [-1  0  0  0  0 -1  0  0 -1]
    [-4 -1 -2 -1 -1 -2 -1 -1 -2]
    [-1  0 -1  0  0 -1  0  0  0]
    [-1  0 -1  0  0  0  0  0 -1]
    [-2 -1 -1 -1  0 -1  0  0 -1]
    [-2  0 -1 -1 -1 -1  0  0 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]

6
{@
    Mod: ( 1 -1  0  0  0  0 -1  0  0),
    Mod: ( 3 -1 -1 -1 -2 -1 -1 -1  0),
    Mod: ( 4 -1 -1 -2 -1 -1 -1 -2 -2),
    Mod: ( 5 -2 -2 -2 -1 -2 -2 -1 -2),
    Mod: ( 2  0 -1  0 -1 -1  0 -1 -1)
@}
Intersection Matrix:
[-1  1  2  1  2]
[ 1 -1  2  2  1]
[ 2  2 -1  1  1]
[ 1  2  1 -1  2]
[ 2  1  1  2 -1]
Stabilizer Group Name:
C4
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  0  0  1  1  2  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-2 -1 -1  0  0 -1 -1 -1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [ 8  3  2  2  2  1  4  3  4]
    [-4 -1 -1 -1 -1 -1 -2 -2 -2]
    [-1  0  0  0  0  0 -1  0 -1]
    [-2 -1  0 -1  0  0 -1 -1 -1]
    [-2 -1  0  0 -1  0 -1 -1 -1]
    [-2 -1 -1  0  0  0 -1 -1 -1]
    [-3 -1 -1 -1 -1  0 -1 -1 -2]
    [-3 -1 -1 -1 -1  0 -2 -1 -1]
    [-4 -2 -1 -1 -1 -1 -2 -1 -2]

7
{@
    Mod: ( 5 -2 -2 -2 -2 -2 -2 -1 -1),
    Mod: ( 2 -1  0 -1  0  0 -1 -1 -1),
    Mod: ( 4 -1 -2 -1 -1 -2 -1 -1 -2),
    Mod: (0 0 0 1 0 0 0 0 0),
    Mod: ( 4 -1 -1 -2 -2 -1 -1 -2 -1)
@}
Intersection Matrix:
[-1  2  1  2  1]
[ 2 -1  2  1  1]
[ 1  2 -1  1  2]
[ 2  1  1 -1  2]
[ 1  1  2  2 -1]
Stabilizer Group Name:
C4
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  0  0  1  1  2  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-2 -1 -1  0  0 -1 -1 -1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [ 8  3  2  2  2  1  4  3  4]
    [-4 -1 -1 -1 -1 -1 -2 -2 -2]
    [-1  0  0  0  0  0 -1  0 -1]
    [-2 -1  0 -1  0  0 -1 -1 -1]
    [-2 -1  0  0 -1  0 -1 -1 -1]
    [-2 -1 -1  0  0  0 -1 -1 -1]
    [-3 -1 -1 -1 -1  0 -1 -1 -2]
    [-3 -1 -1 -1 -1  0 -2 -1 -1]
    [-4 -2 -1 -1 -1 -1 -2 -1 -2]

8
{@
    Mod: ( 2 -1 -1  0 -1 -1 -1  0  0),
    Mod: ( 5 -1 -2 -2 -2 -2 -1 -2 -2),
    Mod: ( 3 -1 -1 -1  0 -1 -1 -1 -2),
    Mod: ( 4 -2 -1 -2 -1 -1 -2 -1 -1),
    Mod: ( 1  0  0  0 -1  0  0 -1  0)
@}
Intersection Matrix:
[-1  2  2  1  1]
[ 2 -1  1  2  1]
[ 2  1 -1  1  2]
[ 1  2  1 -1  2]
[ 1  1  2  2 -1]
Stabilizer Group Name:
C4
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  0  0  1  1  2  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-2 -1 -1  0  0 -1 -1 -1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [14  5  5  5  6  4  6  4  4]
    [-6 -2 -2 -2 -2 -2 -3 -2 -2]
    [-4 -1 -1 -2 -2 -1 -2 -1 -1]
    [-5 -2 -2 -2 -2 -2 -2 -1 -1]
    [-6 -2 -2 -2 -3 -2 -2 -2 -2]
    [-5 -2 -2 -2 -2 -1 -2 -2 -1]
    [-5 -2 -2 -2 -2 -1 -2 -1 -2]
    [-4 -1 -2 -1 -2 -1 -2 -1 -1]
    [-4 -2 -1 -1 -2 -1 -2 -1 -1]

9
{@
    Mod: ( 4 -1 -2 -1 -2 -2 -1 -1 -1),
    Mod: ( 6 -2 -2 -3 -2 -2 -2 -2 -2),
    Mod: ( 1  0  0  0  0  0  0 -1 -1),
    Mod: ( 2 -1 -1  0  0 -1 -1  0 -1),
    Mod: ( 2 -1  0 -1 -1  0 -1 -1  0)
@}
Intersection Matrix:
[-1  1  2  1  2]
[ 1 -1  2  2  1]
[ 2  2 -1  1  1]
[ 1  2  1 -1  2]
[ 2  1  1  2 -1]
Stabilizer Group Name:
C4
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  0  0  1  1  2  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-2 -1 -1  0  0 -1 -1 -1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [11  4  2  4  5  3  3  5  4]
    [-3 -1  0 -1 -2 -1 -1 -1 -1]
    [-3 -1  0 -1 -1 -1 -1 -2 -1]
    [-4 -1 -1 -2 -2 -1 -1 -2 -1]
    [-5 -2 -1 -2 -2 -1 -2 -2 -2]
    [-2 -1  0 -1 -1  0  0 -1 -1]
    [-4 -2 -1 -1 -2 -1 -1 -2 -1]
    [-5 -2 -1 -2 -2 -2 -1 -2 -2]
    [-4 -1 -1 -1 -2 -1 -1 -2 -2]

10
{@
    Mod: ( 1  0  0 -1  0  0  0 -1  0),
    Mod: ( 2 -1  0  0 -1  0 -1 -1 -1),
    Mod: ( 3 -1 -1  0 -1 -1 -1 -1 -2),
    Mod: ( 4 -1 -2 -2 -1 -2 -1 -1 -1),
    Mod: ( 5 -2 -1 -2 -2 -1 -2 -2 -2),
    Mod: ( 1  0 -1  0  0 -1  0  0  0),
    Mod: ( 3 -1 -1 -2 -1 -1 -1 -1  0),
    Mod: ( 5 -2 -2 -1 -2 -2 -2 -1 -2),
    Mod: ( 6 -2 -2 -2 -3 -2 -2 -2 -2),
    Mod: (0 0 0 0 1 0 0 0 0)
@}
Intersection Matrix:
[-1  1  2  1  1  1  0  3  2  0]
[ 1 -1  0  3  0  2  2  1  1  1]
[ 2  0 -1  2  1  1  3  0  1  1]
[ 1  3  2 -1  2  0  0  1  1  1]
[ 1  0  1  2 -1  3  1  1  0  2]
[ 1  2  1  0  3 -1  1  1  2  0]
[ 0  2  3  0  1  1 -1  2  1  1]
[ 3  1  0  1  1  1  2 -1  0  2]
[ 2  1  1  1  0  2  1  0 -1  3]
[ 0  1  1  1  2  0  1  2  3 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  0  0  1  1  2  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-2 -1 -1  0  0 -1 -1 -1  0]
    [ 0  0  0  0  0  0  0  0  1]

11
{@
    Mod: ( 6 -2 -2 -2 -2 -2 -2 -2 -3),
    Mod: ( 2 -1 -1 -1  0 -1 -1  0  0),
    Mod: ( 2  0 -1 -1  0 -1  0 -1 -1),
    Mod: (0 0 0 0 0 0 0 0 1),
    Mod: ( 4 -1 -1 -1 -2 -1 -1 -2 -2),
    Mod: ( 3 -1 -1  0 -2 -1 -1 -1 -1),
    Mod: ( 2  0 -1 -1 -1 -1  0 -1  0),
    Mod: ( 4 -2 -1 -1 -2 -1 -2 -1 -1),
    Mod: ( 3 -1 -1 -2  0 -1 -1 -1 -1),
    Mod: ( 4 -2 -1 -1 -1 -1 -2 -1 -2)
@}
Intersection Matrix:
[-1  2  1  3  0  1  2  1  1  0]
[ 2 -1  1  0  3  2  1  1  0  1]
[ 1  1 -1  1  1  2  0  3  0  2]
[ 3  0  1 -1  2  1  0  1  1  2]
[ 0  3  1  2 -1  0  1  1  2  1]
[ 1  2  2  1  0 -1  1  0  3  1]
[ 2  1  0  0  1  1 -1  2  1  3]
[ 1  1  3  1  1  0  2 -1  2  0]
[ 1  0  0  1  2  3  1  2 -1  1]
[ 0  1  2  2  1  1  3  0  1 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  0  0  1  1  2  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-2 -1 -1  0  0 -1 -1 -1  0]
    [ 0  0  0  0  0  0  0  0  1]

12
{@
    Mod: ( 4 -1 -1 -2 -1 -2 -2 -1 -1),
    Mod: ( 2  0  0  0 -1 -1 -1 -1 -1),
    Mod: ( 1  0  0  0  0 -1 -1  0  0),
    Mod: ( 3 -1  0 -1 -1 -1 -2 -1 -1),
    Mod: ( 4 -1 -1 -1 -2 -2 -2 -1 -1),
    Mod: ( 4 -1 -1 -1 -1 -2 -2 -1 -2),
    Mod: ( 5 -1 -1 -2 -2 -2 -2 -2 -2),
    Mod: ( 2  0  0 -1  0 -1 -1 -1 -1),
    Mod: ( 2  0  0 -1 -1 -1 -1 -1  0),
    Mod: ( 3  0 -1 -1 -1 -2 -1 -1 -1)
@}
Intersection Matrix:
[-1  1  0  0  0  0  0  0  0  0]
[ 1 -1  0  0  0  0  0  0  0  0]
[ 0  0 -1  0  0  0  1  0  0  0]
[ 0  0  0 -1  0  0  0  0  0  1]
[ 0  0  0  0 -1  0  0  1  0  0]
[ 0  0  0  0  0 -1  0  0  1  0]
[ 0  0  1  0  0  0 -1  0  0  0]
[ 0  0  0  0  1  0  0 -1  0  0]
[ 0  0  0  0  0  1  0  0 -1  0]
[ 0  0  0  1  0  0  0  0  0 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  0  0  1  1  2  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-2 -1 -1  0  0 -1 -1 -1  0]
    [ 0  0  0  0  0  0  0  0  1]

13
{@
    Mod: ( 4 -2 -2 -1 -1 -1 -1 -1 -2),
    Mod: ( 5 -2 -2 -2 -2 -1 -1 -2 -2),
    Mod: ( 2 -1 -1  0 -1  0  0 -1 -1),
    Mod: ( 3 -2 -1 -1 -1  0 -1 -1 -1),
    Mod: ( 2 -1 -1 -1 -1  0  0 -1  0),
    Mod: ( 4 -2 -2 -2 -1 -1 -1 -1 -1),
    Mod: ( 3 -1 -2 -1 -1 -1  0 -1 -1),
    Mod: ( 2 -1 -1 -1  0  0  0 -1 -1),
    Mod: ( 4 -2 -2 -1 -2 -1 -1 -1 -1),
    Mod: ( 1 -1 -1  0  0  0  0  0  0)
@}
Intersection Matrix:
[-1  0  0  0  1  0  0  0  0  0]
[ 0 -1  0  0  0  0  0  0  0  1]
[ 0  0 -1  0  0  1  0  0  0  0]
[ 0  0  0 -1  0  0  1  0  0  0]
[ 1  0  0  0 -1  0  0  0  0  0]
[ 0  0  1  0  0 -1  0  0  0  0]
[ 0  0  0  1  0  0 -1  0  0  0]
[ 0  0  0  0  0  0  0 -1  1  0]
[ 0  0  0  0  0  0  0  1 -1  0]
[ 0  1  0  0  0  0  0  0  0 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  0  0  1  1  2  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-2 -1 -1  0  0 -1 -1 -1  0]
    [ 0  0  0  0  0  0  0  0  1]

14
{@
    Mod: ( 2  0 -1 -1 -1  0  0 -1 -1),
    Mod: ( 2 -1 -1 -1 -1  0 -1  0  0),
    Mod: ( 4 -1 -2 -1 -1 -1 -1 -2 -2),
    Mod: ( 3 -2 -1 -1  0 -1 -1 -1 -1),
    Mod: ( 2 -1 -1  0 -1 -1  0 -1  0),
    Mod: ( 1 -1  0  0 -1  0  0  0  0),
    Mod: ( 2 -1 -1 -1  0  0 -1  0 -1),
    Mod: ( 3 -1 -1 -1 -2 -1  0 -1 -1),
    Mod: ( 3 -2 -1 -1 -1 -1 -1  0 -1),
    Mod: ( 4 -1 -2 -1 -2 -1 -1 -2 -1),
    Mod: ( 5 -2 -2 -2 -1 -1 -2 -2 -2),
    Mod: ( 4 -2 -2 -1 -1 -1 -2 -1 -1),
    Mod: ( 3 -1 -1 -1 -1 -1  0 -1 -2),
    Mod: ( 2 -1 -1  0 -1  0 -1 -1  0),
    Mod: ( 1  0 -1  0 -1  0  0  0  0),
    Mod: ( 3 -2 -1 -1 -1 -1 -1 -1  0),
    Mod: ( 4 -2 -1 -2 -1 -1 -1 -1 -2),
    Mod: ( 3 -1 -1 -1 -1 -1  0 -2 -1),
    Mod: ( 4 -1 -2 -2 -1 -1 -1 -1 -2),
    Mod: ( 5 -2 -2 -2 -1 -2 -1 -2 -2)
@}
Intersection Matrix:
[-1  1  0  2  1  1  1  0  2  0  1  2  0  1  0  2  1  0  0  1]
[ 1 -1  2  1  1  0  0  1  0  1  1  0  2  0  0  0  1  2  1  2]
[ 0  2 -1  1  1  2  1  1  2  0  0  1  0  1  1  2  1  0  0  0]
[ 2  1  1 -1  1  1  0  2  0  2  0  0  1  1  2  0  0  1  1  0]
[ 1  1  1  1 -1  0  2  0  1  0  2  1  1  0  0  0  2  0  2  1]
[ 1  0  2  1  0 -1  1  0  0  1  2  1  1  0  0  0  1  1  2  2]
[ 1  0  1  0  2  1 -1  2  0  2  0  0  1  1  1  1  0  2  0  1]
[ 0  1  1  2  0  0  2 -1  1  0  2  2  0  1  0  1  1  0  1  1]
[ 2  0  2  0  1  0  0  1 -1  2  1  0  1  1  1  0  0  2  1  1]
[ 0  1  0  2  0  1  2  0  2 -1  1  1  1  0  0  1  2  0  1  1]
[ 1  1  0  0  2  2  0  2  1  1 -1  0  1  1  2  1  0  1  0  0]
[ 2  0  1  0  1  1  0  2  0  1  0 -1  2  0  1  0  1  2  1  1]
[ 0  2  0  1  1  1  1  0  1  1  1  2 -1  2  1  2  0  0  0  0]
[ 1  0  1  1  0  0  1  1  1  0  1  0  2 -1  0  0  2  1  2  2]
[ 0  0  1  2  0  0  1  0  1  0  2  1  1  0 -1  1  2  1  1  2]
[ 2  0  2  0  0  0  1  1  0  1  1  0  2  0  1 -1  1  1  2  1]
[ 1  1  1  0  2  1  0  1  0  2  0  1  0  2  2  1 -1  1  0  0]
[ 0  2  0  1  0  1  2  0  2  0  1  2  0  1  1  1  1 -1  1  0]
[ 0  1  0  1  2  2  0  1  1  1  0  1  0  2  1  2  0  1 -1  0]
[ 1  2  0  0  1  2  1  1  1  1  0  1  0  2  2  1  0  0  0 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

15
{@
    Mod: ( 3 -1 -1  0 -1 -2 -1 -1 -1),
    Mod: ( 3 -1 -1 -1 -1 -2 -1  0 -1),
    Mod: ( 2  0  0 -1 -1  0 -1 -1 -1),
    Mod: ( 2  0 -1  0 -1 -1 -1  0 -1),
    Mod: ( 3 -1  0 -2 -1 -1 -1 -1 -1),
    Mod: ( 4 -1 -1 -2 -2 -2 -1 -1 -1),
    Mod: ( 1  0  0  0  0  0 -1 -1  0),
    Mod: ( 2  0 -1  0  0 -1 -1 -1 -1),
    Mod: ( 1  0  0  0  0 -1  0  0 -1),
    Mod: (0 0 1 0 0 0 0 0 0),
    Mod: ( 5 -1 -2 -2 -2 -2 -2 -1 -2),
    Mod: ( 6 -2 -2 -2 -2 -3 -2 -2 -2),
    Mod: ( 4 -1 -2 -1 -1 -2 -2 -1 -1),
    Mod: ( 4 -1 -1 -2 -2 -1 -2 -1 -1),
    Mod: ( 4 -1 -1 -2 -1 -1 -2 -2 -1),
    Mod: ( 5 -2 -1 -2 -2 -2 -2 -2 -1),
    Mod: ( 5 -1 -2 -2 -2 -2 -2 -2 -1),
    Mod: ( 1  0  0  0  0  0 -1  0 -1),
    Mod: ( 2 -1  0  0  0 -1 -1 -1 -1),
    Mod: ( 3 -1  0 -1 -1 -1 -1 -2 -1)
@}
Intersection Matrix:
[-1  0  2  0  2  1  1  0  0  1  1  0  0  2  2  1  1  1  0  1]
[ 0 -1  2  0  1  0  2  1  0  1  0  0  0  1  2  1  1  1  1  2]
[ 2  2 -1  1  0  1  0  1  1  0  1  2  2  0  0  1  1  0  1  0]
[ 0  0  1 -1  2  1  1  0  0  1  0  1  0  1  2  2  1  0  1  2]
[ 2  1  0  2 -1  0  1  2  1  0  1  1  2  0  0  0  1  1  1  0]
[ 1  0  1  1  0 -1  2  2  1  1  0  0  1  0  1  0  0  2  2  1]
[ 1  2  0  1  1  2 -1  0  1  0  2  2  1  1  0  1  1  0  0  0]
[ 0  1  1  0  2  2  0 -1  0  1  1  1  0  2  1  2  1  0  0  1]
[ 0  0  1  0  1  1  1  0 -1  0  1  1  1  2  2  2  2  0  0  1]
[ 1  1  0  1  0  1  0  1  0 -1  2  2  2  1  1  1  2  0  0  0]
[ 1  0  1  0  1  0  2  1  1  2 -1  0  0  0  1  1  0  1  2  2]
[ 0  0  2  1  1  0  2  1  1  2  0 -1  0  1  1  0  0  2  1  1]
[ 0  0  2  0  2  1  1  0  1  2  0  0 -1  1  1  1  0  1  1  2]
[ 2  1  0  1  0  0  1  2  2  1  0  1  1 -1  0  0  0  1  2  1]
[ 2  2  0  2  0  1  0  1  2  1  1  1  1  0 -1  0  0  1  1  0]
[ 1  1  1  2  0  0  1  2  2  1  1  0  1  0  0 -1  0  2  1  0]
[ 1  1  1  1  1  0  1  1  2  2  0  0  0  0  0  0 -1  2  2  1]
[ 1  1  0  0  1  2  0  0  0  0  1  2  1  1  1  2  2 -1  0  1]
[ 0  1  1  1  1  2  0  0  0  0  2  1  1  2  1  1  2  0 -1  0]
[ 1  2  0  2  0  1  0  1  1  0  2  1  2  1  0  0  1  1  0 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

16
{@
    Mod: ( 2 -1  0 -1  0 -1 -1  0 -1),
    Mod: ( 1  0  0  0 -1 -1  0  0  0),
    Mod: ( 3 -1 -1 -1  0 -1 -2 -1 -1),
    Mod: ( 5 -1 -2 -2 -1 -2 -2 -2 -2),
    Mod: ( 2 -1  0  0 -1 -1 -1 -1  0),
    Mod: ( 2  0  0 -1 -1 -1  0 -1 -1),
    Mod: ( 4 -1 -1 -2 -1 -2 -1 -1 -2),
    Mod: ( 3 -1 -1 -1 -1 -1 -2 -1  0),
    Mod: ( 4 -1 -1 -1 -1 -2 -1 -2 -2),
    Mod: ( 2 -1  0 -1 -1 -1 -1  0  0),
    Mod: ( 1  0  0  0 -1  0 -1  0  0),
    Mod: ( 3  0 -1 -1 -2 -1 -1 -1 -1),
    Mod: ( 4 -1 -1 -1 -2 -2 -1 -2 -1),
    Mod: ( 3 -1 -1 -1 -1 -1 -2  0 -1),
    Mod: ( 3  0 -1 -1 -1 -1 -1 -2 -1),
    Mod: ( 2  0 -1  0 -1 -1 -1 -1  0),
    Mod: ( 4 -2 -1 -1 -1 -2 -2 -1 -1),
    Mod: ( 5 -2 -1 -2 -1 -2 -2 -2 -2),
    Mod: ( 3  0 -1 -1 -1 -1 -1 -1 -2),
    Mod: ( 4 -1 -1 -2 -1 -1 -2 -1 -2)
@}
Intersection Matrix:
[-1  1  0  1  1  1  0  1  1  0  1  2  2  0  2  2  0  0  1  0]
[ 1 -1  2  2  0  0  1  1  1  0  0  0  0  1  1  0  1  2  1  2]
[ 0  2 -1  0  1  2  1  0  1  1  1  2  2  0  1  1  0  0  1  0]
[ 1  2  0 -1  2  1  0  1  0  2  2  1  1  1  0  1  1  0  0  0]
[ 1  0  1  2 -1  1  2  0  1  0  0  1  0  1  1  0  0  1  2  2]
[ 1  0  2  1  1 -1  0  2  0  1  1  0  0  2  0  1  2  1  0  1]
[ 0  1  1  0  2  0 -1  2  0  1  2  1  1  1  1  2  1  0  0  0]
[ 1  1  0  1  0  2  2 -1  2  0  0  1  1  0  1  0  0  1  2  1]
[ 1  1  1  0  1  0  0  2 -1  2  2  1  0  2  0  1  1  0  0  1]
[ 0  0  1  2  0  1  1  0  2 -1  0  1  1  0  2  1  0  1  2  1]
[ 1  0  1  2  0  1  2  0  2  0 -1  0  1  0  1  0  1  2  1  1]
[ 2  0  2  1  1  0  1  1  1  1  0 -1  0  1  0  0  2  2  0  1]
[ 2  0  2  1  0  0  1  1  0  1  1  0 -1  2  0  0  1  1  1  2]
[ 0  1  0  1  1  2  1  0  2  0  0  1  2 -1  2  1  0  1  1  0]
[ 2  1  1  0  1  0  1  1  0  2  1  0  0  2 -1  0  2  1  0  1]
[ 2  0  1  1  0  1  2  0  1  1  0  0  0  1  0 -1  1  2  1  2]
[ 0  1  0  1  0  2  1  0  1  0  1  2  1  0  2  1 -1  0  2  1]
[ 0  2  0  0  1  1  0  1  0  1  2  2  1  1  1  2  0 -1  1  0]
[ 1  1  1  0  2  0  0  2  0  2  1  0  1  1  0  1  2  1 -1  0]
[ 0  2  0  0  2  1  0  1  1  1  1  1  2  0  1  2  1  0  0 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

17
{@
    Mod: ( 5 -2 -2 -2 -2 -2 -1 -2 -1),
    Mod: ( 4 -1 -2 -2 -2 -1 -1 -1 -1),
    Mod: ( 2 -1 -1  0  0 -1  0 -1 -1),
    Mod: ( 1  0 -1  0  0  0  0  0 -1),
    Mod: ( 3 -1 -2  0 -1 -1 -1 -1 -1),
    Mod: ( 5 -2 -2 -2 -2 -1 -2 -2 -1),
    Mod: ( 4 -2 -1 -2 -1 -1 -1 -2 -1),
    Mod: ( 1 -1  0  0  0  0  0 -1  0),
    Mod: ( 4 -2 -2 -1 -1 -2 -1 -1 -1),
    Mod: ( 6 -2 -3 -2 -2 -2 -2 -2 -2),
    Mod: ( 1 -1  0  0  0  0  0  0 -1),
    Mod: ( 4 -2 -1 -2 -2 -1 -1 -1 -1),
    Mod: ( 3 -1 -1 -1 -1  0 -1 -2 -1),
    Mod: ( 2 -1 -1  0  0  0 -1 -1 -1),
    Mod: ( 2 -1 -1  0 -1 -1  0  0 -1),
    Mod: ( 5 -2 -2 -2 -2 -2 -1 -1 -2),
    Mod: ( 3 -1 -2 -1 -1 -1 -1  0 -1),
    Mod: (0 0 0 0 0 1 0 0 0),
    Mod: ( 3 -1 -1 -2 -1  0 -1 -1 -1),
    Mod: ( 2 -1  0 -1 -1  0  0 -1 -1)
@}
Intersection Matrix:
[-1  0  1  2  1  0  0  1  0  0  2  0  1  2  1  0  1  2  1  1]
[ 0 -1  2  1  1  0  1  2  1  0  2  0  1  2  1  0  0  1  0  1]
[ 1  2 -1  0  0  2  1  0  0  1  0  2  1  0  0  1  1  1  2  1]
[ 2  1  0 -1  0  2  2  1  1  1  0  2  1  0  0  1  0  0  1  1]
[ 1  1  0  0 -1  1  2  1  0  0  1  2  1  0  0  1  0  1  2  2]
[ 0  0  2  2  1 -1  0  1  1  0  2  0  0  1  2  1  1  1  0  1]
[ 0  1  1  2  2  0 -1  0  1  1  1  0  0  1  2  1  2  1  0  0]
[ 1  2  0  1  1  1  0 -1  1  2  0  1  0  0  1  2  2  0  1  0]
[ 0  1  0  1  0  1  1  1 -1  0  1  1  2  1  0  0  0  2  2  2]
[ 0  0  1  1  0  0  1  2  0 -1  2  1  1  1  1  0  0  2  1  2]
[ 2  2  0  0  1  2  1  0  1  2 -1  1  1  0  0  1  1  0  1  0]
[ 0  0  2  2  2  0  0  1  1  1  1 -1  1  2  1  0  1  1  0  0]
[ 1  1  1  1  1  0  0  0  2  1  1  1 -1  0  2  2  2  0  0  0]
[ 2  2  0  0  0  1  1  0  1  1  0  2  0 -1  1  2  1  0  1  1]
[ 1  1  0  0  0  2  2  1  0  1  0  1  2  1 -1  0  0  1  2  1]
[ 0  0  1  1  1  1  1  2  0  0  1  0  2  2  0 -1  0  2  1  1]
[ 1  0  1  0  0  1  2  2  0  0  1  1  2  1  0  0 -1  1  1  2]
[ 2  1  1  0  1  1  1  0  2  2  0  1  0  0  1  2  1 -1  0  0]
[ 1  0  2  1  2  0  0  1  2  1  1  0  0  1  2  1  1  0 -1  0]
[ 1  1  1  1  2  1  0  0  2  2  0  0  0  1  1  1  2  0  0 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

18
{@
    Mod: ( 5 -2 -2 -1 -2 -2 -1 -2 -2),
    Mod: ( 4 -1 -2 -2 -1 -1 -1 -2 -1),
    Mod: ( 4 -1 -2 -1 -2 -1 -1 -1 -2),
    Mod: ( 2 -1 -1  0 -1  0 -1  0 -1),
    Mod: ( 1  0 -1  0  0  0  0 -1  0),
    Mod: ( 3 -1 -2 -1  0 -1 -1 -1 -1),
    Mod: ( 1 -1  0 -1  0  0  0  0  0),
    Mod: ( 6 -3 -2 -2 -2 -2 -2 -2 -2),
    Mod: ( 5 -2 -2 -2 -2 -1 -2 -1 -2),
    Mod: ( 2 -1 -1 -1 -1 -1  0  0  0),
    Mod: (0 0 0 0 0 0 1 0 0),
    Mod: ( 2 -1 -1 -1  0  0 -1 -1  0),
    Mod: ( 3 -1 -2 -1 -1 -1 -1 -1  0),
    Mod: ( 3 -2 -1  0 -1 -1 -1 -1 -1),
    Mod: ( 4 -2 -1 -1 -1 -1 -1 -2 -2),
    Mod: ( 3 -1 -1 -1 -2  0 -1 -1 -1),
    Mod: ( 2 -1 -1 -1  0 -1  0  0 -1),
    Mod: ( 4 -2 -1 -1 -2 -1 -1 -2 -1),
    Mod: ( 3 -1 -1 -1 -1  0 -1 -1 -2),
    Mod: ( 3 -1 -1 -2 -1 -1  0 -1 -1)
@}
Intersection Matrix:
[-1  1  0  1  1  1  2  0  1  1  1  2  1  0  0  1  1  0  1  1]
[ 1 -1  1  2  0  0  1  1  1  1  1  0  0  2  1  1  1  1  1  0]
[ 0  1 -1  0  1  1  2  1  0  1  1  2  1  1  1  0  1  1  0  1]
[ 1  2  0 -1  1  1  1  1  0  1  1  1  1  0  1  0  1  1  0  2]
[ 1  0  1  1 -1  0  1  2  2  1  0  0  0  1  1  1  1  1  1  1]
[ 1  0  1  1  0 -1  1  1  1  1  1  0  0  1  1  2  0  2  1  1]
[ 2  1  2  1  1  1 -1  1  1  0  0  0  1  1  1  1  0  1  1  0]
[ 0  1  1  1  2  1  1 -1  0  1  2  1  1  0  0  1  1  0  1  1]
[ 1  1  0  0  2  1  1  0 -1  1  2  1  1  1  1  0  1  1  0  1]
[ 1  1  1  1  1  1  0  1  1 -1  0  1  0  1  2  1  0  1  2  0]
[ 1  1  1  1  0  1  0  2  2  0 -1  1  1  1  1  1  0  1  1  0]
[ 2  0  2  1  0  0  0  1  1  1  1 -1  0  1  1  1  1  1  1  1]
[ 1  0  1  1  0  0  1  1  1  0  1  0 -1  1  2  1  1  1  2  1]
[ 0  2  1  0  1  1  1  0  1  1  1  1  1 -1  0  1  1  0  1  2]
[ 0  1  1  1  1  1  1  0  1  2  1  1  2  0 -1  1  1  0  0  1]
[ 1  1  0  0  1  2  1  1  0  1  1  1  1  1  1 -1  2  0  0  1]
[ 1  1  1  1  1  0  0  1  1  0  0  1  1  1  1  2 -1  2  1  0]
[ 0  1  1  1  1  2  1  0  1  1  1  1  1  0  0  0  2 -1  1  1]
[ 1  1  0  0  1  1  1  1  0  2  1  1  2  1  0  0  1  1 -1  1]
[ 1  0  1  2  1  1  0  1  1  0  0  1  1  2  1  1  0  1  1 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

19
{@
    Mod: ( 3 -1 -1 -1 -1 -2 -1 -1  0),
    Mod: ( 1  0  0  0  0 -1  0 -1  0),
    Mod: ( 4 -1 -1 -1 -1 -1 -2 -2 -2),
    Mod: ( 3 -1 -1  0 -1 -1 -2 -1 -1),
    Mod: ( 2  0 -1 -1  0 -1 -1  0 -1),
    Mod: ( 4 -1 -1 -1 -2 -1 -2 -2 -1),
    Mod: ( 5 -1 -2 -1 -2 -2 -2 -2 -2),
    Mod: ( 3 -1 -1 -1  0 -2 -1 -1 -1),
    Mod: ( 4 -1 -1 -2 -1 -2 -1 -2 -1),
    Mod: ( 3 -1  0 -1 -2 -1 -1 -1 -1),
    Mod: ( 4 -1 -1 -1 -2 -2 -1 -1 -2),
    Mod: ( 1  0  0 -1  0  0 -1  0  0),
    Mod: ( 2 -1  0 -1  0 -1 -1 -1  0),
    Mod: ( 2 -1  0  0 -1 -1 -1  0 -1),
    Mod: ( 3 -1  0 -1 -1 -1 -1 -1 -2),
    Mod: ( 2  0 -1 -1 -1 -1 -1  0  0),
    Mod: ( 6 -2 -2 -2 -2 -2 -3 -2 -2),
    Mod: ( 3  0 -1 -2 -1 -1 -1 -1 -1),
    Mod: ( 5 -2 -1 -2 -2 -2 -2 -1 -2),
    Mod: (0 1 0 0 0 0 0 0 0)
@}
Intersection Matrix:
[-1  0  2  1  1  1  1  0  0  1  1  1  0  1  2  0  1  1  1  1]
[ 0 -1  1  1  1  1  1  0  0  1  1  1  0  1  1  1  2  1  2  0]
[ 2  1 -1  0  1  0  0  1  1  1  1  1  1  1  0  2  0  1  1  1]
[ 1  1  0 -1  1  0  0  1  2  1  1  1  1  0  1  1  0  2  1  1]
[ 1  1  1  1 -1  2  1  0  1  2  1  0  1  1  1  0  1  0  1  0]
[ 1  1  0  0  2 -1  0  2  1  0  1  1  1  1  1  1  0  1  1  1]
[ 1  1  0  0  1  0 -1  1  1  1  0  2  2  1  1  1  0  1  1  1]
[ 0  0  1  1  0  2  1 -1  0  2  1  1  0  1  1  1  1  1  1  1]
[ 0  0  1  2  1  1  1  0 -1  1  1  1  0  2  1  1  1  0  1  1]
[ 1  1  1  1  2  0  1  2  1 -1  0  1  1  0  0  1  1  1  0  1]
[ 1  1  1  1  1  1  0  1  1  0 -1  2  2  0  0  1  1  1  0  1]
[ 1  1  1  1  0  1  2  1  1  1  2 -1  0  1  1  0  1  0  1  0]
[ 0  0  1  1  1  1  2  0  0  1  2  0 -1  1  1  1  1  1  1  1]
[ 1  1  1  0  1  1  1  1  2  0  0  1  1 -1  0  1  1  2  0  1]
[ 2  1  0  1  1  1  1  1  1  0  0  1  1  0 -1  2  1  1  0  1]
[ 0  1  2  1  0  1  1  1  1  1  1  0  1  1  2 -1  1  0  1  0]
[ 1  2  0  0  1  0  0  1  1  1  1  1  1  1  1  1 -1  1  0  2]
[ 1  1  1  2  0  1  1  1  0  1  1  0  1  2  1  0  1 -1  1  0]
[ 1  2  1  1  1  1  1  1  1  0  0  1  1  0  0  1  0  1 -1  2]
[ 1  0  1  1  0  1  1  1  1  1  1  0  1  1  1  0  2  0  2 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

20
{@
    Mod: ( 3 -1 -1 -1 -2 -1 -1  0 -1),
    Mod: ( 1 -1  0  0  0 -1  0  0  0),
    Mod: ( 2 -1  0 -1 -1 -1  0 -1  0),
    Mod: ( 4 -2 -1 -1 -1 -1 -2 -2 -1),
    Mod: ( 3 -1 -1 -1 -1 -2  0 -1 -1),
    Mod: ( 2  0 -1 -1 -1  0 -1 -1  0),
    Mod: ( 5 -2 -2 -1 -1 -2 -2 -2 -2),
    Mod: ( 3 -1 -1 -1 -1 -1 -1  0 -2),
    Mod: ( 4 -1 -2 -2 -1 -1 -2 -1 -1),
    Mod: ( 3  0 -2 -1 -1 -1 -1 -1 -1),
    Mod: ( 4 -2 -1 -2 -1 -2 -1 -1 -1),
    Mod: ( 2 -1  0 -1 -1  0 -1  0 -1),
    Mod: ( 3 -1 -1  0 -1 -1 -1 -2 -1),
    Mod: ( 1  0  0  0 -1  0  0  0 -1),
    Mod: ( 5 -2 -2 -1 -2 -2 -2 -2 -1),
    Mod: ( 1  0 -1  0  0  0 -1  0  0),
    Mod: ( 6 -2 -2 -2 -2 -2 -2 -3 -2),
    Mod: ( 2  0 -1 -1  0  0 -1 -1 -1),
    Mod: ( 4 -1 -1 -2 -2 -1 -1 -1 -2),
    Mod: ( 2 -1  0 -1  0 -1  0 -1 -1)
@}
Intersection Matrix:
[-1  1  1  2  1  1  2  0  1  1  1  0  2  0  1  1  2  2  0  2]
[ 1 -1  0  1  0  2  1  1  2  2  0  1  1  1  1  1  2  2  2  0]
[ 1  0 -1  1  0  1  2  2  2  2  0  1  1  1  1  2  1  2  1  0]
[ 2  1  1 -1  2  1  0  2  1  2  1  1  0  2  0  1  0  1  2  1]
[ 1  0  0  2 -1  2  1  1  2  1  0  2  1  1  1  2  1  2  1  0]
[ 1  2  1  1  2 -1  2  2  0  0  2  1  1  1  1  0  1  0  1  2]
[ 2  1  2  0  1  2 -1  1  1  1  1  2  0  2  0  1  0  1  2  1]
[ 0  1  2  2  1  2  1 -1  1  1  1  0  2  0  2  1  2  1  0  1]
[ 1  2  2  1  2  0  1  1 -1  0  1  1  2  2  1  0  1  0  1  2]
[ 1  2  2  2  1  0  1  1  0 -1  2  2  1  1  1  0  1  0  1  2]
[ 1  0  0  1  0  2  1  1  1  2 -1  1  2  2  1  2  1  2  1  0]
[ 0  1  1  1  2  1  2  0  1  2  1 -1  2  0  2  1  2  1  0  1]
[ 2  1  1  0  1  1  0  2  2  1  2  2 -1  1  0  1  0  1  2  1]
[ 0  1  1  2  1  1  2  0  2  1  2  0  1 -1  2  1  2  1  0  1]
[ 1  1  1  0  1  1  0  2  1  1  1  2  0  2 -1  1  0  2  2  2]
[ 1  1  2  1  2  0  1  1  0  0  2  1  1  1  1 -1  2  0  2  2]
[ 2  2  1  0  1  1  0  2  1  1  1  2  0  2  0  2 -1  1  1  1]
[ 2  2  2  1  2  0  1  1  0  0  2  1  1  1  2  0  1 -1  1  1]
[ 0  2  1  2  1  1  2  0  1  1  1  0  2  0  2  2  1  1 -1  1]
[ 2  0  0  1  0  2  1  1  2  2  0  1  1  1  2  2  1  1  1 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

21
{@
    Mod: ( 4 -1 -2 -1 -1 -1 -2 -1 -2),
    Mod: ( 3 -1 -1 -1 -1  0 -2 -1 -1),
    Mod: ( 5 -1 -2 -2 -2 -1 -2 -2 -2),
    Mod: ( 4 -1 -2 -1 -2 -1 -2 -1 -1),
    Mod: (0 0 0 0 0 0 0 1 0),
    Mod: ( 2  0 -1  0 -1  0 -1 -1 -1),
    Mod: ( 3 -1 -1 -1  0 -1 -1 -2 -1),
    Mod: ( 2 -1  0  0 -1 -1  0 -1 -1),
    Mod: ( 4 -2 -1 -1 -1 -2 -1 -1 -2),
    Mod: ( 5 -2 -1 -2 -2 -2 -1 -2 -2),
    Mod: ( 1  0  0 -1  0  0  0  0 -1),
    Mod: ( 4 -2 -1 -1 -2 -2 -1 -1 -1),
    Mod: ( 2 -1 -1  0  0 -1 -1 -1  0),
    Mod: ( 4 -1 -2 -1 -1 -2 -1 -2 -1),
    Mod: ( 3 -1 -1 -2 -1 -1 -1  0 -1),
    Mod: ( 1  0  0 -1 -1  0  0  0  0),
    Mod: ( 3 -2  0 -1 -1 -1 -1 -1 -1),
    Mod: ( 3 -1 -1 -1 -1 -1 -1 -2  0),
    Mod: ( 2  0 -1 -1 -1 -1  0  0 -1),
    Mod: ( 5 -2 -2 -2 -1 -2 -2 -2 -1)
@}
Intersection Matrix:
[-1  0  0  0  1  0  1  2  1  2  1  2  1  1  1  2  2  2  1  1]
[ 0 -1  0  0  1  0  1  2  2  2  1  2  1  2  1  1  1  1  2  1]
[ 0  0 -1  0  2  0  1  2  2  1  1  2  2  1  1  1  2  1  1  1]
[ 0  0  0 -1  1  0  2  2  2  2  2  1  1  1  1  1  2  1  1  1]
[ 1  1  2  1 -1  1  2  1  1  2  0  1  1  2  0  0  1  2  0  2]
[ 0  0  0  0  1 -1  1  1  2  2  1  2  1  1  2  1  2  1  1  2]
[ 1  1  1  2  2  1 -1  1  1  1  1  2  0  0  2  2  1  0  2  0]
[ 2  2  2  2  1  1  1 -1  0  0  1  0  1  1  2  1  0  1  1  2]
[ 1  2  2  2  1  2  1  0 -1  0  1  0  1  1  1  2  0  2  1  1]
[ 2  2  1  2  2  2  1  0  0 -1  1  0  2  1  1  1  0  1  1  1]
[ 1  1  1  2  0  1  1  1  1  1 -1  2  2  2  0  0  1  2  0  2]
[ 2  2  2  1  1  2  2  0  0  0  2 -1  1  1  1  1  0  1  1  1]
[ 1  1  2  1  1  1  0  1  1  2  2  1 -1  0  2  2  1  0  2  0]
[ 1  2  1  1  2  1  0  1  1  1  2  1  0 -1  2  2  2  0  1  0]
[ 1  1  1  1  0  2  2  2  1  1  0  1  2  2 -1  0  1  2  0  1]
[ 2  1  1  1  0  1  2  1  2  1  0  1  2  2  0 -1  1  1  0  2]
[ 2  1  2  2  1  2  1  0  0  0  1  0  1  2  1  1 -1  1  2  1]
[ 2  1  1  1  2  1  0  1  2  1  2  1  0  0  2  1  1 -1  2  0]
[ 1  2  1  1  0  1  2  1  1  1  0  1  2  1  0  0  2  2 -1  2]
[ 1  1  1  1  2  2  0  2  1  1  2  1  0  0  1  2  1  0  2 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

D7(5):F5

    order := 20,
    length := 4354560,
    subgroup := MatrixGroup(9, Integer Ring) of order 2^2 * 5
    Generators:
        [ 4  0  1  2  1  2  1  2  0]
        [-1  0  0 -1  0 -1  0  0  0]
        [-2  0 -1 -1  0 -1 -1 -1  0]
        [-2  0  0 -1 -1 -1 -1 -1  0]
        [-1  0  0 -1  0  0  0 -1  0]
        [-1  0  0  0  0 -1  0 -1  0]
        [ 0  1  0  0  0  0  0  0  0]
        [ 0  0  0  0  0  0  0  0  1]
        [-2  0 -1 -1 -1 -1  0 -1  0]

        [ 7  1  3  4  2  3  1  2  2]
        [-1  0 -1 -1  0  0  0  0  0]
        [-3 -1 -1 -2 -1 -1  0 -1 -1]
        [-4 -1 -2 -2 -1 -2 -1 -1 -1]
        [-2  0 -1 -1  0 -1  0 -1 -1]
        [-3  0 -1 -2 -1 -1 -1 -1 -1]
        [-1  0  0 -1  0 -1  0  0  0]
        [-2  0 -1 -1 -1 -1  0 -1  0]
        [-2  0 -1 -1 -1 -1  0  0 -1]

        [ 9  4  2  2  2  3  3  3  5]
        [-2 -1  0  0  0 -1 -1 -1 -1]
        [-3 -1  0 -1 -1 -1 -1 -1 -2]
        [-3 -1 -1  0 -1 -1 -1 -1 -2]
        [-3 -1 -1 -1  0 -1 -1 -1 -2]
        [-4 -2 -1 -1 -1 -1 -1 -2 -2]
        [-1 -1  0  0  0  0  0  0 -1]
        [-4 -2 -1 -1 -1 -1 -2 -1 -2]
        [-4 -2 -1 -1 -1 -2 -1 -1 -2]>
Orbit type:{4,4,4,4,4,10,10,10,10,20,20,20,20,20,20,20,20,20}

Orbit:
1
{@
    Mod: ( 4 -2 -1 -2 -2 -1 -1 -1 -1),
    Mod: ( 3 -1  0 -1 -2 -1 -1 -1 -1),
    Mod: ( 4 -1 -2 -1 -1 -2 -2 -1 -1),
    Mod: ( 3 -1 -2  0 -1 -1 -1 -1 -1)
@}
Intersection Matrix:
[-1  0  2  2]
[ 0 -1  2  2]
[ 2  2 -1  0]
[ 2  2  0 -1]
Stabilizer Group Name:
C5
MatrixGroup(9, Integer Ring)
Generators:
    [ 9  4  2  2  2  3  3  3  5]
    [-2 -1  0  0  0 -1 -1 -1 -1]
    [-3 -1  0 -1 -1 -1 -1 -1 -2]
    [-3 -1 -1  0 -1 -1 -1 -1 -2]
    [-3 -1 -1 -1  0 -1 -1 -1 -2]
    [-4 -2 -1 -1 -1 -1 -1 -2 -2]
    [-1 -1  0  0  0  0  0  0 -1]
    [-4 -2 -1 -1 -1 -1 -2 -1 -2]
    [-4 -2 -1 -1 -1 -2 -1 -1 -2]

2
{@
    Mod: ( 2 -1  0 -1 -1  0  0 -1 -1),
    Mod: ( 3 -1 -2 -1  0 -1 -1 -1 -1),
    Mod: ( 2  0 -1  0  0 -1 -1 -1 -1),
    Mod: ( 3 -1  0 -2 -1 -1 -1 -1 -1)
@}
Intersection Matrix:
[-1  2  2  0]
[ 2 -1  0  2]
[ 2  0 -1  2]
[ 0  2  2 -1]
Stabilizer Group Name:
C5
MatrixGroup(9, Integer Ring)
Generators:
    [ 9  4  2  2  2  3  3  3  5]
    [-2 -1  0  0  0 -1 -1 -1 -1]
    [-3 -1  0 -1 -1 -1 -1 -1 -2]
    [-3 -1 -1  0 -1 -1 -1 -1 -2]
    [-3 -1 -1 -1  0 -1 -1 -1 -2]
    [-4 -2 -1 -1 -1 -1 -1 -2 -2]
    [-1 -1  0  0  0  0  0  0 -1]
    [-4 -2 -1 -1 -1 -1 -2 -1 -2]
    [-4 -2 -1 -1 -1 -2 -1 -1 -2]

3
{@
    Mod: ( 2  0  0  0 -1 -1 -1 -1 -1),
    Mod: ( 4 -1 -1 -2 -1 -2 -2 -1 -1),
    Mod: ( 2 -1 -1  0 -1  0  0 -1 -1),
    Mod: ( 4 -2 -2 -2 -1 -1 -1 -1 -1)
@}
Intersection Matrix:
[-1  1  1  3]
[ 1 -1  3  1]
[ 1  3 -1  1]
[ 3  1  1 -1]
Stabilizer Group Name:
C5
MatrixGroup(9, Integer Ring)
Generators:
    [ 9  4  2  2  2  3  3  3  5]
    [-2 -1  0  0  0 -1 -1 -1 -1]
    [-3 -1  0 -1 -1 -1 -1 -1 -2]
    [-3 -1 -1  0 -1 -1 -1 -1 -2]
    [-3 -1 -1 -1  0 -1 -1 -1 -2]
    [-4 -2 -1 -1 -1 -1 -1 -2 -2]
    [-1 -1  0  0  0  0  0  0 -1]
    [-4 -2 -1 -1 -1 -1 -2 -1 -2]
    [-4 -2 -1 -1 -1 -2 -1 -1 -2]

4
{@
    Mod: ( 5 -2 -2 -2 -2 -2 -2 -1 -1),
    Mod: ( 3 -1 -1  0 -2 -1 -1 -1 -1),
    Mod: ( 4 -2 -2 -1 -2 -1 -1 -1 -1),
    Mod: ( 4 -1 -1 -1 -2 -2 -2 -1 -1)
@}
Intersection Matrix:
[-1  1  0  0]
[ 1 -1  0  0]
[ 0  0 -1  1]
[ 0  0  1 -1]
Stabilizer Group Name:
C5
MatrixGroup(9, Integer Ring)
Generators:
    [ 9  4  2  2  2  3  3  3  5]
    [-2 -1  0  0  0 -1 -1 -1 -1]
    [-3 -1  0 -1 -1 -1 -1 -1 -2]
    [-3 -1 -1  0 -1 -1 -1 -1 -2]
    [-3 -1 -1 -1  0 -1 -1 -1 -2]
    [-4 -2 -1 -1 -1 -1 -1 -2 -2]
    [-1 -1  0  0  0  0  0  0 -1]
    [-4 -2 -1 -1 -1 -1 -2 -1 -2]
    [-4 -2 -1 -1 -1 -2 -1 -1 -2]

5
{@
    Mod: ( 1  0  0  0  0  0  0 -1 -1),
    Mod: ( 3 -1 -1 -2  0 -1 -1 -1 -1),
    Mod: ( 2 -1 -1 -1  0  0  0 -1 -1),
    Mod: ( 2  0  0 -1  0 -1 -1 -1 -1)
@}
Intersection Matrix:
[-1  1  0  0]
[ 1 -1  0  0]
[ 0  0 -1  1]
[ 0  0  1 -1]
Stabilizer Group Name:
C5
MatrixGroup(9, Integer Ring)
Generators:
    [ 9  4  2  2  2  3  3  3  5]
    [-2 -1  0  0  0 -1 -1 -1 -1]
    [-3 -1  0 -1 -1 -1 -1 -1 -2]
    [-3 -1 -1  0 -1 -1 -1 -1 -2]
    [-3 -1 -1 -1  0 -1 -1 -1 -2]
    [-4 -2 -1 -1 -1 -1 -1 -2 -2]
    [-1 -1  0  0  0  0  0  0 -1]
    [-4 -2 -1 -1 -1 -1 -2 -1 -2]
    [-4 -2 -1 -1 -1 -2 -1 -1 -2]

6
{@
    Mod: ( 5 -2 -1 -2 -2 -1 -2 -2 -2),
    Mod: ( 2 -1 -1  0  0 -1 -1 -1  0),
    Mod: ( 2 -1  0 -1 -1 -1  0 -1  0),
    Mod: ( 3  0 -2 -1 -1 -1 -1 -1 -1),
    Mod: ( 1  0 -1  0  0  0 -1  0  0),
    Mod: ( 2 -1  0 -1 -1 -1  0  0 -1),
    Mod: ( 5 -2 -2 -1 -1 -2 -2 -2 -2),
    Mod: ( 2 -1  0 -1 -1  0 -1  0 -1),
    Mod: ( 4 -1 -2 -1 -1 -2 -1 -1 -2),
    Mod: ( 4 -1 -1 -2 -2 -1 -1 -2 -1)
@}
Intersection Matrix:
[-1  2  1  2  2  1  1  0  2  0]
[ 2 -1  1  1  0  2  0  2  1  2]
[ 1  1 -1  2  2  0  2  1  2  0]
[ 2  1  2 -1  0  2  1  2  0  1]
[ 2  0  2  0 -1  2  1  1  1  2]
[ 1  2  0  2  2 -1  2  0  1  1]
[ 1  0  2  1  1  2 -1  2  0  2]
[ 0  2  1  2  1  0  2 -1  2  1]
[ 2  1  2  0  1  1  0  2 -1  2]
[ 0  2  0  1  2  1  2  1  2 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 7  1  3  4  2  3  1  2  2]
    [-1  0 -1 -1  0  0  0  0  0]
    [-3 -1 -1 -2 -1 -1  0 -1 -1]
    [-4 -1 -2 -2 -1 -2 -1 -1 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]
    [-3  0 -1 -2 -1 -1 -1 -1 -1]
    [-1  0  0 -1  0 -1  0  0  0]
    [-2  0 -1 -1 -1 -1  0 -1  0]
    [-2  0 -1 -1 -1 -1  0  0 -1]

7
{@
    Mod: ( 3 -2  0 -1 -1 -1 -1 -1 -1),
    Mod: ( 4 -1 -2 -1 -1 -1 -2 -2 -1),
    Mod: ( 4 -1 -1 -2 -2 -1 -1 -1 -2),
    Mod: ( 2 -1 -1  0  0 -1 -1  0 -1),
    Mod: ( 4 -1 -2 -1 -1 -2 -1 -2 -1),
    Mod: ( 1  0 -1  0  0 -1  0  0  0),
    Mod: ( 1  0  0 -1 -1  0  0  0  0),
    Mod: ( 4 -1 -2 -1 -1 -1 -2 -1 -2),
    Mod: ( 2 -1  0 -1 -1  0 -1 -1  0),
    Mod: ( 5 -2 -1 -2 -2 -2 -1 -2 -2)
@}
Intersection Matrix:
[-1  2  1  1  2  2  1  2  0  0]
[ 2 -1  2  1  0  1  2  0  1  2]
[ 1  2 -1  2  2  2  0  1  1  0]
[ 1  1  2 -1  1  0  2  0  2  2]
[ 2  0  2  1 -1  0  2  1  2  1]
[ 2  1  2  0  0 -1  1  1  2  2]
[ 1  2  0  2  2  1 -1  2  0  1]
[ 2  0  1  0  1  1  2 -1  2  2]
[ 0  1  1  2  2  2  0  2 -1  1]
[ 0  2  0  2  1  2  1  2  1 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [12  4  4  5  3  4  4  3  6]
    [-4 -1 -2 -2 -1 -1 -1 -1 -2]
    [-4 -2 -1 -2 -1 -1 -1 -1 -2]
    [-5 -2 -2 -2 -1 -2 -2 -1 -2]
    [-3 -1 -1 -1  0 -1 -1 -1 -2]
    [-4 -1 -1 -2 -1 -2 -1 -1 -2]
    [-4 -1 -1 -2 -1 -1 -2 -1 -2]
    [-3 -1 -1 -1 -1 -1 -1  0 -2]
    [-6 -2 -2 -2 -2 -2 -2 -2 -3]

8
{@
    Mod: ( 3 -1 -1 -1  0 -1 -1 -1 -2),
    Mod: ( 2  0 -1 -1  0 -1  0 -1 -1),
    Mod: ( 1  0  0 -1  0  0  0 -1  0),
    Mod: ( 2  0 -1 -1  0  0 -1 -1 -1),
    Mod: ( 2 -1  0 -1  0 -1  0 -1 -1),
    Mod: ( 2 -1  0 -1  0  0 -1 -1 -1),
    Mod: ( 3 -1 -1 -1  0 -1 -1 -2 -1),
    Mod: ( 4 -1 -1 -2 -1 -1 -1 -2 -2),
    Mod: (0 0 0 0 1 0 0 0 0),
    Mod: ( 1  0  0 -1  0  0  0  0 -1)
@}
Intersection Matrix:
[-1  0  1  0  0  0  0  0  0  0]
[ 0 -1  0  0  0  1  0  0  0  0]
[ 1  0 -1  0  0  0  0  0  0  0]
[ 0  0  0 -1  1  0  0  0  0  0]
[ 0  0  0  1 -1  0  0  0  0  0]
[ 0  1  0  0  0 -1  0  0  0  0]
[ 0  0  0  0  0  0 -1  0  0  1]
[ 0  0  0  0  0  0  0 -1  1  0]
[ 0  0  0  0  0  0  0  1 -1  0]
[ 0  0  0  0  0  0  1  0  0 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 8  2  3  4  2  1  4  3  2]
    [-2 -1 -1 -1  0  0 -1 -1  0]
    [-3 -1 -1 -2 -1  0 -1 -1 -1]
    [-4 -1 -2 -2 -1 -1 -2 -1 -1]
    [-2  0 -1 -1  0  0 -1 -1 -1]
    [-1  0  0 -1  0  0 -1  0  0]
    [-4 -1 -1 -2 -1 -1 -2 -2 -1]
    [-3 -1 -1 -1 -1  0 -2 -1 -1]
    [-2  0 -1 -1 -1  0 -1 -1  0]

9
{@
    Mod: ( 2 -1 -1  0 -1 -1 -1  0  0),
    Mod: ( 5 -2 -2 -1 -2 -2 -2 -2 -1),
    Mod: ( 3 -1 -1 -1 -2 -1 -1 -1  0),
    Mod: ( 4 -2 -1 -1 -2 -1 -2 -1 -1),
    Mod: ( 4 -1 -2 -1 -2 -1 -2 -1 -1),
    Mod: ( 4 -2 -1 -1 -2 -2 -1 -1 -1),
    Mod: ( 3 -1 -1 -1 -2 -1 -1  0 -1),
    Mod: ( 4 -1 -2 -1 -2 -2 -1 -1 -1),
    Mod: ( 6 -2 -2 -2 -3 -2 -2 -2 -2),
    Mod: ( 5 -2 -2 -1 -2 -2 -2 -1 -2)
@}
Intersection Matrix:
[-1  0  0  0  0  0  0  0  1  0]
[ 0 -1  0  0  0  0  1  0  0  0]
[ 0  0 -1  0  0  0  0  0  0  1]
[ 0  0  0 -1  0  0  0  1  0  0]
[ 0  0  0  0 -1  1  0  0  0  0]
[ 0  0  0  0  1 -1  0  0  0  0]
[ 0  1  0  0  0  0 -1  0  0  0]
[ 0  0  0  1  0  0  0 -1  0  0]
[ 1  0  0  0  0  0  0  0 -1  0]
[ 0  0  1  0  0  0  0  0  0 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 5  3  1  2  0  2  2  1  1]
    [-3 -2 -1 -1  0 -1 -1 -1 -1]
    [-1 -1  0 -1  0  0  0  0  0]
    [-2 -1 -1 -1  0 -1 -1  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-2 -1  0 -1  0 -1 -1 -1  0]
    [-2 -1  0 -1  0 -1 -1  0 -1]
    [-1 -1  0  0  0 -1  0  0  0]
    [-1 -1  0  0  0  0 -1  0  0]

10
{@
    Mod: (0 0 0 0 0 0 0 0 1),
    Mod: ( 1 -1  0  0  0 -1  0  0  0),
    Mod: ( 5 -1 -2 -2 -2 -2 -1 -2 -2),
    Mod: ( 4 -2 -1 -1 -1 -1 -2 -2 -1),
    Mod: ( 3 -1 -1 -1 -1 -2  0 -1 -1),
    Mod: (0 0 0 0 0 0 0 1 0),
    Mod: ( 2  0 -1 -1 -1  0 -1 -1  0),
    Mod: ( 2  0 -1 -1 -1 -1  0  0 -1),
    Mod: ( 2  0 -1 -1 -1 -1  0 -1  0),
    Mod: ( 3 -1 -1 -1 -1 -1 -1  0 -2),
    Mod: ( 4 -2 -1 -1 -1 -2 -1 -1 -2),
    Mod: ( 6 -2 -2 -2 -2 -2 -2 -2 -3),
    Mod: ( 3 -1 -1 -1 -1  0 -2 -1 -1),
    Mod: ( 6 -2 -2 -2 -2 -2 -2 -3 -2),
    Mod: ( 4 -2 -1 -1 -1 -2 -1 -2 -1),
    Mod: ( 2  0 -1 -1 -1  0 -1  0 -1),
    Mod: ( 5 -1 -2 -2 -2 -1 -2 -2 -2),
    Mod: ( 3 -1 -1 -1 -1 -1 -1 -2  0),
    Mod: ( 4 -2 -1 -1 -1 -1 -2 -1 -2),
    Mod: ( 1 -1  0  0  0  0 -1  0  0)
@}
Intersection Matrix:
[-1  0  2  1  1  0  0  1  0  2  2  3  1  2  1  1  2  0  2  0]
[ 0 -1  2  1  0  0  2  1  1  1  0  2  2  2  0  2  3  1  1  0]
[ 2  2 -1  2  0  2  1  0  0  1  1  0  2  0  1  1  0  1  2  3]
[ 1  1  2 -1  2  2  1  3  2  2  1  1  0  0  0  2  1  0  0  0]
[ 1  0  0  2 -1  1  2  0  0  1  0  1  3  1  0  2  2  1  2  2]
[ 0  0  2  2  1 -1  1  0  1  0  1  2  1  3  2  0  2  2  1  0]
[ 0  2  1  1  2  1 -1  1  0  2  3  2  0  1  2  0  0  0  2  1]
[ 1  1  0  3  0  0  1 -1  0  0  1  1  2  2  2  0  1  2  2  2]
[ 0  1  0  2  0  1  0  0 -1  2  2  2  2  1  1  1  1  0  3  2]
[ 2  1  1  2  1  0  2  0  2 -1  0  0  1  2  2  0  1  3  0  1]
[ 2  0  1  1  0  1  3  1  2  0 -1  0  2  1  0  2  2  2  0  1]
[ 3  2  0  1  1  2  2  1  2  0  0 -1  1  0  1  1  0  2  0  2]
[ 1  2  2  0  3  1  0  2  2  1  2  1 -1  1  2  0  0  1  0  0]
[ 2  2  0  0  1  3  1  2  1  2  1  0  1 -1  0  2  0  0  1  2]
[ 1  0  1  0  0  2  2  2  1  2  0  1  2  0 -1  3  2  0  1  1]
[ 1  2  1  2  2  0  0  0  1  0  2  1  0  2  3 -1  0  2  1  1]
[ 2  3  0  1  2  2  0  1  1  1  2  0  0  0  2  0 -1  1  1  2]
[ 0  1  1  0  1  2  0  2  0  3  2  2  1  0  0  2  1 -1  2  1]
[ 2  1  2  0  2  1  2  2  3  0  0  0  0  1  1  1  1  2 -1  0]
[ 0  0  3  0  2  0  1  2  2  1  1  2  0  2  1  1  2  1  0 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

11
{@
    Mod: ( 3 -1 -1  0 -1 -2 -1 -1 -1),
    Mod: ( 4 -2 -1 -1 -2 -1 -1 -1 -2),
    Mod: ( 2  0 -1  0 -1 -1 -1  0 -1),
    Mod: ( 4 -1 -1 -2 -2 -2 -1 -1 -1),
    Mod: ( 1 -1  0  0 -1  0  0  0  0),
    Mod: ( 3 -1 -1 -1 -2 -1  0 -1 -1),
    Mod: ( 3 -1 -2 -1 -1 -1 -1  0 -1),
    Mod: ( 4 -2 -1 -1 -2 -1 -1 -2 -1),
    Mod: ( 6 -2 -3 -2 -2 -2 -2 -2 -2),
    Mod: ( 4 -2 -2 -1 -1 -1 -2 -1 -1),
    Mod: ( 3 -1 -1  0 -1 -1 -2 -1 -1),
    Mod: ( 2 -1  0 -1 -1 -1 -1  0  0),
    Mod: ( 5 -2 -1 -2 -2 -2 -2 -1 -2),
    Mod: ( 2  0 -1  0 -1 -1 -1 -1  0),
    Mod: ( 3 -1 -1 -1 -2  0 -1 -1 -1),
    Mod: ( 3 -1 -2 -1 -1 -1 -1 -1  0),
    Mod: ( 4 -1 -1 -2 -2 -1 -2 -1 -1),
    Mod: ( 5 -2 -1 -2 -2 -2 -2 -2 -1),
    Mod: ( 4 -2 -2 -1 -1 -2 -1 -1 -1),
    Mod: ( 5 -1 -2 -1 -2 -2 -2 -2 -2)
@}
Intersection Matrix:
[-1  1  0  1  1  1  1  1  1  1  0  1  1  0  2  1  2  1  0  0]
[ 1 -1  1  1  0  0  1  0  1  1  1  1  0  2  0  2  1  1  1  1]
[ 0  1 -1  1  1  1  0  2  1  1  0  1  1  0  1  1  1  2  1  0]
[ 1  1  1 -1  1  0  1  1  1  2  2  0  0  1  1  1  0  0  1  1]
[ 1  0  1  1 -1  0  1  0  2  1  1  0  1  1  0  1  1  1  1  2]
[ 1  0  1  0  0 -1  1  0  1  2  2  1  1  1  0  1  1  1  1  1]
[ 1  1  0  1  1  1 -1  2  0  0  1  1  1  1  1  0  1  2  0  1]
[ 1  0  2  1  0  0  2 -1  1  1  1  1  1  1  0  1  1  0  1  1]
[ 1  1  1  1  2  1  0  1 -1  0  1  2  1  1  1  0  1  1  0  0]
[ 1  1  1  2  1  2  0  1  0 -1  0  1  1  1  1  0  1  1  0  1]
[ 0  1  0  2  1  2  1  1  1  0 -1  1  1  0  1  1  1  1  1  0]
[ 1  1  1  0  0  1  1  1  2  1  1 -1  0  1  1  1  0  0  1  2]
[ 1  0  1  0  1  1  1  1  1  1  1  0 -1  2  1  2  0  0  1  1]
[ 0  2  0  1  1  1  1  1  1  1  0  1  2 -1  1  0  1  1  1  0]
[ 2  0  1  1  0  0  1  0  1  1  1  1  1  1 -1  1  0  1  2  1]
[ 1  2  1  1  1  1  0  1  0  0  1  1  2  0  1 -1  1  1  0  1]
[ 2  1  1  0  1  1  1  1  1  1  1  0  0  1  0  1 -1  0  2  1]
[ 1  1  2  0  1  1  2  0  1  1  1  0  0  1  1  1  0 -1  1  1]
[ 0  1  1  1  1  1  0  1  0  0  1  1  1  1  2  0  2  1 -1  1]
[ 0  1  0  1  2  1  1  1  0  1  0  2  1  0  1  1  1  1  1 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

12
{@
    Mod: ( 2 -1 -1  0  0 -1  0 -1 -1),
    Mod: ( 2  0 -1 -1  0 -1 -1  0 -1),
    Mod: ( 1  0 -1  0  0  0  0  0 -1),
    Mod: ( 2  0  0 -1 -1  0 -1 -1 -1),
    Mod: ( 4 -1 -2 -1 -1 -1 -1 -2 -2),
    Mod: ( 1 -1  0 -1  0  0  0  0  0),
    Mod: ( 3 -1  0 -1 -1 -1 -1 -1 -2),
    Mod: ( 3 -1 -1 -1  0 -2 -1 -1 -1),
    Mod: ( 3 -1 -1 -1  0 -1 -2 -1 -1),
    Mod: (0 0 1 0 0 0 0 0 0),
    Mod: ( 2  0 -1 -1  0 -1 -1 -1  0),
    Mod: ( 1  0 -1  0  0  0  0 -1  0),
    Mod: ( 3 -1 -1 -2 -1 -1  0 -1 -1),
    Mod: ( 5 -1 -2 -2 -1 -2 -2 -2 -2),
    Mod: ( 2 -1 -1  0  0  0 -1 -1 -1),
    Mod: ( 4 -2 -1 -2 -1 -1 -1 -1 -2),
    Mod: ( 2  0  0 -1 -1 -1  0 -1 -1),
    Mod: ( 3 -1 -1 -2 -1  0 -1 -1 -1),
    Mod: ( 3 -1  0 -1 -1 -1 -1 -2 -1),
    Mod: ( 4 -2 -1 -2 -1 -1 -1 -2 -1)
@}
Intersection Matrix:
[-1  1  0  2  0  1  1  0  1  1  1  0  1  1  0  1  1  2  1  1]
[ 1 -1  0  1  1  1  1  0  0  1  0  1  1  0  1  1  1  1  2  2]
[ 0  0 -1  1  0  1  1  1  1  1  1  0  1  1  0  1  1  1  2  2]
[ 2  1  1 -1  1  1  0  2  1  0  1  1  1  1  1  1  0  0  0  1]
[ 0  1  0  1 -1  2  1  1  1  2  1  0  1  0  0  1  1  1  1  1]
[ 1  1  1  1  2 -1  1  1  1  0  1  1  0  2  1  0  1  0  1  0]
[ 1  1  1  0  1  1 -1  1  1  0  2  2  1  1  1  0  0  1  0  1]
[ 0  0  1  2  1  1  1 -1  0  1  0  1  1  0  1  1  1  2  1  1]
[ 1  0  1  1  1  1  1  0 -1  1  0  1  2  0  0  1  2  1  1  1]
[ 1  1  1  0  2  0  0  1  1 -1  1  1  1  2  1  1  0  1  0  1]
[ 1  0  1  1  1  1  2  0  0  1 -1  0  1  0  1  2  1  1  1  1]
[ 0  1  0  1  0  1  2  1  1  1  0 -1  1  1  0  2  1  1  1  1]
[ 1  1  1  1  1  0  1  1  2  1  1  1 -1  1  2  0  0  0  1  0]
[ 1  0  1  1  0  2  1  0  0  2  0  1  1 -1  1  1  1  1  1  1]
[ 0  1  0  1  0  1  1  1  0  1  1  0  2  1 -1  1  2  1  1  1]
[ 1  1  1  1  1  0  0  1  1  1  2  2  0  1  1 -1  1  0  1  0]
[ 1  1  1  0  1  1  0  1  2  0  1  1  0  1  2  1 -1  1  0  1]
[ 2  1  1  0  1  0  1  2  1  1  1  1  0  1  1  0  1 -1  1  0]
[ 1  2  2  0  1  1  0  1  1  0  1  1  1  1  1  1  0  1 -1  0]
[ 1  2  2  1  1  0  1  1  1  1  1  1  0  1  1  0  1  0  0 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

13
{@
    Mod: ( 2 -1  0 -1  0 -1 -1  0 -1),
    Mod: ( 4 -1 -1 -2 -1 -1 -2 -2 -1),
    Mod: ( 1  0 -1 -1  0  0  0  0  0),
    Mod: ( 3 -1 -1 -1 -1 -1  0 -2 -1),
    Mod: ( 1  0  0  0  0  0 -1 -1  0),
    Mod: (0 0 0 0 0 0 1 0 0),
    Mod: ( 2 -1 -1 -1  0  0 -1 -1  0),
    Mod: ( 4 -1 -1 -1 -1 -2 -1 -2 -2),
    Mod: ( 4 -1 -1 -2 -1 -2 -1 -2 -1),
    Mod: ( 3 -2 -1 -1  0 -1 -1 -1 -1),
    Mod: ( 2 -1  0  0  0 -1 -1 -1 -1),
    Mod: ( 1  0  0 -1  0 -1  0  0  0),
    Mod: ( 1 -1  0  0  0  0  0  0 -1),
    Mod: ( 3 -1 -1 -1 -1  0 -1 -2 -1),
    Mod: ( 5 -2 -2 -2 -1 -2 -1 -2 -2),
    Mod: ( 4 -1 -2 -2 -1 -1 -1 -1 -2),
    Mod: ( 3  0 -1 -1 -1 -1 -1 -1 -2),
    Mod: ( 3 -1 -1 -1 -1  0 -1 -1 -2),
    Mod: (0 1 0 0 0 0 0 0 0),
    Mod: ( 4 -1 -1 -2 -1 -1 -2 -1 -2)
@}
Intersection Matrix:
[-1  1  1  2  1  1  1  1  1  0  0  0  0  2  1  1  1  1  1  0]
[ 1 -1  1  1  0  2  0  1  0  1  1  1  2  0  1  1  1  1  1  0]
[ 1  1 -1  1  1  0  0  2  1  1  2  0  1  1  1  0  1  1  0  1]
[ 2  1  1 -1  1  0  1  0  0  1  1  1  1  0  0  1  1  1  1  2]
[ 1  0  1  1 -1  1  0  1  1  1  0  1  1  0  2  2  1  1  0  1]
[ 1  2  0  0  1 -1  1  1  1  1  1  0  0  1  1  1  1  1  0  2]
[ 1  0  0  1  0  1 -1  2  1  0  1  1  1  0  1  1  2  1  1  1]
[ 1  1  2  0  1  1  2 -1  0  1  0  1  1  1  0  1  0  1  1  1]
[ 1  0  1  0  1  1  1  0 -1  1  1  0  2  1  0  1  1  2  1  1]
[ 0  1  1  1  1  1  0  1  1 -1  0  1  0  1  0  1  2  1  2  1]
[ 0  1  2  1  0  1  1  0  1  0 -1  1  0  1  1  2  1  1  1  1]
[ 0  1  0  1  1  0  1  1  0  1  1 -1  1  2  1  1  1  2  0  1]
[ 0  2  1  1  1  0  1  1  2  0  0  1 -1  1  1  1  1  0  1  1]
[ 2  0  1  0  0  1  0  1  1  1  1  2  1 -1  1  1  1  0  1  1]
[ 1  1  1  0  2  1  1  0  0  0  1  1  1  1 -1  0  1  1  2  1]
[ 1  1  0  1  2  1  1  1  1  1  2  1  1  1  0 -1  0  0  1  0]
[ 1  1  1  1  1  1  2  0  1  2  1  1  1  1  1  0 -1  0  0  0]
[ 1  1  1  1  1  1  1  1  2  1  1  2  0  0  1  0  0 -1  1  0]
[ 1  1  0  1  0  0  1  1  1  2  1  0  1  1  2  1  0  1 -1  1]
[ 0  0  1  2  1  2  1  1  1  1  1  1  1  1  1  0  0  0  1 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

14
{@
    Mod: ( 3 -1 -1 -1 -1 -2 -1  0 -1),
    Mod: ( 2 -1 -1 -1 -1  0 -1  0  0),
    Mod: ( 2 -1 -1  0 -1  0 -1  0 -1),
    Mod: ( 6 -2 -2 -2 -2 -2 -3 -2 -2),
    Mod: ( 2 -1 -1  0 -1 -1  0 -1  0),
    Mod: ( 4 -1 -1 -1 -2 -2 -1 -1 -2),
    Mod: ( 4 -1 -2 -1 -2 -1 -1 -2 -1),
    Mod: ( 6 -3 -2 -2 -2 -2 -2 -2 -2),
    Mod: ( 1  0  0  0 -1  0 -1  0  0),
    Mod: ( 3 -1 -1 -1 -1 -2 -1 -1  0),
    Mod: ( 3 -1 -1 -1 -1 -1 -2  0 -1),
    Mod: ( 3  0 -1 -1 -2 -1 -1 -1 -1),
    Mod: ( 2 -1 -1  0 -1 -1  0  0 -1),
    Mod: ( 5 -2 -2 -1 -2 -1 -2 -2 -2),
    Mod: ( 3 -2 -1 -1 -1 -1 -1 -1  0),
    Mod: ( 5 -2 -2 -2 -2 -2 -1 -1 -2),
    Mod: ( 5 -1 -2 -2 -2 -2 -2 -2 -1),
    Mod: ( 5 -2 -1 -1 -2 -2 -2 -2 -2),
    Mod: ( 2 -1  0  0 -1 -1 -1 -1  0),
    Mod: ( 4 -1 -2 -2 -2 -1 -1 -1 -1)
@}
Intersection Matrix:
[-1  1  1  1  1  0  2  1  1  0  0  1  0  2  1  0  1  1  1  1]
[ 1 -1  0  1  1  2  1  1  0  1  0  1  1  1  0  1  1  2  1  0]
[ 1  0 -1  1  1  1  1  1  0  2  0  1  0  0  1  1  2  1  1  1]
[ 1  1  1 -1  2  1  1  0  1  1  0  1  2  0  1  1  0  0  1  1]
[ 1  1  1  2 -1  1  0  1  1  0  2  1  0  1  0  1  1  1  0  1]
[ 0  2  1  1  1 -1  1  1  1  1  1  0  0  1  2  0  1  0  1  1]
[ 2  1  1  1  0  1 -1  1  1  1  2  0  1  0  1  1  0  1  1  0]
[ 1  1  1  0  1  1  1 -1  2  1  1  2  1  0  0  0  1  0  1  1]
[ 1  0  0  1  1  1  1  2 -1  1  0  0  1  1  1  2  1  1  0  1]
[ 0  1  2  1  0  1  1  1  1 -1  1  1  1  2  0  1  0  1  0  1]
[ 0  0  0  0  2  1  2  1  0  1 -1  1  1  1  1  1  1  1  1  1]
[ 1  1  1  1  1  0  0  2  0  1  1 -1  1  1  2  1  0  1  1  0]
[ 0  1  0  2  0  0  1  1  1  1  1  1 -1  1  1  0  2  1  1  1]
[ 2  1  0  0  1  1  0  0  1  2  1  1  1 -1  1  1  1  0  1  1]
[ 1  0  1  1  0  2  1  0  1  0  1  2  1  1 -1  1  1  1  0  1]
[ 0  1  1  1  1  0  1  0  2  1  1  1  0  1  1 -1  1  1  2  0]
[ 1  1  2  0  1  1  0  1  1  0  1  0  2  1  1  1 -1  1  1  0]
[ 1  2  1  0  1  0  1  0  1  1  1  1  1  0  1  1  1 -1  0  2]
[ 1  1  1  1  0  1  1  1  0  0  1  1  1  1  0  2  1  0 -1  2]
[ 1  0  1  1  1  1  0  1  1  1  1  0  1  1  1  0  0  2  2 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

15
{@
    Mod: ( 4 -1 -2 -2 -1 -1 -1 -2 -1),
    Mod: ( 2  0 -1 -1 -1  0  0 -1 -1),
    Mod: ( 4 -2 -1 -1 -1 -1 -1 -2 -2),
    Mod: ( 1 -1  0  0  0  0  0 -1  0),
    Mod: ( 2 -1 -1 -1  0 -1  0 -1  0),
    Mod: ( 2 -1 -1 -1  0  0 -1  0 -1),
    Mod: ( 1  0  0 -1  0  0 -1  0  0),
    Mod: ( 5 -2 -2 -2 -1 -1 -2 -2 -2),
    Mod: ( 3 -1 -1 -1 -1 -1  0 -1 -2),
    Mod: ( 1  0  0  0  0 -1  0  0 -1),
    Mod: ( 5 -2 -1 -2 -1 -2 -2 -2 -2),
    Mod: ( 3  0 -1 -1 -1 -1 -1 -2 -1),
    Mod: ( 2 -1 -1 -1  0 -1  0  0 -1),
    Mod: (0 0 0 0 0 1 0 0 0),
    Mod: ( 1  0  0  0  0  0 -1  0 -1),
    Mod: ( 2 -1  0 -1  0 -1 -1 -1  0),
    Mod: ( 4 -1 -1 -1 -1 -1 -2 -2 -2),
    Mod: ( 3  0 -1 -2 -1 -1 -1 -1 -1),
    Mod: ( 1  0  0  0  0 -1  0 -1  0),
    Mod: ( 4 -1 -1 -2 -1 -2 -1 -1 -2)
@}
Intersection Matrix:
[-1  0  1  1  0  1  1  0  1  2  1  0  1  1  2  1  1  0  1  1]
[ 0 -1  1  1  1  1  1  1  0  1  2  0  1  0  1  2  1  0  1  1]
[ 1  1 -1  0  1  1  2  0  0  1  0  1  1  1  1  1  0  2  1  1]
[ 1  1  0 -1  0  1  1  1  1  1  1  1  1  0  1  0  1  2  0  2]
[ 0  1  1  0 -1  1  1  1  1  1  1  1  0  1  2  0  2  1  0  1]
[ 1  1  1  1  1 -1  0  0  1  1  1  2  0  0  0  1  1  1  2  1]
[ 1  1  2  1  1  0 -1  1  2  1  1  1  1  0  0  0  1  0  1  1]
[ 0  1  0  1  1  0  1 -1  1  2  0  1  1  1  1  1  0  1  2  1]
[ 1  0  0  1  1  1  2  1 -1  0  1  1  0  1  1  2  1  1  1  0]
[ 2  1  1  1  1  1  1  2  0 -1  1  1  0  1  0  1  1  1  0  0]
[ 1  2  0  1  1  1  1  0  1  1 -1  1  1  2  1  0  0  1  1  0]
[ 0  0  1  1  1  2  1  1  1  1  1 -1  2  1  1  1  0  0  0  1]
[ 1  1  1  1  0  0  1  1  0  0  1  2 -1  1  1  1  2  1  1  0]
[ 1  0  1  0  1  0  0  1  1  1  2  1  1 -1  0  1  1  1  1  2]
[ 2  1  1  1  2  0  0  1  1  0  1  1  1  0 -1  1  0  1  1  1]
[ 1  2  1  0  0  1  0  1  2  1  0  1  1  1  1 -1  1  1  0  1]
[ 1  1  0  1  2  1  1  0  1  1  0  0  2  1  0  1 -1  1  1  1]
[ 0  0  2  2  1  1  0  1  1  1  1  0  1  1  1  1  1 -1  1  0]
[ 1  1  1  0  0  2  1  2  1  0  1  0  1  1  1  0  1  1 -1  1]
[ 1  1  1  2  1  1  1  1  0  0  0  1  0  2  1  1  1  0  1 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

16
{@
    Mod: ( 5 -2 -2 -1 -2 -2 -1 -2 -2),
    Mod: ( 5 -2 -2 -2 -2 -2 -1 -2 -1),
    Mod: ( 1  0  0  0 -1 -1  0  0  0),
    Mod: ( 4 -1 -2 -1 -2 -1 -1 -1 -2),
    Mod: ( 4 -1 -1 -1 -2 -1 -2 -1 -2),
    Mod: ( 3 -2 -1 -1 -1 -1 -1  0 -1),
    Mod: ( 6 -2 -2 -2 -2 -3 -2 -2 -2),
    Mod: ( 5 -1 -2 -2 -2 -2 -2 -1 -2),
    Mod: ( 4 -1 -1 -1 -2 -1 -2 -2 -1),
    Mod: ( 3 -1 -1 -1 -1 -1 -2 -1  0),
    Mod: ( 5 -2 -2 -2 -2 -1 -2 -1 -2),
    Mod: ( 2 -1 -1 -1 -1 -1  0  0  0),
    Mod: ( 3 -2 -1  0 -1 -1 -1 -1 -1),
    Mod: ( 5 -2 -2 -2 -2 -1 -2 -2 -1),
    Mod: ( 2 -1  0  0 -1 -1 -1  0 -1),
    Mod: ( 4 -1 -1 -1 -2 -2 -1 -2 -1),
    Mod: ( 2  0 -1 -1 -1 -1 -1  0  0),
    Mod: ( 2 -1 -1  0 -1  0 -1 -1  0),
    Mod: ( 4 -2 -1 -1 -1 -2 -2 -1 -1),
    Mod: ( 1  0 -1  0 -1  0  0  0  0)
@}
Intersection Matrix:
[-1  0  1  0  1  1  0  1  1  2  1  1  0  1  1  0  2  1  1  1]
[ 0 -1  1  1  2  1  0  1  1  1  1  0  1  0  2  0  1  1  1  1]
[ 1  1 -1  1  1  1  1  1  1  1  2  0  1  2  0  0  0  1  1  0]
[ 0  1  1 -1  0  1  1  0  1  2  0  1  1  1  1  1  1  1  2  0]
[ 1  2  1  0 -1  1  1  0  0  1  0  2  1  1  0  1  1  1  1  1]
[ 1  1  1  1  1 -1  1  1  2  1  0  0  0  1  0  2  1  1  0  1]
[ 0  0  1  1  1  1 -1  0  1  1  1  1  1  1  1  0  1  2  0  2]
[ 1  1  1  0  0  1  0 -1  1  1  0  1  2  1  1  1  0  2  1  1]
[ 1  1  1  1  0  2  1  1 -1  0  1  2  1  0  1  0  1  0  1  1]
[ 2  1  1  2  1  1  1  1  0 -1  1  1  1  0  1  1  0  0  0  1]
[ 1  1  2  0  0  0  1  0  1  1 -1  1  1  0  1  2  1  1  1  1]
[ 1  0  0  1  2  0  1  1  2  1  1 -1  1  1  1  1  0  1  1  0]
[ 0  1  1  1  1  0  1  2  1  1  1  1 -1  1  0  1  2  0  0  1]
[ 1  0  2  1  1  1  1  1  0  0  0  1  1 -1  2  1  1  0  1  1]
[ 1  2  0  1  0  0  1  1  1  1  1  1  0  2 -1  1  1  1  0  1]
[ 0  0  0  1  1  2  0  1  0  1  2  1  1  1  1 -1  1  1  1  1]
[ 2  1  0  1  1  1  1  0  1  0  1  0  2  1  1  1 -1  1  1  0]
[ 1  1  1  1  1  1  2  2  0  0  1  1  0  0  1  1  1 -1  1  0]
[ 1  1  1  2  1  0  0  1  1  0  1  1  0  1  0  1  1  1 -1  2]
[ 1  1  0  0  1  1  2  1  1  1  1  0  1  1  1  1  0  0  2 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

17
{@
    Mod: ( 4 -2 -2 -1 -1 -1 -1 -2 -1),
    Mod: ( 4 -1 -1 -1 -1 -2 -2 -2 -1),
    Mod: ( 3  0 -1 -1 -1 -2 -1 -1 -1),
    Mod: ( 3 -1 -1 -2 -1 -1 -1  0 -1),
    Mod: ( 4 -2 -1 -2 -1 -2 -1 -1 -1),
    Mod: ( 6 -2 -2 -3 -2 -2 -2 -2 -2),
    Mod: ( 2 -1  0  0 -1  0 -1 -1 -1),
    Mod: ( 1  0  0  0 -1  0  0 -1  0),
    Mod: ( 2 -1  0  0 -1 -1  0 -1 -1),
    Mod: ( 1  0  0  0 -1  0  0  0 -1),
    Mod: ( 1  0  0  0  0 -1 -1  0  0),
    Mod: ( 3  0 -1 -1 -1 -1 -2 -1 -1),
    Mod: ( 3 -1 -2 -1 -1  0 -1 -1 -1),
    Mod: ( 3 -1 -2 -1 -1 -1  0 -1 -1),
    Mod: ( 4 -1 -1 -1 -1 -2 -2 -1 -2),
    Mod: ( 4 -2 -2 -1 -1 -1 -1 -1 -2),
    Mod: ( 3 -1 -1 -2 -1 -1 -1 -1  0),
    Mod: ( 4 -1 -1 -1 -2 -1 -1 -2 -2),
    Mod: ( 1 -1 -1  0  0  0  0  0  0),
    Mod: ( 4 -2 -1 -2 -1 -1 -2 -1 -1)
@}
Intersection Matrix:
[-1  1  2  2  1  1  1  1  1  2  2  2  0  0  2  0  1  1  0  1]
[ 1 -1  0  2  1  1  1  1  1  2  0  0  2  2  0  2  1  1  2  1]
[ 2  0 -1  1  1  1  2  1  1  1  0  0  2  1  0  2  1  1  2  2]
[ 2  2  1 -1  0  0  2  2  2  1  1  1  1  1  1  1  0  2  1  0]
[ 1  1  1  0 -1  0  2  2  1  2  1  2  2  1  1  1  0  2  1  0]
[ 1  1  1  0  0 -1  2  2  2  2  2  1  1  1  1  1  0  1  2  0]
[ 1  1  2  2  2  2 -1  0  0  0  1  1  1  2  1  1  2  0  1  1]
[ 1  1  1  2  2  2  0 -1  0  0  1  1  1  1  2  2  1  0  1  2]
[ 1  1  1  2  1  2  0  0 -1  0  1  2  2  1  1  1  2  0  1  2]
[ 2  2  1  1  2  2  0  0  0 -1  1  1  1  1  1  1  2  0  1  2]
[ 2  0  0  1  1  2  1  1  1  1 -1  0  2  2  0  2  1  2  1  1]
[ 2  0  0  1  2  1  1  1  2  1  0 -1  1  2  0  2  1  1  2  1]
[ 0  2  2  1  2  1  1  1  2  1  2  1 -1  0  2  0  1  1  0  1]
[ 0  2  1  1  1  1  2  1  1  1  2  2  0 -1  2  0  1  1  0  2]
[ 2  0  0  1  1  1  1  2  1  1  0  0  2  2 -1  1  2  1  2  1]
[ 0  2  2  1  1  1  1  2  1  1  2  2  0  0  1 -1  2  1  0  1]
[ 1  1  1  0  0  0  2  1  2  2  1  1  1  1  2  2 -1  2  1  0]
[ 1  1  1  2  2  1  0  0  0  0  2  1  1  1  1  1  2 -1  2  2]
[ 0  2  2  1  1  2  1  1  1  1  1  2  0  0  2  0  1  2 -1  1]
[ 1  1  2  0  0  0  1  2  2  2  1  1  1  2  1  1  0  2  1 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

18
{@
    Mod: ( 3 -2 -1 -1 -1 -1  0 -1 -1),
    Mod: ( 2 -1 -1 -1 -1  0  0  0 -1),
    Mod: (0 0 0 1 0 0 0 0 0),
    Mod: ( 2 -1 -1 -1 -1  0  0 -1  0),
    Mod: ( 5 -2 -2 -2 -1 -2 -2 -1 -2),
    Mod: ( 5 -1 -1 -2 -2 -2 -2 -2 -2),
    Mod: ( 5 -2 -2 -2 -2 -1 -1 -2 -2),
    Mod: ( 2  0  0 -1 -1 -1 -1 -1  0),
    Mod: ( 5 -2 -2 -2 -1 -2 -2 -2 -1),
    Mod: ( 3 -1  0 -1 -1 -1 -2 -1 -1),
    Mod: ( 4 -1 -2 -2 -1 -1 -2 -1 -1),
    Mod: ( 3 -1 -1  0 -1 -1 -1 -2 -1),
    Mod: ( 2 -1 -1 -1  0 -1 -1  0  0),
    Mod: ( 3 -1 -1  0 -1 -1 -1 -1 -2),
    Mod: ( 2  0  0 -1 -1 -1 -1  0 -1),
    Mod: ( 4 -1 -2 -2 -1 -2 -1 -1 -1),
    Mod: ( 2  0 -1  0 -1  0 -1 -1 -1),
    Mod: ( 3 -1  0 -1 -1 -2 -1 -1 -1),
    Mod: ( 3 -2 -1 -1 -1  0 -1 -1 -1),
    Mod: ( 2  0 -1  0 -1 -1  0 -1 -1)
@}
Intersection Matrix:
[-1  0  1  0  1  2  0  2  1  2  2  1  1  1  2  1  2  1  0  1]
[ 0 -1  1  0  1  2  0  2  2  2  1  2  1  1  1  1  1  2  0  1]
[ 1  1 -1  1  2  2  2  1  2  1  2  0  1  0  1  2  0  1  1  0]
[ 0  0  1 -1  2  2  0  1  1  2  1  1  1  2  2  1  1  2  0  1]
[ 1  1  2  2 -1  1  1  2  0  1  0  2  0  1  1  0  2  1  1  2]
[ 2  2  2  2  1 -1  1  0  1  0  1  1  2  1  0  1  1  0  2  1]
[ 0  0  2  0  1  1 -1  2  1  2  1  1  2  1  2  1  1  2  0  1]
[ 2  2  1  1  2  0  2 -1  1  0  1  1  1  2  0  1  1  0  2  1]
[ 1  2  2  1  0  1  1  1 -1  1  0  1  0  2  2  0  2  1  1  2]
[ 2  2  1  2  1  0  2  0  1 -1  1  1  1  1  0  2  1  0  1  2]
[ 2  1  2  1  0  1  1  1  0  1 -1  2  0  2  1  0  1  2  1  2]
[ 1  2  0  1  2  1  1  1  1  1  2 -1  2  0  2  2  0  1  1  0]
[ 1  1  1  1  0  2  2  1  0  1  0  2 -1  2  1  0  2  1  1  2]
[ 1  1  0  2  1  1  1  2  2  1  2  0  2 -1  1  2  0  1  1  0]
[ 2  1  1  2  1  0  2  0  2  0  1  2  1  1 -1  1  1  0  2  1]
[ 1  1  2  1  0  1  1  1  0  2  0  2  0  2  1 -1  2  1  2  1]
[ 2  1  0  1  2  1  1  1  2  1  1  0  2  0  1  2 -1  2  1  0]
[ 1  2  1  2  1  0  2  0  1  0  2  1  1  1  0  1  2 -1  2  1]
[ 0  0  1  0  1  2  0  2  1  1  1  1  1  1  2  2  1  2 -1  2]
[ 1  1  0  1  2  1  1  1  2  2  2  0  2  0  1  1  0  1  2 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

D7(6):C5⋊D4

    order := 40,
    length := 2177280,
    subgroup := MatrixGroup(9, Integer Ring) of order 2^3 * 5
    Generators:
        [13  5  4  5  6  4  5  3  4]
        [-5 -2 -1 -2 -2 -2 -2 -1 -2]
        [-4 -1 -1 -2 -2 -1 -2 -1 -1]
        [-5 -2 -2 -2 -2 -2 -2 -1 -1]
        [-6 -2 -2 -2 -3 -2 -2 -2 -2]
        [-4 -2 -1 -2 -2 -1 -1 -1 -1]
        [-5 -2 -2 -2 -2 -1 -2 -1 -2]
        [-3 -1 -1 -1 -2 -1 -1  0 -1]
        [-4 -2 -1 -1 -2 -1 -2 -1 -1]

        [ 6  1  3  2  1  3  1  1  3]
        [-2  0 -1 -1  0 -1 -1  0 -1]
        [-1  0  0  0  0 -1  0  0 -1]
        [-4 -1 -2 -1 -1 -2 -1 -1 -2]
        [-1  0 -1  0  0 -1  0  0  0]
        [-1  0 -1  0  0  0  0  0 -1]
        [-2 -1 -1 -1  0 -1  0  0 -1]
        [-2  0 -1 -1 -1 -1  0  0 -1]
        [-2  0 -1 -1  0 -1  0 -1 -1]

        [ 2  1  0  0  0  1  0  1  0]
        [-1  0  0  0  0 -1  0 -1  0]
        [ 0  0  1  0  0  0  0  0  0]
        [ 0  0  0  1  0  0  0  0  0]
        [ 0  0  0  0  1  0  0  0  0]
        [-1 -1  0  0  0  0  0 -1  0]
        [ 0  0  0  0  0  0  1  0  0]
        [-1 -1  0  0  0 -1  0  0  0]
        [ 0  0  0  0  0  0  0  0  1]

        [ 3  1  1  0  0  1  1  2  0]
        [-1  0  0  0  0 -1  0 -1  0]
        [-1  0  0  0  0  0 -1 -1  0]
        [ 0  0  0  1  0  0  0  0  0]
        [ 0  0  0  0  1  0  0  0  0]
        [-1 -1  0  0  0  0  0 -1  0]
        [-1  0 -1  0  0  0  0 -1  0]
        [-2 -1 -1  0  0 -1 -1 -1  0]
        [ 0  0  0  0  0  0  0  0  1]>

Orbit type:{4,4,4,4,4,5,5,5,5,10,10,10,10,20,20,20,20,20,20,40}

Orbit:
1
{@
    Mod: ( 4 -2 -1 -1 -2 -1 -1 -1 -2),
    Mod: ( 2 -1 -1 -1  0 -1  0 -1  0),
    Mod: ( 5 -2 -2 -1 -2 -1 -2 -2 -2),
    Mod: ( 1  0 -1 -1  0  0  0  0  0)
@}
Intersection Matrix:
[-1  2  0  2]
[ 2 -1  2  0]
[ 0  2 -1  2]
[ 2  0  2 -1]
Stabilizer Group Name:
C10
MatrixGroup(9, Integer Ring)
Generators:
    [ 6  1  3  2  1  3  1  1  3]
    [-2  0 -1 -1  0 -1 -1  0 -1]
    [-1  0  0  0  0 -1  0  0 -1]
    [-4 -1 -2 -1 -1 -2 -1 -1 -2]
    [-1  0 -1  0  0 -1  0  0  0]
    [-1  0 -1  0  0  0  0  0 -1]
    [-2 -1 -1 -1  0 -1  0  0 -1]
    [-2  0 -1 -1 -1 -1  0  0 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]

    [ 2  1  0  0  0  1  0  1  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  1  0  0  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

2
{@
    Mod: ( 4 -1 -1 -1 -2 -1 -2 -1 -2),
    Mod: ( 2  0 -1 -1  0 -1 -1 -1  0),
    Mod: ( 5 -2 -1 -1 -2 -2 -2 -2 -2),
    Mod: ( 1  0  0 -1  0 -1  0  0  0)
@}
Intersection Matrix:
[-1  2  0  2]
[ 2 -1  2  0]
[ 0  2 -1  2]
[ 2  0  2 -1]
Stabilizer Group Name:
C10
MatrixGroup(9, Integer Ring)
Generators:
    [ 6  1  3  2  1  3  1  1  3]
    [-2  0 -1 -1  0 -1 -1  0 -1]
    [-1  0  0  0  0 -1  0  0 -1]
    [-4 -1 -2 -1 -1 -2 -1 -1 -2]
    [-1  0 -1  0  0 -1  0  0  0]
    [-1  0 -1  0  0  0  0  0 -1]
    [-2 -1 -1 -1  0 -1  0  0 -1]
    [-2  0 -1 -1 -1 -1  0  0 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]

    [ 7  2  2  4  1  1  3  3  2]
    [-1  0  0 -1  0  0 -1  0  0]
    [-4 -1 -1 -2 -1 -1 -2 -2 -1]
    [-2 -1  0 -1  0  0 -1 -1 -1]
    [-1  0  0 -1  0  0  0 -1  0]
    [-3 -1 -1 -2 -1  0 -1 -1 -1]
    [-2 -1 -1 -1  0  0 -1 -1  0]
    [-2  0 -1 -1  0  0 -1 -1 -1]
    [-3 -1 -1 -2  0 -1 -1 -1 -1]

3
{@
    Mod: ( 4 -2 -1 -1 -1 -2 -1 -2 -1),
    Mod: ( 2  0 -1 -1 -1  0 -1  0 -1),
    Mod: ( 2 -1  0 -1 -1 -1  0  0 -1),
    Mod: ( 4 -1 -2 -1 -1 -1 -2 -2 -1)
@}
Intersection Matrix:
[-1  3  1  1]
[ 3 -1  1  1]
[ 1  1 -1  3]
[ 1  1  3 -1]
Stabilizer Group Name:
C10
MatrixGroup(9, Integer Ring)
Generators:
    [ 2  0  1  0  0  0  1  1  0]
    [ 0  1  0  0  0  0  0  0  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [ 0  0  0  0  0  1  0  0  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0 -1  0  0]
    [ 0  0  0  0  0  0  0  0  1]

    [ 6  1  3  2  1  3  1  1  3]
    [-2  0 -1 -1  0 -1 -1  0 -1]
    [-1  0  0  0  0 -1  0  0 -1]
    [-4 -1 -2 -1 -1 -2 -1 -1 -2]
    [-1  0 -1  0  0 -1  0  0  0]
    [-1  0 -1  0  0  0  0  0 -1]
    [-2 -1 -1 -1  0 -1  0  0 -1]
    [-2  0 -1 -1 -1 -1  0  0 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]

4
{@
    Mod: ( 3 -1  0 -1 -1 -2 -1 -1 -1),
    Mod: ( 4 -1 -1 -1 -1 -2 -2 -2 -1),
    Mod: ( 3  0 -1 -1 -1 -1 -2 -1 -1),
    Mod: ( 2  0  0 -1 -1 -1 -1  0 -1)
@}
Intersection Matrix:
[-1  0  1  0]
[ 0 -1  0  1]
[ 1  0 -1  0]
[ 0  1  0 -1]
Stabilizer Group Name:
D5
MatrixGroup(9, Integer Ring)
Generators:
    [12  4  3  4  5  3  4  6  4]
    [-4 -1 -1 -1 -2 -1 -2 -2 -1]
    [-3 -1  0 -1 -1 -1 -1 -2 -1]
    [-4 -1 -1 -2 -2 -1 -1 -2 -1]
    [-5 -2 -1 -2 -2 -1 -2 -2 -2]
    [-3 -1 -1 -1 -1  0 -1 -2 -1]
    [-4 -2 -1 -1 -2 -1 -1 -2 -1]
    [-6 -2 -2 -2 -2 -2 -2 -3 -2]
    [-4 -1 -1 -1 -2 -1 -1 -2 -2]

    [ 6  1  3  2  1  3  1  1  3]
    [-2  0 -1 -1  0 -1 -1  0 -1]
    [-1  0  0  0  0 -1  0  0 -1]
    [-4 -1 -2 -1 -1 -2 -1 -1 -2]
    [-1  0 -1  0  0 -1  0  0  0]
    [-1  0 -1  0  0  0  0  0 -1]
    [-2 -1 -1 -1  0 -1  0  0 -1]
    [-2  0 -1 -1 -1 -1  0  0 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]

5
{@
    Mod: ( 3 -1 -2 -1 -1  0 -1 -1 -1),
    Mod: ( 3 -2 -1 -1 -1 -1  0 -1 -1),
    Mod: ( 4 -2 -2 -1 -1 -1 -1 -2 -1),
    Mod: ( 2 -1 -1 -1 -1  0  0  0 -1)
@}
Intersection Matrix:
[-1  1  0  0]
[ 1 -1  0  0]
[ 0  0 -1  1]
[ 0  0  1 -1]
Stabilizer Group Name:
D5
MatrixGroup(9, Integer Ring)
Generators:
    [12  4  3  4  5  3  4  6  4]
    [-4 -1 -1 -1 -2 -1 -2 -2 -1]
    [-3 -1  0 -1 -1 -1 -1 -2 -1]
    [-4 -1 -1 -2 -2 -1 -1 -2 -1]
    [-5 -2 -1 -2 -2 -1 -2 -2 -2]
    [-3 -1 -1 -1 -1  0 -1 -2 -1]
    [-4 -2 -1 -1 -2 -1 -1 -2 -1]
    [-6 -2 -2 -2 -2 -2 -2 -3 -2]
    [-4 -1 -1 -1 -2 -1 -1 -2 -2]

    [ 6  1  3  2  1  3  1  1  3]
    [-2  0 -1 -1  0 -1 -1  0 -1]
    [-1  0  0  0  0 -1  0  0 -1]
    [-4 -1 -2 -1 -1 -2 -1 -1 -2]
    [-1  0 -1  0  0 -1  0  0  0]
    [-1  0 -1  0  0  0  0  0 -1]
    [-2 -1 -1 -1  0 -1  0  0 -1]
    [-2  0 -1 -1 -1 -1  0  0 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]

6
{@
    Mod: ( 1 -1  0  0  0  0 -1  0  0),
    Mod: ( 4 -1 -1 -2 -1 -1 -1 -2 -2),
    Mod: ( 3 -1 -1 -1 -2 -1 -1 -1  0),
    Mod: ( 5 -2 -2 -2 -1 -2 -2 -1 -2),
    Mod: ( 2  0 -1  0 -1 -1  0 -1 -1)
@}
Intersection Matrix:
[-1  2  1  1  2]
[ 2 -1  2  1  1]
[ 1  2 -1  2  1]
[ 1  1  2 -1  2]
[ 2  1  1  2 -1]
Stabilizer Group Name:
D4
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  0  0  1  1  2  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-2 -1 -1  0  0 -1 -1 -1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [ 2  1  0  0  0  1  0  1  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  1  0  0  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

    [ 9  4  2  2  2  2  4  4  4]
    [-4 -1 -1 -1 -1 -1 -2 -2 -2]
    [-2 -1  0  0  0 -1 -1 -1 -1]
    [-2 -1  0 -1  0  0 -1 -1 -1]
    [-2 -1  0  0 -1  0 -1 -1 -1]
    [-2 -1 -1  0  0  0 -1 -1 -1]
    [-4 -2 -1 -1 -1 -1 -1 -2 -2]
    [-4 -2 -1 -1 -1 -1 -2 -2 -1]
    [-4 -2 -1 -1 -1 -1 -2 -1 -2]

7
{@
    Mod: ( 2 -1 -1  0 -1 -1 -1  0  0),
    Mod: ( 5 -1 -2 -2 -2 -2 -1 -2 -2),
    Mod: ( 3 -1 -1 -1  0 -1 -1 -1 -2),
    Mod: ( 4 -2 -1 -2 -1 -1 -2 -1 -1),
    Mod: ( 1  0  0  0 -1  0  0 -1  0)
@}
Intersection Matrix:
[-1  2  2  1  1]
[ 2 -1  1  2  1]
[ 2  1 -1  1  2]
[ 1  2  1 -1  2]
[ 1  1  2  2 -1]
Stabilizer Group Name:
D4
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  0  0  1  1  2  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-2 -1 -1  0  0 -1 -1 -1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [13  5  4  5  6  4  5  3  4]
    [-5 -2 -1 -2 -2 -2 -2 -1 -2]
    [-4 -1 -1 -2 -2 -1 -2 -1 -1]
    [-5 -2 -2 -2 -2 -2 -2 -1 -1]
    [-6 -2 -2 -2 -3 -2 -2 -2 -2]
    [-4 -2 -1 -2 -2 -1 -1 -1 -1]
    [-5 -2 -2 -2 -2 -1 -2 -1 -2]
    [-3 -1 -1 -1 -2 -1 -1  0 -1]
    [-4 -2 -1 -1 -2 -1 -2 -1 -1]

    [ 2  1  0  0  0  1  0  1  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  1  0  0  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

8
{@
    Mod: ( 5 -2 -2 -2 -2 -2 -2 -1 -1),
    Mod: ( 2 -1  0 -1  0  0 -1 -1 -1),
    Mod: ( 4 -1 -2 -1 -1 -2 -1 -1 -2),
    Mod: (0 0 0 1 0 0 0 0 0),
    Mod: ( 4 -1 -1 -2 -2 -1 -1 -2 -1)
@}
Intersection Matrix:
[-1  2  1  2  1]
[ 2 -1  2  1  1]
[ 1  2 -1  1  2]
[ 2  1  1 -1  2]
[ 1  1  2  2 -1]
Stabilizer Group Name:
D4
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  0  0  1  1  2  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-2 -1 -1  0  0 -1 -1 -1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [ 7  3  1  2  2  1  3  2  4]
    [-3 -1  0 -1 -1 -1 -1 -1 -2]
    [-1  0  0  0  0  0 -1  0 -1]
    [-2 -1  0 -1  0  0 -1 -1 -1]
    [-2 -1  0  0 -1  0 -1 -1 -1]
    [-1 -1  0  0  0  0  0  0 -1]
    [-3 -1 -1 -1 -1  0 -1 -1 -2]
    [-2 -1  0 -1 -1  0 -1  0 -1]
    [-4 -2 -1 -1 -1 -1 -2 -1 -2]

    [ 2  1  0  0  0  1  0  1  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  1  0  0  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

9
{@
    Mod: ( 4 -1 -2 -1 -2 -2 -1 -1 -1),
    Mod: ( 6 -2 -2 -3 -2 -2 -2 -2 -2),
    Mod: ( 1  0  0  0  0  0  0 -1 -1),
    Mod: ( 2 -1 -1  0  0 -1 -1  0 -1),
    Mod: ( 2 -1  0 -1 -1  0 -1 -1  0)
@}
Intersection Matrix:
[-1  1  2  1  2]
[ 1 -1  2  2  1]
[ 2  2 -1  1  1]
[ 1  2  1 -1  2]
[ 2  1  1  2 -1]
Stabilizer Group Name:
D4
MatrixGroup(9, Integer Ring)
Generators:
    [10  3  2  4  5  2  3  4  4]
    [-3 -1  0 -1 -2 -1 -1 -1 -1]
    [-2  0  0 -1 -1  0 -1 -1 -1]
    [-4 -1 -1 -2 -2 -1 -1 -2 -1]
    [-5 -2 -1 -2 -2 -1 -2 -2 -2]
    [-2 -1  0 -1 -1  0  0 -1 -1]
    [-3 -1 -1 -1 -2  0 -1 -1 -1]
    [-4 -1 -1 -2 -2 -1 -1 -1 -2]
    [-4 -1 -1 -1 -2 -1 -1 -2 -2]

    [ 3  1  1  0  0  1  1  2  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-2 -1 -1  0  0 -1 -1 -1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [ 2  1  0  0  0  1  0  1  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  1  0  0  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

10
{@
    Mod: ( 6 -2 -2 -2 -2 -2 -2 -2 -3),
    Mod: ( 2  0 -1 -1  0 -1  0 -1 -1),
    Mod: ( 2 -1 -1 -1  0 -1 -1  0  0),
    Mod: (0 0 0 0 0 0 0 0 1),
    Mod: ( 4 -1 -1 -1 -2 -1 -1 -2 -2),
    Mod: ( 3 -1 -1  0 -2 -1 -1 -1 -1),
    Mod: ( 2  0 -1 -1 -1 -1  0 -1  0),
    Mod: ( 4 -2 -1 -1 -2 -1 -2 -1 -1),
    Mod: ( 3 -1 -1 -2  0 -1 -1 -1 -1),
    Mod: ( 4 -2 -1 -1 -1 -1 -2 -1 -2)
@}
Intersection Matrix:
[-1  1  2  3  0  1  2  1  1  0]
[ 1 -1  1  1  1  2  0  3  0  2]
[ 2  1 -1  0  3  2  1  1  0  1]
[ 3  1  0 -1  2  1  0  1  1  2]
[ 0  1  3  2 -1  0  1  1  2  1]
[ 1  2  2  1  0 -1  1  0  3  1]
[ 2  0  1  0  1  1 -1  2  1  3]
[ 1  3  1  1  1  0  2 -1  2  0]
[ 1  0  0  1  2  3  1  2 -1  1]
[ 0  2  1  2  1  1  3  0  1 -1]
Stabilizer Group Name:
C2^2
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  0  0  1  1  2  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-2 -1 -1  0  0 -1 -1 -1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [ 2  1  0  0  0  1  0  1  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  1  0  0  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

11
{@
    Mod: ( 1  0  0 -1  0  0  0 -1  0),
    Mod: ( 2 -1  0  0 -1  0 -1 -1 -1),
    Mod: ( 3 -1 -1  0 -1 -1 -1 -1 -2),
    Mod: ( 4 -1 -2 -2 -1 -2 -1 -1 -1),
    Mod: ( 5 -2 -1 -2 -2 -1 -2 -2 -2),
    Mod: ( 1  0 -1  0  0 -1  0  0  0),
    Mod: ( 3 -1 -1 -2 -1 -1 -1 -1  0),
    Mod: ( 5 -2 -2 -1 -2 -2 -2 -1 -2),
    Mod: ( 6 -2 -2 -2 -3 -2 -2 -2 -2),
    Mod: (0 0 0 0 1 0 0 0 0)
@}
Intersection Matrix:
[-1  1  2  1  1  1  0  3  2  0]
[ 1 -1  0  3  0  2  2  1  1  1]
[ 2  0 -1  2  1  1  3  0  1  1]
[ 1  3  2 -1  2  0  0  1  1  1]
[ 1  0  1  2 -1  3  1  1  0  2]
[ 1  2  1  0  3 -1  1  1  2  0]
[ 0  2  3  0  1  1 -1  2  1  1]
[ 3  1  0  1  1  1  2 -1  0  2]
[ 2  1  1  1  0  2  1  0 -1  3]
[ 0  1  1  1  2  0  1  2  3 -1]
Stabilizer Group Name:
C2^2
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  0  0  1  1  2  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-2 -1 -1  0  0 -1 -1 -1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [ 2  1  0  0  0  1  0  1  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  1  0  0  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

12
{@
    Mod: ( 4 -2 -2 -1 -1 -1 -1 -1 -2),
    Mod: ( 5 -2 -2 -2 -2 -1 -1 -2 -2),
    Mod: ( 2 -1 -1  0 -1  0  0 -1 -1),
    Mod: ( 3 -2 -1 -1 -1  0 -1 -1 -1),
    Mod: ( 2 -1 -1 -1 -1  0  0 -1  0),
    Mod: ( 4 -2 -2 -2 -1 -1 -1 -1 -1),
    Mod: ( 3 -1 -2 -1 -1 -1  0 -1 -1),
    Mod: ( 2 -1 -1 -1  0  0  0 -1 -1),
    Mod: ( 4 -2 -2 -1 -2 -1 -1 -1 -1),
    Mod: ( 1 -1 -1  0  0  0  0  0  0)
@}
Intersection Matrix:
[-1  0  0  0  1  0  0  0  0  0]
[ 0 -1  0  0  0  0  0  0  0  1]
[ 0  0 -1  0  0  1  0  0  0  0]
[ 0  0  0 -1  0  0  1  0  0  0]
[ 1  0  0  0 -1  0  0  0  0  0]
[ 0  0  1  0  0 -1  0  0  0  0]
[ 0  0  0  1  0  0 -1  0  0  0]
[ 0  0  0  0  0  0  0 -1  1  0]
[ 0  0  0  0  0  0  0  1 -1  0]
[ 0  1  0  0  0  0  0  0  0 -1]
Stabilizer Group Name:
C2^2
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  0  0  1  1  2  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-2 -1 -1  0  0 -1 -1 -1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [ 2  1  0  0  0  1  0  1  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  1  0  0  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

13
{@
    Mod: ( 4 -1 -1 -2 -1 -2 -2 -1 -1),
    Mod: ( 2  0  0  0 -1 -1 -1 -1 -1),
    Mod: ( 1  0  0  0  0 -1 -1  0  0),
    Mod: ( 3 -1  0 -1 -1 -1 -2 -1 -1),
    Mod: ( 4 -1 -1 -1 -2 -2 -2 -1 -1),
    Mod: ( 5 -1 -1 -2 -2 -2 -2 -2 -2),
    Mod: ( 4 -1 -1 -1 -1 -2 -2 -1 -2),
    Mod: ( 2  0  0 -1  0 -1 -1 -1 -1),
    Mod: ( 2  0  0 -1 -1 -1 -1 -1  0),
    Mod: ( 3  0 -1 -1 -1 -2 -1 -1 -1)
@}
Intersection Matrix:
[-1  1  0  0  0  0  0  0  0  0]
[ 1 -1  0  0  0  0  0  0  0  0]
[ 0  0 -1  0  0  1  0  0  0  0]
[ 0  0  0 -1  0  0  0  0  0  1]
[ 0  0  0  0 -1  0  0  1  0  0]
[ 0  0  1  0  0 -1  0  0  0  0]
[ 0  0  0  0  0  0 -1  0  1  0]
[ 0  0  0  0  1  0  0 -1  0  0]
[ 0  0  0  0  0  0  1  0 -1  0]
[ 0  0  0  1  0  0  0  0  0 -1]
Stabilizer Group Name:
C2^2
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  0  0  1  1  2  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-2 -1 -1  0  0 -1 -1 -1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [ 2  1  0  0  0  1  0  1  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  1  0  0  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

14
{@
    Mod: ( 2  0 -1 -1 -1  0  0 -1 -1),
    Mod: ( 2 -1 -1 -1 -1  0 -1  0  0),
    Mod: ( 4 -1 -2 -1 -1 -1 -1 -2 -2),
    Mod: ( 3 -2 -1 -1  0 -1 -1 -1 -1),
    Mod: ( 2 -1 -1  0 -1 -1  0 -1  0),
    Mod: ( 1 -1  0  0 -1  0  0  0  0),
    Mod: ( 2 -1 -1 -1  0  0 -1  0 -1),
    Mod: ( 3 -1 -1 -1 -2 -1  0 -1 -1),
    Mod: ( 3 -2 -1 -1 -1 -1 -1  0 -1),
    Mod: ( 4 -1 -2 -1 -2 -1 -1 -2 -1),
    Mod: ( 5 -2 -2 -2 -1 -1 -2 -2 -2),
    Mod: ( 4 -2 -2 -1 -1 -1 -2 -1 -1),
    Mod: ( 3 -1 -1 -1 -1 -1  0 -1 -2),
    Mod: ( 2 -1 -1  0 -1  0 -1 -1  0),
    Mod: ( 1  0 -1  0 -1  0  0  0  0),
    Mod: ( 3 -2 -1 -1 -1 -1 -1 -1  0),
    Mod: ( 4 -2 -1 -2 -1 -1 -1 -1 -2),
    Mod: ( 3 -1 -1 -1 -1 -1  0 -2 -1),
    Mod: ( 4 -1 -2 -2 -1 -1 -1 -1 -2),
    Mod: ( 5 -2 -2 -2 -1 -2 -1 -2 -2)
@}
Intersection Matrix:
[-1  1  0  2  1  1  1  0  2  0  1  2  0  1  0  2  1  0  0  1]
[ 1 -1  2  1  1  0  0  1  0  1  1  0  2  0  0  0  1  2  1  2]
[ 0  2 -1  1  1  2  1  1  2  0  0  1  0  1  1  2  1  0  0  0]
[ 2  1  1 -1  1  1  0  2  0  2  0  0  1  1  2  0  0  1  1  0]
[ 1  1  1  1 -1  0  2  0  1  0  2  1  1  0  0  0  2  0  2  1]
[ 1  0  2  1  0 -1  1  0  0  1  2  1  1  0  0  0  1  1  2  2]
[ 1  0  1  0  2  1 -1  2  0  2  0  0  1  1  1  1  0  2  0  1]
[ 0  1  1  2  0  0  2 -1  1  0  2  2  0  1  0  1  1  0  1  1]
[ 2  0  2  0  1  0  0  1 -1  2  1  0  1  1  1  0  0  2  1  1]
[ 0  1  0  2  0  1  2  0  2 -1  1  1  1  0  0  1  2  0  1  1]
[ 1  1  0  0  2  2  0  2  1  1 -1  0  1  1  2  1  0  1  0  0]
[ 2  0  1  0  1  1  0  2  0  1  0 -1  2  0  1  0  1  2  1  1]
[ 0  2  0  1  1  1  1  0  1  1  1  2 -1  2  1  2  0  0  0  0]
[ 1  0  1  1  0  0  1  1  1  0  1  0  2 -1  0  0  2  1  2  2]
[ 0  0  1  2  0  0  1  0  1  0  2  1  1  0 -1  1  2  1  1  2]
[ 2  0  2  0  0  0  1  1  0  1  1  0  2  0  1 -1  1  1  2  1]
[ 1  1  1  0  2  1  0  1  0  2  0  1  0  2  2  1 -1  1  0  0]
[ 0  2  0  1  0  1  2  0  2  0  1  2  0  1  1  1  1 -1  1  0]
[ 0  1  0  1  2  2  0  1  1  1  0  1  0  2  1  2  0  1 -1  0]
[ 1  2  0  0  1  2  1  1  1  1  0  1  0  2  2  1  0  0  0 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 2  0  1  0  0  0  1  1  0]
    [ 0  1  0  0  0  0  0  0  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [ 0  0  0  0  0  1  0  0  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0 -1  0  0]
    [ 0  0  0  0  0  0  0  0  1]

15
{@
    Mod: ( 3 -1 -1  0 -1 -2 -1 -1 -1),
    Mod: ( 3 -1 -1 -1 -1 -2 -1  0 -1),
    Mod: ( 2  0  0 -1 -1  0 -1 -1 -1),
    Mod: ( 2  0 -1  0 -1 -1 -1  0 -1),
    Mod: ( 3 -1  0 -2 -1 -1 -1 -1 -1),
    Mod: ( 4 -1 -1 -2 -2 -2 -1 -1 -1),
    Mod: ( 1  0  0  0  0  0 -1 -1  0),
    Mod: ( 2  0 -1  0  0 -1 -1 -1 -1),
    Mod: ( 1  0  0  0  0 -1  0  0 -1),
    Mod: (0 0 1 0 0 0 0 0 0),
    Mod: ( 5 -1 -2 -2 -2 -2 -2 -1 -2),
    Mod: ( 6 -2 -2 -2 -2 -3 -2 -2 -2),
    Mod: ( 4 -1 -2 -1 -1 -2 -2 -1 -1),
    Mod: ( 4 -1 -1 -2 -2 -1 -2 -1 -1),
    Mod: ( 5 -2 -1 -2 -2 -2 -2 -2 -1),
    Mod: ( 4 -1 -1 -2 -1 -1 -2 -2 -1),
    Mod: ( 5 -1 -2 -2 -2 -2 -2 -2 -1),
    Mod: ( 1  0  0  0  0  0 -1  0 -1),
    Mod: ( 2 -1  0  0  0 -1 -1 -1 -1),
    Mod: ( 3 -1  0 -1 -1 -1 -1 -2 -1)
@}
Intersection Matrix:
[-1  0  2  0  2  1  1  0  0  1  1  0  0  2  1  2  1  1  0  1]
[ 0 -1  2  0  1  0  2  1  0  1  0  0  0  1  1  2  1  1  1  2]
[ 2  2 -1  1  0  1  0  1  1  0  1  2  2  0  1  0  1  0  1  0]
[ 0  0  1 -1  2  1  1  0  0  1  0  1  0  1  2  2  1  0  1  2]
[ 2  1  0  2 -1  0  1  2  1  0  1  1  2  0  0  0  1  1  1  0]
[ 1  0  1  1  0 -1  2  2  1  1  0  0  1  0  0  1  0  2  2  1]
[ 1  2  0  1  1  2 -1  0  1  0  2  2  1  1  1  0  1  0  0  0]
[ 0  1  1  0  2  2  0 -1  0  1  1  1  0  2  2  1  1  0  0  1]
[ 0  0  1  0  1  1  1  0 -1  0  1  1  1  2  2  2  2  0  0  1]
[ 1  1  0  1  0  1  0  1  0 -1  2  2  2  1  1  1  2  0  0  0]
[ 1  0  1  0  1  0  2  1  1  2 -1  0  0  0  1  1  0  1  2  2]
[ 0  0  2  1  1  0  2  1  1  2  0 -1  0  1  0  1  0  2  1  1]
[ 0  0  2  0  2  1  1  0  1  2  0  0 -1  1  1  1  0  1  1  2]
[ 2  1  0  1  0  0  1  2  2  1  0  1  1 -1  0  0  0  1  2  1]
[ 1  1  1  2  0  0  1  2  2  1  1  0  1  0 -1  0  0  2  1  0]
[ 2  2  0  2  0  1  0  1  2  1  1  1  1  0  0 -1  0  1  1  0]
[ 1  1  1  1  1  0  1  1  2  2  0  0  0  0  0  0 -1  2  2  1]
[ 1  1  0  0  1  2  0  0  0  0  1  2  1  1  2  1  2 -1  0  1]
[ 0  1  1  1  1  2  0  0  0  0  2  1  1  2  1  1  2  0 -1  0]
[ 1  2  0  2  0  1  0  1  1  0  2  1  2  1  0  0  1  1  0 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 2  0  1  0  0  0  1  1  0]
    [ 0  1  0  0  0  0  0  0  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [ 0  0  0  0  0  1  0  0  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0 -1  0  0]
    [ 0  0  0  0  0  0  0  0  1]

16
{@
    Mod: ( 2 -1  0 -1  0 -1 -1  0 -1),
    Mod: ( 1  0  0  0 -1 -1  0  0  0),
    Mod: ( 3 -1 -1 -1  0 -1 -2 -1 -1),
    Mod: ( 5 -1 -2 -2 -1 -2 -2 -2 -2),
    Mod: ( 2 -1  0  0 -1 -1 -1 -1  0),
    Mod: ( 2  0  0 -1 -1 -1  0 -1 -1),
    Mod: ( 4 -1 -1 -2 -1 -2 -1 -1 -2),
    Mod: ( 3 -1 -1 -1 -1 -1 -2 -1  0),
    Mod: ( 4 -1 -1 -1 -1 -2 -1 -2 -2),
    Mod: ( 2 -1  0 -1 -1 -1 -1  0  0),
    Mod: ( 1  0  0  0 -1  0 -1  0  0),
    Mod: ( 3  0 -1 -1 -2 -1 -1 -1 -1),
    Mod: ( 4 -1 -1 -1 -2 -2 -1 -2 -1),
    Mod: ( 3 -1 -1 -1 -1 -1 -2  0 -1),
    Mod: ( 3  0 -1 -1 -1 -1 -1 -2 -1),
    Mod: ( 2  0 -1  0 -1 -1 -1 -1  0),
    Mod: ( 4 -2 -1 -1 -1 -2 -2 -1 -1),
    Mod: ( 5 -2 -1 -2 -1 -2 -2 -2 -2),
    Mod: ( 3  0 -1 -1 -1 -1 -1 -1 -2),
    Mod: ( 4 -1 -1 -2 -1 -1 -2 -1 -2)
@}
Intersection Matrix:
[-1  1  0  1  1  1  0  1  1  0  1  2  2  0  2  2  0  0  1  0]
[ 1 -1  2  2  0  0  1  1  1  0  0  0  0  1  1  0  1  2  1  2]
[ 0  2 -1  0  1  2  1  0  1  1  1  2  2  0  1  1  0  0  1  0]
[ 1  2  0 -1  2  1  0  1  0  2  2  1  1  1  0  1  1  0  0  0]
[ 1  0  1  2 -1  1  2  0  1  0  0  1  0  1  1  0  0  1  2  2]
[ 1  0  2  1  1 -1  0  2  0  1  1  0  0  2  0  1  2  1  0  1]
[ 0  1  1  0  2  0 -1  2  0  1  2  1  1  1  1  2  1  0  0  0]
[ 1  1  0  1  0  2  2 -1  2  0  0  1  1  0  1  0  0  1  2  1]
[ 1  1  1  0  1  0  0  2 -1  2  2  1  0  2  0  1  1  0  0  1]
[ 0  0  1  2  0  1  1  0  2 -1  0  1  1  0  2  1  0  1  2  1]
[ 1  0  1  2  0  1  2  0  2  0 -1  0  1  0  1  0  1  2  1  1]
[ 2  0  2  1  1  0  1  1  1  1  0 -1  0  1  0  0  2  2  0  1]
[ 2  0  2  1  0  0  1  1  0  1  1  0 -1  2  0  0  1  1  1  2]
[ 0  1  0  1  1  2  1  0  2  0  0  1  2 -1  2  1  0  1  1  0]
[ 2  1  1  0  1  0  1  1  0  2  1  0  0  2 -1  0  2  1  0  1]
[ 2  0  1  1  0  1  2  0  1  1  0  0  0  1  0 -1  1  2  1  2]
[ 0  1  0  1  0  2  1  0  1  0  1  2  1  0  2  1 -1  0  2  1]
[ 0  2  0  0  1  1  0  1  0  1  2  2  1  1  1  2  0 -1  1  0]
[ 1  1  1  0  2  0  0  2  0  2  1  0  1  1  0  1  2  1 -1  0]
[ 0  2  0  0  2  1  0  1  1  1  1  1  2  0  1  2  1  0  0 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 2  1  0  0  0  1  0  1  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  1  0  0  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

17
{@
    Mod: ( 5 -2 -2 -2 -2 -2 -1 -2 -1),
    Mod: ( 4 -1 -2 -2 -2 -1 -1 -1 -1),
    Mod: ( 2 -1 -1  0  0 -1  0 -1 -1),
    Mod: ( 1  0 -1  0  0  0  0  0 -1),
    Mod: ( 3 -1 -2  0 -1 -1 -1 -1 -1),
    Mod: ( 5 -2 -2 -2 -2 -1 -2 -2 -1),
    Mod: ( 4 -2 -1 -2 -1 -1 -1 -2 -1),
    Mod: ( 1 -1  0  0  0  0  0 -1  0),
    Mod: ( 4 -2 -2 -1 -1 -2 -1 -1 -1),
    Mod: ( 6 -2 -3 -2 -2 -2 -2 -2 -2),
    Mod: ( 1 -1  0  0  0  0  0  0 -1),
    Mod: ( 4 -2 -1 -2 -2 -1 -1 -1 -1),
    Mod: ( 3 -1 -1 -1 -1  0 -1 -2 -1),
    Mod: ( 2 -1 -1  0  0  0 -1 -1 -1),
    Mod: ( 2 -1 -1  0 -1 -1  0  0 -1),
    Mod: ( 5 -2 -2 -2 -2 -2 -1 -1 -2),
    Mod: ( 3 -1 -2 -1 -1 -1 -1  0 -1),
    Mod: (0 0 0 0 0 1 0 0 0),
    Mod: ( 3 -1 -1 -2 -1  0 -1 -1 -1),
    Mod: ( 2 -1  0 -1 -1  0  0 -1 -1)
@}
Intersection Matrix:
[-1  0  1  2  1  0  0  1  0  0  2  0  1  2  1  0  1  2  1  1]
[ 0 -1  2  1  1  0  1  2  1  0  2  0  1  2  1  0  0  1  0  1]
[ 1  2 -1  0  0  2  1  0  0  1  0  2  1  0  0  1  1  1  2  1]
[ 2  1  0 -1  0  2  2  1  1  1  0  2  1  0  0  1  0  0  1  1]
[ 1  1  0  0 -1  1  2  1  0  0  1  2  1  0  0  1  0  1  2  2]
[ 0  0  2  2  1 -1  0  1  1  0  2  0  0  1  2  1  1  1  0  1]
[ 0  1  1  2  2  0 -1  0  1  1  1  0  0  1  2  1  2  1  0  0]
[ 1  2  0  1  1  1  0 -1  1  2  0  1  0  0  1  2  2  0  1  0]
[ 0  1  0  1  0  1  1  1 -1  0  1  1  2  1  0  0  0  2  2  2]
[ 0  0  1  1  0  0  1  2  0 -1  2  1  1  1  1  0  0  2  1  2]
[ 2  2  0  0  1  2  1  0  1  2 -1  1  1  0  0  1  1  0  1  0]
[ 0  0  2  2  2  0  0  1  1  1  1 -1  1  2  1  0  1  1  0  0]
[ 1  1  1  1  1  0  0  0  2  1  1  1 -1  0  2  2  2  0  0  0]
[ 2  2  0  0  0  1  1  0  1  1  0  2  0 -1  1  2  1  0  1  1]
[ 1  1  0  0  0  2  2  1  0  1  0  1  2  1 -1  0  0  1  2  1]
[ 0  0  1  1  1  1  1  2  0  0  1  0  2  2  0 -1  0  2  1  1]
[ 1  0  1  0  0  1  2  2  0  0  1  1  2  1  0  0 -1  1  1  2]
[ 2  1  1  0  1  1  1  0  2  2  0  1  0  0  1  2  1 -1  0  0]
[ 1  0  2  1  2  0  0  1  2  1  1  0  0  1  2  1  1  0 -1  0]
[ 1  1  1  1  2  1  0  0  2  2  0  0  0  1  1  1  2  0  0 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 2  0  1  0  0  0  1  1  0]
    [ 0  1  0  0  0  0  0  0  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [ 0  0  0  0  0  1  0  0  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0 -1  0  0]
    [ 0  0  0  0  0  0  0  0  1]

18
{@
    Mod: ( 3 -1 -1 -1 -1 -2 -1 -1  0),
    Mod: ( 1  0  0  0  0 -1  0 -1  0),
    Mod: ( 4 -1 -1 -1 -1 -1 -2 -2 -2),
    Mod: ( 3 -1 -1  0 -1 -1 -2 -1 -1),
    Mod: ( 2  0 -1 -1  0 -1 -1  0 -1),
    Mod: ( 4 -1 -1 -1 -2 -1 -2 -2 -1),
    Mod: ( 5 -1 -2 -1 -2 -2 -2 -2 -2),
    Mod: ( 3 -1 -1 -1  0 -2 -1 -1 -1),
    Mod: ( 4 -1 -1 -2 -1 -2 -1 -2 -1),
    Mod: ( 3 -1  0 -1 -2 -1 -1 -1 -1),
    Mod: ( 4 -1 -1 -1 -2 -2 -1 -1 -2),
    Mod: ( 2 -1  0 -1  0 -1 -1 -1  0),
    Mod: ( 1  0  0 -1  0  0 -1  0  0),
    Mod: ( 2 -1  0  0 -1 -1 -1  0 -1),
    Mod: ( 3 -1  0 -1 -1 -1 -1 -1 -2),
    Mod: ( 2  0 -1 -1 -1 -1 -1  0  0),
    Mod: ( 6 -2 -2 -2 -2 -2 -3 -2 -2),
    Mod: ( 3  0 -1 -2 -1 -1 -1 -1 -1),
    Mod: ( 5 -2 -1 -2 -2 -2 -2 -1 -2),
    Mod: (0 1 0 0 0 0 0 0 0)
@}
Intersection Matrix:
[-1  0  2  1  1  1  1  0  0  1  1  0  1  1  2  0  1  1  1  1]
[ 0 -1  1  1  1  1  1  0  0  1  1  0  1  1  1  1  2  1  2  0]
[ 2  1 -1  0  1  0  0  1  1  1  1  1  1  1  0  2  0  1  1  1]
[ 1  1  0 -1  1  0  0  1  2  1  1  1  1  0  1  1  0  2  1  1]
[ 1  1  1  1 -1  2  1  0  1  2  1  1  0  1  1  0  1  0  1  0]
[ 1  1  0  0  2 -1  0  2  1  0  1  1  1  1  1  1  0  1  1  1]
[ 1  1  0  0  1  0 -1  1  1  1  0  2  2  1  1  1  0  1  1  1]
[ 0  0  1  1  0  2  1 -1  0  2  1  0  1  1  1  1  1  1  1  1]
[ 0  0  1  2  1  1  1  0 -1  1  1  0  1  2  1  1  1  0  1  1]
[ 1  1  1  1  2  0  1  2  1 -1  0  1  1  0  0  1  1  1  0  1]
[ 1  1  1  1  1  1  0  1  1  0 -1  2  2  0  0  1  1  1  0  1]
[ 0  0  1  1  1  1  2  0  0  1  2 -1  0  1  1  1  1  1  1  1]
[ 1  1  1  1  0  1  2  1  1  1  2  0 -1  1  1  0  1  0  1  0]
[ 1  1  1  0  1  1  1  1  2  0  0  1  1 -1  0  1  1  2  0  1]
[ 2  1  0  1  1  1  1  1  1  0  0  1  1  0 -1  2  1  1  0  1]
[ 0  1  2  1  0  1  1  1  1  1  1  1  0  1  2 -1  1  0  1  0]
[ 1  2  0  0  1  0  0  1  1  1  1  1  1  1  1  1 -1  1  0  2]
[ 1  1  1  2  0  1  1  1  0  1  1  1  0  2  1  0  1 -1  1  0]
[ 1  2  1  1  1  1  1  1  1  0  0  1  1  0  0  1  0  1 -1  2]
[ 1  0  1  1  0  1  1  1  1  1  1  1  0  1  1  0  2  0  2 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 2  0  1  0  0  0  1  1  0]
    [ 0  1  0  0  0  0  0  0  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [ 0  0  0  0  0  1  0  0  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0 -1  0  0]
    [ 0  0  0  0  0  0  0  0  1]

19
{@
    Mod: ( 5 -2 -2 -1 -2 -2 -1 -2 -2),
    Mod: ( 4 -1 -2 -2 -1 -1 -1 -2 -1),
    Mod: ( 4 -1 -2 -1 -2 -1 -1 -1 -2),
    Mod: ( 2 -1 -1  0 -1  0 -1  0 -1),
    Mod: ( 1  0 -1  0  0  0  0 -1  0),
    Mod: ( 3 -1 -2 -1  0 -1 -1 -1 -1),
    Mod: ( 6 -3 -2 -2 -2 -2 -2 -2 -2),
    Mod: ( 1 -1  0 -1  0  0  0  0  0),
    Mod: ( 5 -2 -2 -2 -2 -1 -2 -1 -2),
    Mod: ( 2 -1 -1 -1 -1 -1  0  0  0),
    Mod: (0 0 0 0 0 0 1 0 0),
    Mod: ( 2 -1 -1 -1  0  0 -1 -1  0),
    Mod: ( 3 -1 -2 -1 -1 -1 -1 -1  0),
    Mod: ( 3 -2 -1  0 -1 -1 -1 -1 -1),
    Mod: ( 4 -2 -1 -1 -1 -1 -1 -2 -2),
    Mod: ( 3 -1 -1 -1 -2  0 -1 -1 -1),
    Mod: ( 2 -1 -1 -1  0 -1  0  0 -1),
    Mod: ( 4 -2 -1 -1 -2 -1 -1 -2 -1),
    Mod: ( 3 -1 -1 -1 -1  0 -1 -1 -2),
    Mod: ( 3 -1 -1 -2 -1 -1  0 -1 -1)
@}
Intersection Matrix:
[-1  1  0  1  1  1  0  2  1  1  1  2  1  0  0  1  1  0  1  1]
[ 1 -1  1  2  0  0  1  1  1  1  1  0  0  2  1  1  1  1  1  0]
[ 0  1 -1  0  1  1  1  2  0  1  1  2  1  1  1  0  1  1  0  1]
[ 1  2  0 -1  1  1  1  1  0  1  1  1  1  0  1  0  1  1  0  2]
[ 1  0  1  1 -1  0  2  1  2  1  0  0  0  1  1  1  1  1  1  1]
[ 1  0  1  1  0 -1  1  1  1  1  1  0  0  1  1  2  0  2  1  1]
[ 0  1  1  1  2  1 -1  1  0  1  2  1  1  0  0  1  1  0  1  1]
[ 2  1  2  1  1  1  1 -1  1  0  0  0  1  1  1  1  0  1  1  0]
[ 1  1  0  0  2  1  0  1 -1  1  2  1  1  1  1  0  1  1  0  1]
[ 1  1  1  1  1  1  1  0  1 -1  0  1  0  1  2  1  0  1  2  0]
[ 1  1  1  1  0  1  2  0  2  0 -1  1  1  1  1  1  0  1  1  0]
[ 2  0  2  1  0  0  1  0  1  1  1 -1  0  1  1  1  1  1  1  1]
[ 1  0  1  1  0  0  1  1  1  0  1  0 -1  1  2  1  1  1  2  1]
[ 0  2  1  0  1  1  0  1  1  1  1  1  1 -1  0  1  1  0  1  2]
[ 0  1  1  1  1  1  0  1  1  2  1  1  2  0 -1  1  1  0  0  1]
[ 1  1  0  0  1  2  1  1  0  1  1  1  1  1  1 -1  2  0  0  1]
[ 1  1  1  1  1  0  1  0  1  0  0  1  1  1  1  2 -1  2  1  0]
[ 0  1  1  1  1  2  0  1  1  1  1  1  1  0  0  0  2 -1  1  1]
[ 1  1  0  0  1  1  1  1  0  2  1  1  2  1  0  0  1  1 -1  1]
[ 1  0  1  2  1  1  1  0  1  0  0  1  1  2  1  1  0  1  1 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 2  0  1  0  0  0  1  1  0]
    [ 0  1  0  0  0  0  0  0  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [ 0  0  0  0  0  1  0  0  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0 -1  0  0]
    [ 0  0  0  0  0  0  0  0  1]

20
{@
    Mod: ( 1 -1  0  0  0 -1  0  0  0),
    Mod: ( 2 -1  0 -1 -1  0 -1  0 -1),
    Mod: ( 4 -2 -1 -2 -1 -2 -1 -1 -1),
    Mod: ( 3 -1 -1  0 -1 -1 -1 -2 -1),
    Mod: ( 3 -1 -1 -1  0 -1 -1 -2 -1),
    Mod: ( 4 -2 -1 -1 -2 -2 -1 -1 -1),
    Mod: (0 0 0 0 0 0 0 1 0),
    Mod: ( 2 -1  0 -1  0 -1  0 -1 -1),
    Mod: ( 5 -1 -2 -2 -2 -1 -2 -2 -2),
    Mod: ( 2 -1  0  0 -1 -1  0 -1 -1),
    Mod: ( 3 -1 -1 -1 -1 -1 -1 -2  0),
    Mod: ( 1  0  0 -1 -1  0  0  0  0),
    Mod: ( 2  0 -1 -1 -1 -1  0  0 -1),
    Mod: ( 2 -1  0 -1 -1 -1  0 -1  0),
    Mod: ( 4 -1 -1 -2 -2 -1 -1 -1 -2),
    Mod: ( 4 -2 -1 -1 -1 -1 -2 -2 -1),
    Mod: ( 6 -2 -2 -2 -2 -2 -2 -3 -2),
    Mod: ( 3 -1 -1 -1 -1  0 -2 -1 -1),
    Mod: ( 2  0 -1  0 -1  0 -1 -1 -1),
    Mod: ( 4 -1 -2 -1 -1 -2 -1 -2 -1),
    Mod: ( 1  0 -1  0  0  0 -1  0  0),
    Mod: ( 3 -1 -1 -1 -1 -2  0 -1 -1),
    Mod: ( 2  0 -1 -1  0  0 -1 -1 -1),
    Mod: ( 3  0 -2 -1 -1 -1 -1 -1 -1),
    Mod: ( 5 -2 -1 -2 -2 -2 -1 -2 -2),
    Mod: ( 2 -1 -1  0  0 -1 -1 -1  0),
    Mod: ( 3 -1 -1 -1 -2 -1 -1  0 -1),
    Mod: ( 1  0  0  0 -1  0  0  0 -1),
    Mod: ( 1  0  0 -1  0  0  0  0 -1),
    Mod: ( 2  0 -1 -1 -1  0 -1 -1  0),
    Mod: ( 3 -1 -1 -2 -1 -1 -1  0 -1),
    Mod: ( 4 -1 -2 -1 -1 -1 -2 -1 -2),
    Mod: ( 3 -1 -1 -1 -1 -1 -1  0 -2),
    Mod: ( 3 -2  0 -1 -1 -1 -1 -1 -1),
    Mod: ( 4 -1 -2 -2 -1 -1 -2 -1 -1),
    Mod: ( 4 -1 -2 -1 -2 -1 -2 -1 -1),
    Mod: ( 5 -2 -2 -1 -1 -2 -2 -2 -2),
    Mod: ( 5 -2 -2 -2 -1 -2 -2 -2 -1),
    Mod: ( 5 -2 -2 -1 -2 -2 -2 -2 -1),
    Mod: ( 4 -2 -1 -1 -1 -2 -1 -1 -2)
@}
Intersection Matrix:
[-1  1  0  1  1  0  0  0  3  0  1  1  1  0  2  1  2  2  2  1  1  0  2  2  1  0  1  1  1  2  1  2  1  0  2  2  1  1  1  0]
[ 1 -1  1  2  2  1  0  1  1  1  2  0  1  1  0  1  2  0  1  3  1  2  1  2  1  2  0  0  0  1  0  1  0  0  1  1  2  2  2  1]
[ 0  1 -1  2  1  0  1  0  2  1  1  1  1  0  1  1  1  2  3  1  2  0  2  2  0  1  1  2  1  2  0  2  1  0  1  2  1  0  1  0]
[ 1  2  2 -1  0  1  2  1  1  0  0  2  2  1  2  0  0  1  0  0  1  1  1  1  1  0  2  1  2  1  3  1  2  1  2  1  0  1  0  1]
[ 1  2  1  0 -1  2  2  0  1  1  0  2  2  1  2  0  0  1  1  0  1  1  0  1  1  0  3  2  1  1  2  1  2  1  1  2  0  0  1  1]
[ 0  1  0  1  2 -1  1  1  2  0  1  1  1  0  1  1  1  2  2  1  2  0  3  2  0  1  0  1  2  2  1  2  1  0  2  1  1  1  0  0]
[ 0  0  1  2  2  1 -1  1  2  1  2  0  0  1  1  2  3  1  1  2  0  1  1  1  2  1  0  0  0  1  0  1  0  1  1  1  2  2  2  1]
[ 0  1  0  1  0  1  1 -1  2  0  1  1  1  0  1  1  1  2  2  1  2  0  1  2  0  1  2  1  0  2  1  2  1  0  2  3  1  1  2  0]
[ 3  1  2  1  1  2  2  2 -1  2  1  1  1  2  0  1  0  0  0  1  1  2  0  0  1  2  1  1  1  0  1  0  1  2  0  0  1  1  1  2]
[ 0  1  1  0  1  0  1  0  2 -1  1  1  1  0  1  1  1  2  1  1  2  0  2  2  0  1  1  0  1  2  2  2  1  0  3  2  1  2  1  0]
[ 1  2  1  0  0  1  2  1  1  1 -1  1  2  0  2  0  0  1  1  0  1  1  1  1  1  0  2  2  2  0  2  2  3  1  1  1  1  0  0  2]
[ 1  0  1  2  2  1  0  1  1  1  1 -1  0  0  0  2  2  1  1  2  1  1  1  1  1  2  0  0  0  0  0  2  1  1  1  1  3  2  2  2]
[ 1  1  1  2  2  1  0  1  1  1  2  0 -1  1  0  3  2  2  1  1  1  0  1  0  1  2  0  0  0  1  0  1  0  2  1  1  2  2  2  1]
[ 0  1  0  1  1  0  1  0  2  0  0  0  1 -1  1  1  1  2  2  1  2  0  2  2  0  1  1  1  1  1  1  3  2  0  2  2  2  1  1  1]
[ 2  0  1  2  2  1  1  1  0  1  2  0  0  1 -1  2  1  1  1  2  2  1  1  1  0  3  0  0  0  1  0  1  0  1  1  1  2  2  2  1]
[ 1  1  1  0  0  1  2  1  1  1  0  2  3  1  2 -1  0  0  1  1  1  2  1  2  1  0  2  2  2  1  2  1  2  0  1  1  0  0  0  1]
[ 2  2  1  0  0  1  3  1  0  1  0  2  2  1  1  0 -1  1  1  0  2  1  1  1  0  1  2  2  2  1  2  1  2  1  1  1  0  0  0  1]
[ 2  0  2  1  1  2  1  2  0  2  1  1  2  2  1  0  1 -1  0  2  0  3  0  1  2  1  1  1  1  0  1  0  1  1  0  0  1  1  1  2]
[ 2  1  3  0  1  2  1  2  0  1  1  1  1  2  1  1  1  0 -1  1  0  2  0  0  2  1  1  0  1  0  2  0  1  2  1  0  1  2  1  2]
[ 1  3  1  0  0  1  2  1  1  1  0  2  1  1  2  1  0  2  1 -1  1  0  1  0  1  0  2  2  2  1  2  1  2  2  1  1  0  0  0  1]
[ 1  1  2  1  1  2  0  2  1  2  1  1  1  2  2  1  2  0  0  1 -1  2  0  0  3  0  1  1  1  0  1  0  1  2  0  0  1  1  1  2]
[ 0  2  0  1  1  0  1  0  2  0  1  1  0  0  1  2  1  3  2  0  2 -1  2  1  0  1  1  1  1  2  1  2  1  1  2  2  1  1  1  0]
[ 2  1  2  1  0  3  1  1  0  2  1  1  1  2  1  1  1  0  0  1  0  2 -1  0  2  1  2  1  0  0  1  0  1  2  0  1  1  1  2  2]
[ 2  2  2  1  1  2  1  2  0  2  1  1  0  2  1  2  1  1  0  0  0  1  0 -1  2  1  1  1  1  0  1  0  1  3  0  0  1  1  1  2]
[ 1  1  0  1  1  0  2  0  1  0  1  1  1  0  0  1  0  2  2  1  3  0  2  2 -1  2  1  1  1  2  1  2  1  0  2  2  1  1  1  0]
[ 0  2  1  0  0  1  1  1  2  1  0  2  2  1  3  0  1  1  1  0  0  1  1  1  2 -1  2  2  2  1  2  1  2  1  1  1  0  0  0  1]
[ 1  0  1  2  3  0  0  2  1  1  2  0  0  1  0  2  2  1  1  2  1  1  2  1  1  2 -1  0  1  1  0  1  0  1  1  0  2  2  1  1]
[ 1  0  2  1  2  1  0  1  1  0  2  0  0  1  0  2  2  1  0  2  1  1  1  1  1  2  0 -1  0  1  1  1  0  1  2  1  2  3  2  1]
[ 1  0  1  2  1  2  0  0  1  1  2  0  0  1  0  2  2  1  1  2  1  1  0  1  1  2  1  0 -1  1  0  1  0  1  1  2  2  2  3  1]
[ 2  1  2  1  1  2  1  2  0  2  0  0  1  1  1  1  1  0  0  1  0  2  0  0  2  1  1  1  1 -1  1  1  2  2  0  0  2  1  1  3]
[ 1  0  0  3  2  1  0  1  1  2  2  0  0  1  0  2  2  1  2  2  1  1  1  1  1  2  0  1  0  1 -1  1  0  1  0  1  2  1  2  1]
[ 2  1  2  1  1  2  1  2  0  2  2  2  1  3  1  1  1  0  0  1  0  2  0  0  2  1  1  1  1  1  1 -1  0  2  0  0  0  1  1  1]
[ 1  0  1  2  2  1  0  1  1  1  3  1  0  2  0  2  2  1  1  2  1  1  1  1  1  2  0  0  0  2  0  0 -1  1  1  1  1  2  2  0]
[ 0  0  0  1  1  0  1  0  2  0  1  1  2  0  1  0  1  1  2  2  2  1  2  3  0  1  1  1  1  2  1  2  1 -1  2  2  1  1  1  0]
[ 2  1  1  2  1  2  1  2  0  3  1  1  1  2  1  1  1  0  1  1  0  2  0  0  2  1  1  2  1  0  0  0  1  2 -1  0  1  0  1  2]
[ 2  1  2  1  2  1  1  3  0  2  1  1  1  2  1  1  1  0  0  1  0  2  1  0  2  1  0  1  2  0  1  0  1  2  0 -1  1  1  0  2]
[ 1  2  1  0  0  1  2  1  1  1  1  3  2  2  2  0  0  1  1  0  1  1  1  1  1  0  2  2  2  2  2  0  1  1  1  1 -1  0  0  0]
[ 1  2  0  1  0  1  2  1  1  2  0  2  2  1  2  0  0  1  2  0  1  1  1  1  1  0  2  3  2  1  1  1  2  1  0  1  0 -1  0  1]
[ 1  2  1  0  1  0  2  2  1  1  0  2  2  1  2  0  0  1  1  0  1  1  2  1  1  0  1  2  3  1  2  1  2  1  1  0  0  0 -1  1]
[ 0  1  0  1  1  0  1  0  2  0  2  2  1  1  1  1  1  2  2  1  2  0  2  2  0  1  1  1  1  3  1  1  0  0  2  2  0  1  1 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

D7(7):C2*F5

    order := 40,
    length := 2177280,
    subgroup := MatrixGroup(9, Integer Ring) of order 2^3 * 5
    Generators:
        [ 4  1  2  2  1  1  0  2  0]
        [ 0  0  0  0  0  0  1  0  0]
        [-1  0 -1  0  0  0  0 -1  0]
        [-2 -1 -1 -1 -1  0  0 -1  0]
        [-1  0  0 -1  0  0  0 -1  0]
        [-2 -1 -1 -1  0 -1  0 -1  0]
        [-1  0 -1 -1  0  0  0  0  0]
        [ 0  0  0  0  0  0  0  0  1]
        [-2  0 -1 -1 -1 -1  0 -1  0]

        [ 5  0  2  2  2  2  0  2  2]
        [ 0  1  0  0  0  0  0  0  0]
        [-2  0  0 -1 -1 -1  0 -1 -1]
        [-2  0 -1  0 -1 -1  0 -1 -1]
        [-2  0 -1 -1  0 -1  0 -1 -1]
        [-2  0 -1 -1 -1  0  0 -1 -1]
        [ 0  0  0  0  0  0  1  0  0]
        [-2  0 -1 -1 -1 -1  0 -1  0]
        [-2  0 -1 -1 -1 -1  0  0 -1]

        [ 9  4  2  2  2  3  3  3  5]
        [-2 -1  0  0  0 -1 -1 -1 -1]
        [-3 -1  0 -1 -1 -1 -1 -1 -2]
        [-3 -1 -1  0 -1 -1 -1 -1 -2]
        [-3 -1 -1 -1  0 -1 -1 -1 -2]
        [-4 -2 -1 -1 -1 -1 -1 -2 -2]
        [-1 -1  0  0  0  0  0  0 -1]
        [-4 -2 -1 -1 -1 -1 -2 -1 -2]
        [-4 -2 -1 -1 -1 -2 -1 -1 -2]

        [ 3  1  1  2  0  1  1  0  0]
        [-1  0 -1 -1  0  0  0  0  0]
        [-1 -1  0 -1  0  0  0  0  0]
        [-2 -1 -1 -1  0 -1 -1  0  0]
        [ 0  0  0  0  1  0  0  0  0]
        [-1  0  0 -1  0  0 -1  0  0]
        [-1  0  0 -1  0 -1  0  0  0]
        [ 0  0  0  0  0  0  0  1  0]
        [ 0  0  0  0  0  0  0  0  1]>

Orbit type:{4,4,4,4,4,10,10,10,10,20,20,20,20,20,20,20,20,20}

Orbit:
1
{@
    Mod: ( 4 -2 -1 -2 -2 -1 -1 -1 -1),
    Mod: ( 3 -1  0 -1 -2 -1 -1 -1 -1),
    Mod: ( 4 -1 -2 -1 -1 -2 -2 -1 -1),
    Mod: ( 3 -1 -2  0 -1 -1 -1 -1 -1)
@}
Intersection Matrix:
[-1  0  2  2]
[ 0 -1  2  2]
[ 2  2 -1  0]
[ 2  2  0 -1]
Stabilizer Group Name:
D5
MatrixGroup(9, Integer Ring)
Generators:
    [ 5  0  2  2  2  2  0  2  2]
    [ 0  1  0  0  0  0  0  0  0]
    [-2  0  0 -1 -1 -1  0 -1 -1]
    [-2  0 -1  0 -1 -1  0 -1 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]
    [-2  0 -1 -1 -1  0  0 -1 -1]
    [ 0  0  0  0  0  0  1  0  0]
    [-2  0 -1 -1 -1 -1  0 -1  0]
    [-2  0 -1 -1 -1 -1  0  0 -1]

    [ 9  4  2  2  2  3  3  3  5]
    [-2 -1  0  0  0 -1 -1 -1 -1]
    [-3 -1  0 -1 -1 -1 -1 -1 -2]
    [-3 -1 -1  0 -1 -1 -1 -1 -2]
    [-3 -1 -1 -1  0 -1 -1 -1 -2]
    [-4 -2 -1 -1 -1 -1 -1 -2 -2]
    [-1 -1  0  0  0  0  0  0 -1]
    [-4 -2 -1 -1 -1 -1 -2 -1 -2]
    [-4 -2 -1 -1 -1 -2 -1 -1 -2]

2
{@
    Mod: ( 2 -1  0 -1 -1  0  0 -1 -1),
    Mod: ( 3 -1 -2 -1  0 -1 -1 -1 -1),
    Mod: ( 2  0 -1  0  0 -1 -1 -1 -1),
    Mod: ( 3 -1  0 -2 -1 -1 -1 -1 -1)
@}
Intersection Matrix:
[-1  2  2  0]
[ 2 -1  0  2]
[ 2  0 -1  2]
[ 0  2  2 -1]
Stabilizer Group Name:
D5
MatrixGroup(9, Integer Ring)
Generators:
    [ 5  0  2  2  2  2  0  2  2]
    [ 0  1  0  0  0  0  0  0  0]
    [-2  0  0 -1 -1 -1  0 -1 -1]
    [-2  0 -1  0 -1 -1  0 -1 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]
    [-2  0 -1 -1 -1  0  0 -1 -1]
    [ 0  0  0  0  0  0  1  0  0]
    [-2  0 -1 -1 -1 -1  0 -1  0]
    [-2  0 -1 -1 -1 -1  0  0 -1]

    [ 9  4  2  2  2  3  3  3  5]
    [-2 -1  0  0  0 -1 -1 -1 -1]
    [-3 -1  0 -1 -1 -1 -1 -1 -2]
    [-3 -1 -1  0 -1 -1 -1 -1 -2]
    [-3 -1 -1 -1  0 -1 -1 -1 -2]
    [-4 -2 -1 -1 -1 -1 -1 -2 -2]
    [-1 -1  0  0  0  0  0  0 -1]
    [-4 -2 -1 -1 -1 -1 -2 -1 -2]
    [-4 -2 -1 -1 -1 -2 -1 -1 -2]

3
{@
    Mod: ( 2  0  0  0 -1 -1 -1 -1 -1),
    Mod: ( 4 -1 -1 -2 -1 -2 -2 -1 -1),
    Mod: ( 2 -1 -1  0 -1  0  0 -1 -1),
    Mod: ( 4 -2 -2 -2 -1 -1 -1 -1 -1)
@}
Intersection Matrix:
[-1  1  1  3]
[ 1 -1  3  1]
[ 1  3 -1  1]
[ 3  1  1 -1]
Stabilizer Group Name:
D5
MatrixGroup(9, Integer Ring)
Generators:
    [ 5  0  2  2  2  2  0  2  2]
    [ 0  1  0  0  0  0  0  0  0]
    [-2  0  0 -1 -1 -1  0 -1 -1]
    [-2  0 -1  0 -1 -1  0 -1 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]
    [-2  0 -1 -1 -1  0  0 -1 -1]
    [ 0  0  0  0  0  0  1  0  0]
    [-2  0 -1 -1 -1 -1  0 -1  0]
    [-2  0 -1 -1 -1 -1  0  0 -1]

    [ 9  4  2  2  2  3  3  3  5]
    [-2 -1  0  0  0 -1 -1 -1 -1]
    [-3 -1  0 -1 -1 -1 -1 -1 -2]
    [-3 -1 -1  0 -1 -1 -1 -1 -2]
    [-3 -1 -1 -1  0 -1 -1 -1 -2]
    [-4 -2 -1 -1 -1 -1 -1 -2 -2]
    [-1 -1  0  0  0  0  0  0 -1]
    [-4 -2 -1 -1 -1 -1 -2 -1 -2]
    [-4 -2 -1 -1 -1 -2 -1 -1 -2]

4
{@
    Mod: ( 5 -2 -2 -2 -2 -2 -2 -1 -1),
    Mod: ( 3 -1 -1  0 -2 -1 -1 -1 -1),
    Mod: ( 4 -2 -2 -1 -2 -1 -1 -1 -1),
    Mod: ( 4 -1 -1 -1 -2 -2 -2 -1 -1)
@}
Intersection Matrix:
[-1  1  0  0]
[ 1 -1  0  0]
[ 0  0 -1  1]
[ 0  0  1 -1]
Stabilizer Group Name:
D5
MatrixGroup(9, Integer Ring)
Generators:
    [ 5  0  2  2  2  2  0  2  2]
    [ 0  1  0  0  0  0  0  0  0]
    [-2  0  0 -1 -1 -1  0 -1 -1]
    [-2  0 -1  0 -1 -1  0 -1 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]
    [-2  0 -1 -1 -1  0  0 -1 -1]
    [ 0  0  0  0  0  0  1  0  0]
    [-2  0 -1 -1 -1 -1  0 -1  0]
    [-2  0 -1 -1 -1 -1  0  0 -1]

    [ 9  4  2  2  2  3  3  3  5]
    [-2 -1  0  0  0 -1 -1 -1 -1]
    [-3 -1  0 -1 -1 -1 -1 -1 -2]
    [-3 -1 -1  0 -1 -1 -1 -1 -2]
    [-3 -1 -1 -1  0 -1 -1 -1 -2]
    [-4 -2 -1 -1 -1 -1 -1 -2 -2]
    [-1 -1  0  0  0  0  0  0 -1]
    [-4 -2 -1 -1 -1 -1 -2 -1 -2]
    [-4 -2 -1 -1 -1 -2 -1 -1 -2]

5
{@
    Mod: ( 1  0  0  0  0  0  0 -1 -1),
    Mod: ( 3 -1 -1 -2  0 -1 -1 -1 -1),
    Mod: ( 2 -1 -1 -1  0  0  0 -1 -1),
    Mod: ( 2  0  0 -1  0 -1 -1 -1 -1)
@}
Intersection Matrix:
[-1  1  0  0]
[ 1 -1  0  0]
[ 0  0 -1  1]
[ 0  0  1 -1]
Stabilizer Group Name:
D5
MatrixGroup(9, Integer Ring)
Generators:
    [ 5  0  2  2  2  2  0  2  2]
    [ 0  1  0  0  0  0  0  0  0]
    [-2  0  0 -1 -1 -1  0 -1 -1]
    [-2  0 -1  0 -1 -1  0 -1 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]
    [-2  0 -1 -1 -1  0  0 -1 -1]
    [ 0  0  0  0  0  0  1  0  0]
    [-2  0 -1 -1 -1 -1  0 -1  0]
    [-2  0 -1 -1 -1 -1  0  0 -1]

    [ 9  4  2  2  2  3  3  3  5]
    [-2 -1  0  0  0 -1 -1 -1 -1]
    [-3 -1  0 -1 -1 -1 -1 -1 -2]
    [-3 -1 -1  0 -1 -1 -1 -1 -2]
    [-3 -1 -1 -1  0 -1 -1 -1 -2]
    [-4 -2 -1 -1 -1 -1 -1 -2 -2]
    [-1 -1  0  0  0  0  0  0 -1]
    [-4 -2 -1 -1 -1 -1 -2 -1 -2]
    [-4 -2 -1 -1 -1 -2 -1 -1 -2]

6
{@
    Mod: ( 5 -2 -1 -2 -2 -1 -2 -2 -2),
    Mod: ( 2 -1 -1  0  0 -1 -1 -1  0),
    Mod: ( 2 -1  0 -1 -1 -1  0 -1  0),
    Mod: ( 3  0 -2 -1 -1 -1 -1 -1 -1),
    Mod: ( 1  0 -1  0  0  0 -1  0  0),
    Mod: ( 5 -2 -2 -1 -1 -2 -2 -2 -2),
    Mod: ( 2 -1  0 -1 -1 -1  0  0 -1),
    Mod: ( 2 -1  0 -1 -1  0 -1  0 -1),
    Mod: ( 4 -1 -2 -1 -1 -2 -1 -1 -2),
    Mod: ( 4 -1 -1 -2 -2 -1 -1 -2 -1)
@}
Intersection Matrix:
[-1  2  1  2  2  1  1  0  2  0]
[ 2 -1  1  1  0  0  2  2  1  2]
[ 1  1 -1  2  2  2  0  1  2  0]
[ 2  1  2 -1  0  1  2  2  0  1]
[ 2  0  2  0 -1  1  2  1  1  2]
[ 1  0  2  1  1 -1  2  2  0  2]
[ 1  2  0  2  2  2 -1  0  1  1]
[ 0  2  1  2  1  2  0 -1  2  1]
[ 2  1  2  0  1  0  1  2 -1  2]
[ 0  2  0  1  2  2  1  1  2 -1]
Stabilizer Group Name:
C2^2
MatrixGroup(9, Integer Ring)
Generators:
    [ 5  0  2  2  2  2  0  2  2]
    [ 0  1  0  0  0  0  0  0  0]
    [-2  0  0 -1 -1 -1  0 -1 -1]
    [-2  0 -1  0 -1 -1  0 -1 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]
    [-2  0 -1 -1 -1  0  0 -1 -1]
    [ 0  0  0  0  0  0  1  0  0]
    [-2  0 -1 -1 -1 -1  0 -1  0]
    [-2  0 -1 -1 -1 -1  0  0 -1]

    [ 3  1  1  2  0  1  1  0  0]
    [-1  0 -1 -1  0  0  0  0  0]
    [-1 -1  0 -1  0  0  0  0  0]
    [-2 -1 -1 -1  0 -1 -1  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1  0  0 -1  0  0 -1  0  0]
    [-1  0  0 -1  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  1  0]
    [ 0  0  0  0  0  0  0  0  1]

7
{@
    Mod: ( 3 -2  0 -1 -1 -1 -1 -1 -1),
    Mod: ( 4 -1 -2 -1 -1 -1 -2 -2 -1),
    Mod: ( 4 -1 -1 -2 -2 -1 -1 -1 -2),
    Mod: ( 2 -1 -1  0  0 -1 -1  0 -1),
    Mod: ( 4 -1 -2 -1 -1 -2 -1 -2 -1),
    Mod: ( 1  0 -1  0  0 -1  0  0  0),
    Mod: ( 1  0  0 -1 -1  0  0  0  0),
    Mod: ( 4 -1 -2 -1 -1 -1 -2 -1 -2),
    Mod: ( 2 -1  0 -1 -1  0 -1 -1  0),
    Mod: ( 5 -2 -1 -2 -2 -2 -1 -2 -2)
@}
Intersection Matrix:
[-1  2  1  1  2  2  1  2  0  0]
[ 2 -1  2  1  0  1  2  0  1  2]
[ 1  2 -1  2  2  2  0  1  1  0]
[ 1  1  2 -1  1  0  2  0  2  2]
[ 2  0  2  1 -1  0  2  1  2  1]
[ 2  1  2  0  0 -1  1  1  2  2]
[ 1  2  0  2  2  1 -1  2  0  1]
[ 2  0  1  0  1  1  2 -1  2  2]
[ 0  1  1  2  2  2  0  2 -1  1]
[ 0  2  0  2  1  2  1  2  1 -1]
Stabilizer Group Name:
C2^2
MatrixGroup(9, Integer Ring)
Generators:
    [12  4  4  5  3  4  4  3  6]
    [-4 -1 -2 -2 -1 -1 -1 -1 -2]
    [-4 -2 -1 -2 -1 -1 -1 -1 -2]
    [-5 -2 -2 -2 -1 -2 -2 -1 -2]
    [-3 -1 -1 -1  0 -1 -1 -1 -2]
    [-4 -1 -1 -2 -1 -2 -1 -1 -2]
    [-4 -1 -1 -2 -1 -1 -2 -1 -2]
    [-3 -1 -1 -1 -1 -1 -1  0 -2]
    [-6 -2 -2 -2 -2 -2 -2 -2 -3]

    [ 3  1  1  2  0  1  1  0  0]
    [-1  0 -1 -1  0  0  0  0  0]
    [-1 -1  0 -1  0  0  0  0  0]
    [-2 -1 -1 -1  0 -1 -1  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1  0  0 -1  0  0 -1  0  0]
    [-1  0  0 -1  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  1  0]
    [ 0  0  0  0  0  0  0  0  1]

8
{@
    Mod: ( 3 -1 -1 -1  0 -1 -1 -1 -2),
    Mod: ( 2  0 -1 -1  0 -1  0 -1 -1),
    Mod: ( 1  0  0 -1  0  0  0 -1  0),
    Mod: ( 2  0 -1 -1  0  0 -1 -1 -1),
    Mod: ( 2 -1  0 -1  0 -1  0 -1 -1),
    Mod: ( 2 -1  0 -1  0  0 -1 -1 -1),
    Mod: ( 3 -1 -1 -1  0 -1 -1 -2 -1),
    Mod: ( 4 -1 -1 -2 -1 -1 -1 -2 -2),
    Mod: (0 0 0 0 1 0 0 0 0),
    Mod: ( 1  0  0 -1  0  0  0  0 -1)
@}
Intersection Matrix:
[-1  0  1  0  0  0  0  0  0  0]
[ 0 -1  0  0  0  1  0  0  0  0]
[ 1  0 -1  0  0  0  0  0  0  0]
[ 0  0  0 -1  1  0  0  0  0  0]
[ 0  0  0  1 -1  0  0  0  0  0]
[ 0  1  0  0  0 -1  0  0  0  0]
[ 0  0  0  0  0  0 -1  0  0  1]
[ 0  0  0  0  0  0  0 -1  1  0]
[ 0  0  0  0  0  0  0  1 -1  0]
[ 0  0  0  0  0  0  1  0  0 -1]
Stabilizer Group Name:
C2^2
MatrixGroup(9, Integer Ring)
Generators:
    [ 8  2  3  4  2  1  4  3  2]
    [-2 -1 -1 -1  0  0 -1 -1  0]
    [-3 -1 -1 -2 -1  0 -1 -1 -1]
    [-4 -1 -2 -2 -1 -1 -2 -1 -1]
    [-2  0 -1 -1  0  0 -1 -1 -1]
    [-1  0  0 -1  0  0 -1  0  0]
    [-4 -1 -1 -2 -1 -1 -2 -2 -1]
    [-3 -1 -1 -1 -1  0 -2 -1 -1]
    [-2  0 -1 -1 -1  0 -1 -1  0]

    [ 3  1  1  2  0  1  1  0  0]
    [-1  0 -1 -1  0  0  0  0  0]
    [-1 -1  0 -1  0  0  0  0  0]
    [-2 -1 -1 -1  0 -1 -1  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1  0  0 -1  0  0 -1  0  0]
    [-1  0  0 -1  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  1  0]
    [ 0  0  0  0  0  0  0  0  1]

9
{@
    Mod: ( 2 -1 -1  0 -1 -1 -1  0  0),
    Mod: ( 5 -2 -2 -1 -2 -2 -2 -2 -1),
    Mod: ( 3 -1 -1 -1 -2 -1 -1 -1  0),
    Mod: ( 4 -2 -1 -1 -2 -1 -2 -1 -1),
    Mod: ( 4 -1 -2 -1 -2 -1 -2 -1 -1),
    Mod: ( 4 -2 -1 -1 -2 -2 -1 -1 -1),
    Mod: ( 3 -1 -1 -1 -2 -1 -1  0 -1),
    Mod: ( 4 -1 -2 -1 -2 -2 -1 -1 -1),
    Mod: ( 6 -2 -2 -2 -3 -2 -2 -2 -2),
    Mod: ( 5 -2 -2 -1 -2 -2 -2 -1 -2)
@}
Intersection Matrix:
[-1  0  0  0  0  0  0  0  1  0]
[ 0 -1  0  0  0  0  1  0  0  0]
[ 0  0 -1  0  0  0  0  0  0  1]
[ 0  0  0 -1  0  0  0  1  0  0]
[ 0  0  0  0 -1  1  0  0  0  0]
[ 0  0  0  0  1 -1  0  0  0  0]
[ 0  1  0  0  0  0 -1  0  0  0]
[ 0  0  0  1  0  0  0 -1  0  0]
[ 1  0  0  0  0  0  0  0 -1  0]
[ 0  0  1  0  0  0  0  0  0 -1]
Stabilizer Group Name:
C2^2
MatrixGroup(9, Integer Ring)
Generators:
    [ 5  3  1  2  0  2  2  1  1]
    [-3 -2 -1 -1  0 -1 -1 -1 -1]
    [-1 -1  0 -1  0  0  0  0  0]
    [-2 -1 -1 -1  0 -1 -1  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-2 -1  0 -1  0 -1 -1 -1  0]
    [-2 -1  0 -1  0 -1 -1  0 -1]
    [-1 -1  0  0  0 -1  0  0  0]
    [-1 -1  0  0  0  0 -1  0  0]

    [ 3  1  1  2  0  1  1  0  0]
    [-1  0 -1 -1  0  0  0  0  0]
    [-1 -1  0 -1  0  0  0  0  0]
    [-2 -1 -1 -1  0 -1 -1  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1  0  0 -1  0  0 -1  0  0]
    [-1  0  0 -1  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  1  0]
    [ 0  0  0  0  0  0  0  0  1]

10
{@
    Mod: (0 0 0 0 0 0 0 0 1),
    Mod: ( 1 -1  0  0  0 -1  0  0  0),
    Mod: ( 5 -1 -2 -2 -2 -2 -1 -2 -2),
    Mod: ( 4 -2 -1 -1 -1 -1 -2 -2 -1),
    Mod: ( 3 -1 -1 -1 -1 -2  0 -1 -1),
    Mod: (0 0 0 0 0 0 0 1 0),
    Mod: ( 2  0 -1 -1 -1  0 -1 -1  0),
    Mod: ( 2  0 -1 -1 -1 -1  0  0 -1),
    Mod: ( 2  0 -1 -1 -1 -1  0 -1  0),
    Mod: ( 3 -1 -1 -1 -1 -1 -1  0 -2),
    Mod: ( 4 -2 -1 -1 -1 -2 -1 -1 -2),
    Mod: ( 6 -2 -2 -2 -2 -2 -2 -2 -3),
    Mod: ( 3 -1 -1 -1 -1  0 -2 -1 -1),
    Mod: ( 6 -2 -2 -2 -2 -2 -2 -3 -2),
    Mod: ( 4 -2 -1 -1 -1 -2 -1 -2 -1),
    Mod: ( 2  0 -1 -1 -1  0 -1  0 -1),
    Mod: ( 5 -1 -2 -2 -2 -1 -2 -2 -2),
    Mod: ( 3 -1 -1 -1 -1 -1 -1 -2  0),
    Mod: ( 4 -2 -1 -1 -1 -1 -2 -1 -2),
    Mod: ( 1 -1  0  0  0  0 -1  0  0)
@}
Intersection Matrix:
[-1  0  2  1  1  0  0  1  0  2  2  3  1  2  1  1  2  0  2  0]
[ 0 -1  2  1  0  0  2  1  1  1  0  2  2  2  0  2  3  1  1  0]
[ 2  2 -1  2  0  2  1  0  0  1  1  0  2  0  1  1  0  1  2  3]
[ 1  1  2 -1  2  2  1  3  2  2  1  1  0  0  0  2  1  0  0  0]
[ 1  0  0  2 -1  1  2  0  0  1  0  1  3  1  0  2  2  1  2  2]
[ 0  0  2  2  1 -1  1  0  1  0  1  2  1  3  2  0  2  2  1  0]
[ 0  2  1  1  2  1 -1  1  0  2  3  2  0  1  2  0  0  0  2  1]
[ 1  1  0  3  0  0  1 -1  0  0  1  1  2  2  2  0  1  2  2  2]
[ 0  1  0  2  0  1  0  0 -1  2  2  2  2  1  1  1  1  0  3  2]
[ 2  1  1  2  1  0  2  0  2 -1  0  0  1  2  2  0  1  3  0  1]
[ 2  0  1  1  0  1  3  1  2  0 -1  0  2  1  0  2  2  2  0  1]
[ 3  2  0  1  1  2  2  1  2  0  0 -1  1  0  1  1  0  2  0  2]
[ 1  2  2  0  3  1  0  2  2  1  2  1 -1  1  2  0  0  1  0  0]
[ 2  2  0  0  1  3  1  2  1  2  1  0  1 -1  0  2  0  0  1  2]
[ 1  0  1  0  0  2  2  2  1  2  0  1  2  0 -1  3  2  0  1  1]
[ 1  2  1  2  2  0  0  0  1  0  2  1  0  2  3 -1  0  2  1  1]
[ 2  3  0  1  2  2  0  1  1  1  2  0  0  0  2  0 -1  1  1  2]
[ 0  1  1  0  1  2  0  2  0  3  2  2  1  0  0  2  1 -1  2  1]
[ 2  1  2  0  2  1  2  2  3  0  0  0  0  1  1  1  1  2 -1  0]
[ 0  0  3  0  2  0  1  2  2  1  1  2  0  2  1  1  2  1  0 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  2  0  1  1  0  0]
    [-1  0 -1 -1  0  0  0  0  0]
    [-1 -1  0 -1  0  0  0  0  0]
    [-2 -1 -1 -1  0 -1 -1  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1  0  0 -1  0  0 -1  0  0]
    [-1  0  0 -1  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  1  0]
    [ 0  0  0  0  0  0  0  0  1]

11
{@
    Mod: ( 3 -1 -1  0 -1 -2 -1 -1 -1),
    Mod: ( 4 -2 -1 -1 -2 -1 -1 -1 -2),
    Mod: ( 2  0 -1  0 -1 -1 -1  0 -1),
    Mod: ( 4 -1 -1 -2 -2 -2 -1 -1 -1),
    Mod: ( 1 -1  0  0 -1  0  0  0  0),
    Mod: ( 3 -1 -2 -1 -1 -1 -1  0 -1),
    Mod: ( 3 -1 -1 -1 -2 -1  0 -1 -1),
    Mod: ( 4 -2 -1 -1 -2 -1 -1 -2 -1),
    Mod: ( 6 -2 -3 -2 -2 -2 -2 -2 -2),
    Mod: ( 4 -2 -2 -1 -1 -1 -2 -1 -1),
    Mod: ( 3 -1 -1  0 -1 -1 -2 -1 -1),
    Mod: ( 2 -1  0 -1 -1 -1 -1  0  0),
    Mod: ( 5 -2 -1 -2 -2 -2 -2 -1 -2),
    Mod: ( 2  0 -1  0 -1 -1 -1 -1  0),
    Mod: ( 3 -1 -1 -1 -2  0 -1 -1 -1),
    Mod: ( 3 -1 -2 -1 -1 -1 -1 -1  0),
    Mod: ( 4 -1 -1 -2 -2 -1 -2 -1 -1),
    Mod: ( 5 -2 -1 -2 -2 -2 -2 -2 -1),
    Mod: ( 4 -2 -2 -1 -1 -2 -1 -1 -1),
    Mod: ( 5 -1 -2 -1 -2 -2 -2 -2 -2)
@}
Intersection Matrix:
[-1  1  0  1  1  1  1  1  1  1  0  1  1  0  2  1  2  1  0  0]
[ 1 -1  1  1  0  1  0  0  1  1  1  1  0  2  0  2  1  1  1  1]
[ 0  1 -1  1  1  0  1  2  1  1  0  1  1  0  1  1  1  2  1  0]
[ 1  1  1 -1  1  1  0  1  1  2  2  0  0  1  1  1  0  0  1  1]
[ 1  0  1  1 -1  1  0  0  2  1  1  0  1  1  0  1  1  1  1  2]
[ 1  1  0  1  1 -1  1  2  0  0  1  1  1  1  1  0  1  2  0  1]
[ 1  0  1  0  0  1 -1  0  1  2  2  1  1  1  0  1  1  1  1  1]
[ 1  0  2  1  0  2  0 -1  1  1  1  1  1  1  0  1  1  0  1  1]
[ 1  1  1  1  2  0  1  1 -1  0  1  2  1  1  1  0  1  1  0  0]
[ 1  1  1  2  1  0  2  1  0 -1  0  1  1  1  1  0  1  1  0  1]
[ 0  1  0  2  1  1  2  1  1  0 -1  1  1  0  1  1  1  1  1  0]
[ 1  1  1  0  0  1  1  1  2  1  1 -1  0  1  1  1  0  0  1  2]
[ 1  0  1  0  1  1  1  1  1  1  1  0 -1  2  1  2  0  0  1  1]
[ 0  2  0  1  1  1  1  1  1  1  0  1  2 -1  1  0  1  1  1  0]
[ 2  0  1  1  0  1  0  0  1  1  1  1  1  1 -1  1  0  1  2  1]
[ 1  2  1  1  1  0  1  1  0  0  1  1  2  0  1 -1  1  1  0  1]
[ 2  1  1  0  1  1  1  1  1  1  1  0  0  1  0  1 -1  0  2  1]
[ 1  1  2  0  1  2  1  0  1  1  1  0  0  1  1  1  0 -1  1  1]
[ 0  1  1  1  1  0  1  1  0  0  1  1  1  1  2  0  2  1 -1  1]
[ 0  1  0  1  2  1  1  1  0  1  0  2  1  0  1  1  1  1  1 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 5  0  2  2  2  2  0  2  2]
    [ 0  1  0  0  0  0  0  0  0]
    [-2  0  0 -1 -1 -1  0 -1 -1]
    [-2  0 -1  0 -1 -1  0 -1 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]
    [-2  0 -1 -1 -1  0  0 -1 -1]
    [ 0  0  0  0  0  0  1  0  0]
    [-2  0 -1 -1 -1 -1  0 -1  0]
    [-2  0 -1 -1 -1 -1  0  0 -1]

12
{@
    Mod: ( 2 -1 -1  0  0 -1  0 -1 -1),
    Mod: ( 1  0 -1  0  0  0  0  0 -1),
    Mod: ( 2  0 -1 -1  0 -1 -1  0 -1),
    Mod: ( 2  0  0 -1 -1  0 -1 -1 -1),
    Mod: ( 4 -1 -2 -1 -1 -1 -1 -2 -2),
    Mod: ( 1 -1  0 -1  0  0  0  0  0),
    Mod: ( 3 -1  0 -1 -1 -1 -1 -1 -2),
    Mod: ( 3 -1 -1 -1  0 -2 -1 -1 -1),
    Mod: ( 3 -1 -1 -1  0 -1 -2 -1 -1),
    Mod: (0 0 1 0 0 0 0 0 0),
    Mod: ( 2  0 -1 -1  0 -1 -1 -1  0),
    Mod: ( 1  0 -1  0  0  0  0 -1  0),
    Mod: ( 3 -1 -1 -2 -1 -1  0 -1 -1),
    Mod: ( 5 -1 -2 -2 -1 -2 -2 -2 -2),
    Mod: ( 2 -1 -1  0  0  0 -1 -1 -1),
    Mod: ( 4 -2 -1 -2 -1 -1 -1 -1 -2),
    Mod: ( 2  0  0 -1 -1 -1  0 -1 -1),
    Mod: ( 3 -1 -1 -2 -1  0 -1 -1 -1),
    Mod: ( 3 -1  0 -1 -1 -1 -1 -2 -1),
    Mod: ( 4 -2 -1 -2 -1 -1 -1 -2 -1)
@}
Intersection Matrix:
[-1  0  1  2  0  1  1  0  1  1  1  0  1  1  0  1  1  2  1  1]
[ 0 -1  0  1  0  1  1  1  1  1  1  0  1  1  0  1  1  1  2  2]
[ 1  0 -1  1  1  1  1  0  0  1  0  1  1  0  1  1  1  1  2  2]
[ 2  1  1 -1  1  1  0  2  1  0  1  1  1  1  1  1  0  0  0  1]
[ 0  0  1  1 -1  2  1  1  1  2  1  0  1  0  0  1  1  1  1  1]
[ 1  1  1  1  2 -1  1  1  1  0  1  1  0  2  1  0  1  0  1  0]
[ 1  1  1  0  1  1 -1  1  1  0  2  2  1  1  1  0  0  1  0  1]
[ 0  1  0  2  1  1  1 -1  0  1  0  1  1  0  1  1  1  2  1  1]
[ 1  1  0  1  1  1  1  0 -1  1  0  1  2  0  0  1  2  1  1  1]
[ 1  1  1  0  2  0  0  1  1 -1  1  1  1  2  1  1  0  1  0  1]
[ 1  1  0  1  1  1  2  0  0  1 -1  0  1  0  1  2  1  1  1  1]
[ 0  0  1  1  0  1  2  1  1  1  0 -1  1  1  0  2  1  1  1  1]
[ 1  1  1  1  1  0  1  1  2  1  1  1 -1  1  2  0  0  0  1  0]
[ 1  1  0  1  0  2  1  0  0  2  0  1  1 -1  1  1  1  1  1  1]
[ 0  0  1  1  0  1  1  1  0  1  1  0  2  1 -1  1  2  1  1  1]
[ 1  1  1  1  1  0  0  1  1  1  2  2  0  1  1 -1  1  0  1  0]
[ 1  1  1  0  1  1  0  1  2  0  1  1  0  1  2  1 -1  1  0  1]
[ 2  1  1  0  1  0  1  2  1  1  1  1  0  1  1  0  1 -1  1  0]
[ 1  2  2  0  1  1  0  1  1  0  1  1  1  1  1  1  0  1 -1  0]
[ 1  2  2  1  1  0  1  1  1  1  1  1  0  1  1  0  1  0  0 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 5  0  2  2  2  2  0  2  2]
    [ 0  1  0  0  0  0  0  0  0]
    [-2  0  0 -1 -1 -1  0 -1 -1]
    [-2  0 -1  0 -1 -1  0 -1 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]
    [-2  0 -1 -1 -1  0  0 -1 -1]
    [ 0  0  0  0  0  0  1  0  0]
    [-2  0 -1 -1 -1 -1  0 -1  0]
    [-2  0 -1 -1 -1 -1  0  0 -1]

13
{@
    Mod: ( 2 -1  0 -1  0 -1 -1  0 -1),
    Mod: ( 4 -1 -1 -2 -1 -1 -2 -2 -1),
    Mod: ( 1  0 -1 -1  0  0  0  0  0),
    Mod: ( 3 -1 -1 -1 -1 -1  0 -2 -1),
    Mod: ( 1  0  0  0  0  0 -1 -1  0),
    Mod: (0 0 0 0 0 0 1 0 0),
    Mod: ( 2 -1 -1 -1  0  0 -1 -1  0),
    Mod: ( 4 -1 -1 -1 -1 -2 -1 -2 -2),
    Mod: ( 4 -1 -1 -2 -1 -2 -1 -2 -1),
    Mod: ( 3 -2 -1 -1  0 -1 -1 -1 -1),
    Mod: ( 2 -1  0  0  0 -1 -1 -1 -1),
    Mod: ( 1  0  0 -1  0 -1  0  0  0),
    Mod: ( 1 -1  0  0  0  0  0  0 -1),
    Mod: ( 3 -1 -1 -1 -1  0 -1 -2 -1),
    Mod: ( 5 -2 -2 -2 -1 -2 -1 -2 -2),
    Mod: ( 4 -1 -2 -2 -1 -1 -1 -1 -2),
    Mod: ( 3 -1 -1 -1 -1  0 -1 -1 -2),
    Mod: ( 3  0 -1 -1 -1 -1 -1 -1 -2),
    Mod: (0 1 0 0 0 0 0 0 0),
    Mod: ( 4 -1 -1 -2 -1 -1 -2 -1 -2)
@}
Intersection Matrix:
[-1  1  1  2  1  1  1  1  1  0  0  0  0  2  1  1  1  1  1  0]
[ 1 -1  1  1  0  2  0  1  0  1  1  1  2  0  1  1  1  1  1  0]
[ 1  1 -1  1  1  0  0  2  1  1  2  0  1  1  1  0  1  1  0  1]
[ 2  1  1 -1  1  0  1  0  0  1  1  1  1  0  0  1  1  1  1  2]
[ 1  0  1  1 -1  1  0  1  1  1  0  1  1  0  2  2  1  1  0  1]
[ 1  2  0  0  1 -1  1  1  1  1  1  0  0  1  1  1  1  1  0  2]
[ 1  0  0  1  0  1 -1  2  1  0  1  1  1  0  1  1  1  2  1  1]
[ 1  1  2  0  1  1  2 -1  0  1  0  1  1  1  0  1  1  0  1  1]
[ 1  0  1  0  1  1  1  0 -1  1  1  0  2  1  0  1  2  1  1  1]
[ 0  1  1  1  1  1  0  1  1 -1  0  1  0  1  0  1  1  2  2  1]
[ 0  1  2  1  0  1  1  0  1  0 -1  1  0  1  1  2  1  1  1  1]
[ 0  1  0  1  1  0  1  1  0  1  1 -1  1  2  1  1  2  1  0  1]
[ 0  2  1  1  1  0  1  1  2  0  0  1 -1  1  1  1  0  1  1  1]
[ 2  0  1  0  0  1  0  1  1  1  1  2  1 -1  1  1  0  1  1  1]
[ 1  1  1  0  2  1  1  0  0  0  1  1  1  1 -1  0  1  1  2  1]
[ 1  1  0  1  2  1  1  1  1  1  2  1  1  1  0 -1  0  0  1  0]
[ 1  1  1  1  1  1  1  1  2  1  1  2  0  0  1  0 -1  0  1  0]
[ 1  1  1  1  1  1  2  0  1  2  1  1  1  1  1  0  0 -1  0  0]
[ 1  1  0  1  0  0  1  1  1  2  1  0  1  1  2  1  1  0 -1  1]
[ 0  0  1  2  1  2  1  1  1  1  1  1  1  1  1  0  0  0  1 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [10  3  3  3  3  3  3  3  6]
    [-3  0 -1 -1 -1 -1 -1 -1 -2]
    [-3 -1  0 -1 -1 -1 -1 -1 -2]
    [-3 -1 -1  0 -1 -1 -1 -1 -2]
    [-3 -1 -1 -1  0 -1 -1 -1 -2]
    [-3 -1 -1 -1 -1 -1  0 -1 -2]
    [-3 -1 -1 -1 -1  0 -1 -1 -2]
    [-3 -1 -1 -1 -1 -1 -1  0 -2]
    [-6 -2 -2 -2 -2 -2 -2 -2 -3]

14
{@
    Mod: ( 3 -1 -1 -1 -1 -2 -1  0 -1),
    Mod: ( 2 -1 -1 -1 -1  0 -1  0  0),
    Mod: ( 6 -2 -2 -2 -2 -2 -3 -2 -2),
    Mod: ( 2 -1 -1  0 -1  0 -1  0 -1),
    Mod: ( 2 -1 -1  0 -1 -1  0 -1  0),
    Mod: ( 4 -1 -1 -1 -2 -2 -1 -1 -2),
    Mod: ( 4 -1 -2 -1 -2 -1 -1 -2 -1),
    Mod: ( 6 -3 -2 -2 -2 -2 -2 -2 -2),
    Mod: ( 1  0  0  0 -1  0 -1  0  0),
    Mod: ( 3 -1 -1 -1 -1 -2 -1 -1  0),
    Mod: ( 3 -1 -1 -1 -1 -1 -2  0 -1),
    Mod: ( 3  0 -1 -1 -2 -1 -1 -1 -1),
    Mod: ( 5 -2 -2 -1 -2 -1 -2 -2 -2),
    Mod: ( 2 -1 -1  0 -1 -1  0  0 -1),
    Mod: ( 3 -2 -1 -1 -1 -1 -1 -1  0),
    Mod: ( 5 -2 -2 -2 -2 -2 -1 -1 -2),
    Mod: ( 5 -1 -2 -2 -2 -2 -2 -2 -1),
    Mod: ( 5 -2 -1 -1 -2 -2 -2 -2 -2),
    Mod: ( 2 -1  0  0 -1 -1 -1 -1  0),
    Mod: ( 4 -1 -2 -2 -2 -1 -1 -1 -1)
@}
Intersection Matrix:
[-1  1  1  1  1  0  2  1  1  0  0  1  2  0  1  0  1  1  1  1]
[ 1 -1  1  0  1  2  1  1  0  1  0  1  1  1  0  1  1  2  1  0]
[ 1  1 -1  1  2  1  1  0  1  1  0  1  0  2  1  1  0  0  1  1]
[ 1  0  1 -1  1  1  1  1  0  2  0  1  0  0  1  1  2  1  1  1]
[ 1  1  2  1 -1  1  0  1  1  0  2  1  1  0  0  1  1  1  0  1]
[ 0  2  1  1  1 -1  1  1  1  1  1  0  1  0  2  0  1  0  1  1]
[ 2  1  1  1  0  1 -1  1  1  1  2  0  0  1  1  1  0  1  1  0]
[ 1  1  0  1  1  1  1 -1  2  1  1  2  0  1  0  0  1  0  1  1]
[ 1  0  1  0  1  1  1  2 -1  1  0  0  1  1  1  2  1  1  0  1]
[ 0  1  1  2  0  1  1  1  1 -1  1  1  2  1  0  1  0  1  0  1]
[ 0  0  0  0  2  1  2  1  0  1 -1  1  1  1  1  1  1  1  1  1]
[ 1  1  1  1  1  0  0  2  0  1  1 -1  1  1  2  1  0  1  1  0]
[ 2  1  0  0  1  1  0  0  1  2  1  1 -1  1  1  1  1  0  1  1]
[ 0  1  2  0  0  0  1  1  1  1  1  1  1 -1  1  0  2  1  1  1]
[ 1  0  1  1  0  2  1  0  1  0  1  2  1  1 -1  1  1  1  0  1]
[ 0  1  1  1  1  0  1  0  2  1  1  1  1  0  1 -1  1  1  2  0]
[ 1  1  0  2  1  1  0  1  1  0  1  0  1  2  1  1 -1  1  1  0]
[ 1  2  0  1  1  0  1  0  1  1  1  1  0  1  1  1  1 -1  0  2]
[ 1  1  1  1  0  1  1  1  0  0  1  1  1  1  0  2  1  0 -1  2]
[ 1  0  1  1  1  1  0  1  1  1  1  0  1  1  1  0  0  2  2 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  2  0  0  0  1  1  1  1]
    [-2 -1  0  0  0 -1 -1 -1 -1]
    [ 0  0  1  0  0  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [-1 -1  0  0  0  0  0  0 -1]
    [-1 -1  0  0  0 -1  0  0  0]
    [-1 -1  0  0  0  0 -1  0  0]

15
{@
    Mod: ( 4 -1 -2 -2 -1 -1 -1 -2 -1),
    Mod: ( 2  0 -1 -1 -1  0  0 -1 -1),
    Mod: ( 4 -2 -1 -1 -1 -1 -1 -2 -2),
    Mod: ( 1 -1  0  0  0  0  0 -1  0),
    Mod: ( 2 -1 -1 -1  0 -1  0 -1  0),
    Mod: ( 2 -1 -1 -1  0  0 -1  0 -1),
    Mod: ( 1  0  0 -1  0  0 -1  0  0),
    Mod: ( 5 -2 -2 -2 -1 -1 -2 -2 -2),
    Mod: ( 3 -1 -1 -1 -1 -1  0 -1 -2),
    Mod: ( 1  0  0  0  0 -1  0  0 -1),
    Mod: ( 3  0 -1 -1 -1 -1 -1 -2 -1),
    Mod: ( 5 -2 -1 -2 -1 -2 -2 -2 -2),
    Mod: ( 2 -1 -1 -1  0 -1  0  0 -1),
    Mod: (0 0 0 0 0 1 0 0 0),
    Mod: ( 1  0  0  0  0  0 -1  0 -1),
    Mod: ( 4 -1 -1 -1 -1 -1 -2 -2 -2),
    Mod: ( 2 -1  0 -1  0 -1 -1 -1  0),
    Mod: ( 3  0 -1 -2 -1 -1 -1 -1 -1),
    Mod: ( 1  0  0  0  0 -1  0 -1  0),
    Mod: ( 4 -1 -1 -2 -1 -2 -1 -1 -2)
@}
Intersection Matrix:
[-1  0  1  1  0  1  1  0  1  2  0  1  1  1  2  1  1  0  1  1]
[ 0 -1  1  1  1  1  1  1  0  1  0  2  1  0  1  1  2  0  1  1]
[ 1  1 -1  0  1  1  2  0  0  1  1  0  1  1  1  0  1  2  1  1]
[ 1  1  0 -1  0  1  1  1  1  1  1  1  1  0  1  1  0  2  0  2]
[ 0  1  1  0 -1  1  1  1  1  1  1  1  0  1  2  2  0  1  0  1]
[ 1  1  1  1  1 -1  0  0  1  1  2  1  0  0  0  1  1  1  2  1]
[ 1  1  2  1  1  0 -1  1  2  1  1  1  1  0  0  1  0  0  1  1]
[ 0  1  0  1  1  0  1 -1  1  2  1  0  1  1  1  0  1  1  2  1]
[ 1  0  0  1  1  1  2  1 -1  0  1  1  0  1  1  1  2  1  1  0]
[ 2  1  1  1  1  1  1  2  0 -1  1  1  0  1  0  1  1  1  0  0]
[ 0  0  1  1  1  2  1  1  1  1 -1  1  2  1  1  0  1  0  0  1]
[ 1  2  0  1  1  1  1  0  1  1  1 -1  1  2  1  0  0  1  1  0]
[ 1  1  1  1  0  0  1  1  0  0  2  1 -1  1  1  2  1  1  1  0]
[ 1  0  1  0  1  0  0  1  1  1  1  2  1 -1  0  1  1  1  1  2]
[ 2  1  1  1  2  0  0  1  1  0  1  1  1  0 -1  0  1  1  1  1]
[ 1  1  0  1  2  1  1  0  1  1  0  0  2  1  0 -1  1  1  1  1]
[ 1  2  1  0  0  1  0  1  2  1  1  0  1  1  1  1 -1  1  0  1]
[ 0  0  2  2  1  1  0  1  1  1  0  1  1  1  1  1  1 -1  1  0]
[ 1  1  1  0  0  2  1  2  1  0  0  1  1  1  1  1  0  1 -1  1]
[ 1  1  1  2  1  1  1  1  0  0  1  0  0  2  1  1  1  0  1 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [10  3  3  3  3  3  3  3  6]
    [-3  0 -1 -1 -1 -1 -1 -1 -2]
    [-3 -1  0 -1 -1 -1 -1 -1 -2]
    [-3 -1 -1  0 -1 -1 -1 -1 -2]
    [-3 -1 -1 -1  0 -1 -1 -1 -2]
    [-3 -1 -1 -1 -1 -1  0 -1 -2]
    [-3 -1 -1 -1 -1  0 -1 -1 -2]
    [-3 -1 -1 -1 -1 -1 -1  0 -2]
    [-6 -2 -2 -2 -2 -2 -2 -2 -3]

16
{@
    Mod: ( 5 -2 -2 -1 -2 -2 -1 -2 -2),
    Mod: ( 5 -2 -2 -2 -2 -2 -1 -2 -1),
    Mod: ( 1  0  0  0 -1 -1  0  0  0),
    Mod: ( 4 -1 -2 -1 -2 -1 -1 -1 -2),
    Mod: ( 4 -1 -1 -1 -2 -1 -2 -1 -2),
    Mod: ( 3 -2 -1 -1 -1 -1 -1  0 -1),
    Mod: ( 6 -2 -2 -2 -2 -3 -2 -2 -2),
    Mod: ( 5 -1 -2 -2 -2 -2 -2 -1 -2),
    Mod: ( 4 -1 -1 -1 -2 -1 -2 -2 -1),
    Mod: ( 3 -1 -1 -1 -1 -1 -2 -1  0),
    Mod: ( 5 -2 -2 -2 -2 -1 -2 -1 -2),
    Mod: ( 2 -1 -1 -1 -1 -1  0  0  0),
    Mod: ( 3 -2 -1  0 -1 -1 -1 -1 -1),
    Mod: ( 5 -2 -2 -2 -2 -1 -2 -2 -1),
    Mod: ( 2 -1  0  0 -1 -1 -1  0 -1),
    Mod: ( 4 -1 -1 -1 -2 -2 -1 -2 -1),
    Mod: ( 2  0 -1 -1 -1 -1 -1  0  0),
    Mod: ( 2 -1 -1  0 -1  0 -1 -1  0),
    Mod: ( 4 -2 -1 -1 -1 -2 -2 -1 -1),
    Mod: ( 1  0 -1  0 -1  0  0  0  0)
@}
Intersection Matrix:
[-1  0  1  0  1  1  0  1  1  2  1  1  0  1  1  0  2  1  1  1]
[ 0 -1  1  1  2  1  0  1  1  1  1  0  1  0  2  0  1  1  1  1]
[ 1  1 -1  1  1  1  1  1  1  1  2  0  1  2  0  0  0  1  1  0]
[ 0  1  1 -1  0  1  1  0  1  2  0  1  1  1  1  1  1  1  2  0]
[ 1  2  1  0 -1  1  1  0  0  1  0  2  1  1  0  1  1  1  1  1]
[ 1  1  1  1  1 -1  1  1  2  1  0  0  0  1  0  2  1  1  0  1]
[ 0  0  1  1  1  1 -1  0  1  1  1  1  1  1  1  0  1  2  0  2]
[ 1  1  1  0  0  1  0 -1  1  1  0  1  2  1  1  1  0  2  1  1]
[ 1  1  1  1  0  2  1  1 -1  0  1  2  1  0  1  0  1  0  1  1]
[ 2  1  1  2  1  1  1  1  0 -1  1  1  1  0  1  1  0  0  0  1]
[ 1  1  2  0  0  0  1  0  1  1 -1  1  1  0  1  2  1  1  1  1]
[ 1  0  0  1  2  0  1  1  2  1  1 -1  1  1  1  1  0  1  1  0]
[ 0  1  1  1  1  0  1  2  1  1  1  1 -1  1  0  1  2  0  0  1]
[ 1  0  2  1  1  1  1  1  0  0  0  1  1 -1  2  1  1  0  1  1]
[ 1  2  0  1  0  0  1  1  1  1  1  1  0  2 -1  1  1  1  0  1]
[ 0  0  0  1  1  2  0  1  0  1  2  1  1  1  1 -1  1  1  1  1]
[ 2  1  0  1  1  1  1  0  1  0  1  0  2  1  1  1 -1  1  1  0]
[ 1  1  1  1  1  1  2  2  0  0  1  1  0  0  1  1  1 -1  1  0]
[ 1  1  1  2  1  0  0  1  1  0  1  1  0  1  0  1  1  1 -1  2]
[ 1  1  0  0  1  1  2  1  1  1  1  0  1  1  1  1  0  0  2 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 6  1  2  2  2  0  3  3  2]
    [-1  0  0  0  0  0 -1 -1  0]
    [-2  0  0 -1 -1  0 -1 -1 -1]
    [-2  0 -1  0 -1  0 -1 -1 -1]
    [-2  0 -1 -1  0  0 -1 -1 -1]
    [ 0  0  0  0  0  1  0  0  0]
    [-3 -1 -1 -1 -1  0 -1 -2 -1]
    [-3 -1 -1 -1 -1  0 -2 -1 -1]
    [-2  0 -1 -1 -1  0 -1 -1  0]

17
{@
    Mod: ( 4 -2 -2 -1 -1 -1 -1 -2 -1),
    Mod: ( 4 -1 -1 -1 -1 -2 -2 -2 -1),
    Mod: ( 3  0 -1 -1 -1 -2 -1 -1 -1),
    Mod: ( 3 -1 -1 -2 -1 -1 -1  0 -1),
    Mod: ( 4 -2 -1 -2 -1 -2 -1 -1 -1),
    Mod: ( 6 -2 -2 -3 -2 -2 -2 -2 -2),
    Mod: ( 2 -1  0  0 -1  0 -1 -1 -1),
    Mod: ( 1  0  0  0 -1  0  0 -1  0),
    Mod: ( 2 -1  0  0 -1 -1  0 -1 -1),
    Mod: ( 1  0  0  0 -1  0  0  0 -1),
    Mod: ( 1  0  0  0  0 -1 -1  0  0),
    Mod: ( 3  0 -1 -1 -1 -1 -2 -1 -1),
    Mod: ( 3 -1 -2 -1 -1  0 -1 -1 -1),
    Mod: ( 3 -1 -2 -1 -1 -1  0 -1 -1),
    Mod: ( 4 -2 -2 -1 -1 -1 -1 -1 -2),
    Mod: ( 4 -1 -1 -1 -1 -2 -2 -1 -2),
    Mod: ( 3 -1 -1 -2 -1 -1 -1 -1  0),
    Mod: ( 4 -1 -1 -1 -2 -1 -1 -2 -2),
    Mod: ( 1 -1 -1  0  0  0  0  0  0),
    Mod: ( 4 -2 -1 -2 -1 -1 -2 -1 -1)
@}
Intersection Matrix:
[-1  1  2  2  1  1  1  1  1  2  2  2  0  0  0  2  1  1  0  1]
[ 1 -1  0  2  1  1  1  1  1  2  0  0  2  2  2  0  1  1  2  1]
[ 2  0 -1  1  1  1  2  1  1  1  0  0  2  1  2  0  1  1  2  2]
[ 2  2  1 -1  0  0  2  2  2  1  1  1  1  1  1  1  0  2  1  0]
[ 1  1  1  0 -1  0  2  2  1  2  1  2  2  1  1  1  0  2  1  0]
[ 1  1  1  0  0 -1  2  2  2  2  2  1  1  1  1  1  0  1  2  0]
[ 1  1  2  2  2  2 -1  0  0  0  1  1  1  2  1  1  2  0  1  1]
[ 1  1  1  2  2  2  0 -1  0  0  1  1  1  1  2  2  1  0  1  2]
[ 1  1  1  2  1  2  0  0 -1  0  1  2  2  1  1  1  2  0  1  2]
[ 2  2  1  1  2  2  0  0  0 -1  1  1  1  1  1  1  2  0  1  2]
[ 2  0  0  1  1  2  1  1  1  1 -1  0  2  2  2  0  1  2  1  1]
[ 2  0  0  1  2  1  1  1  2  1  0 -1  1  2  2  0  1  1  2  1]
[ 0  2  2  1  2  1  1  1  2  1  2  1 -1  0  0  2  1  1  0  1]
[ 0  2  1  1  1  1  2  1  1  1  2  2  0 -1  0  2  1  1  0  2]
[ 0  2  2  1  1  1  1  2  1  1  2  2  0  0 -1  1  2  1  0  1]
[ 2  0  0  1  1  1  1  2  1  1  0  0  2  2  1 -1  2  1  2  1]
[ 1  1  1  0  0  0  2  1  2  2  1  1  1  1  2  2 -1  2  1  0]
[ 1  1  1  2  2  1  0  0  0  0  2  1  1  1  1  1  2 -1  2  2]
[ 0  2  2  1  1  2  1  1  1  1  1  2  0  0  0  2  1  2 -1  1]
[ 1  1  2  0  0  0  1  2  2  2  1  1  1  2  1  1  0  2  1 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [10  3  3  3  3  3  3  3  6]
    [-3  0 -1 -1 -1 -1 -1 -1 -2]
    [-3 -1  0 -1 -1 -1 -1 -1 -2]
    [-3 -1 -1  0 -1 -1 -1 -1 -2]
    [-3 -1 -1 -1  0 -1 -1 -1 -2]
    [-3 -1 -1 -1 -1 -1  0 -1 -2]
    [-3 -1 -1 -1 -1  0 -1 -1 -2]
    [-3 -1 -1 -1 -1 -1 -1  0 -2]
    [-6 -2 -2 -2 -2 -2 -2 -2 -3]

18
{@
    Mod: ( 3 -2 -1 -1 -1 -1  0 -1 -1),
    Mod: ( 2 -1 -1 -1 -1  0  0  0 -1),
    Mod: (0 0 0 1 0 0 0 0 0),
    Mod: ( 2 -1 -1 -1 -1  0  0 -1  0),
    Mod: ( 5 -2 -2 -2 -1 -2 -2 -1 -2),
    Mod: ( 5 -2 -2 -2 -2 -1 -1 -2 -2),
    Mod: ( 5 -1 -1 -2 -2 -2 -2 -2 -2),
    Mod: ( 2  0  0 -1 -1 -1 -1 -1  0),
    Mod: ( 5 -2 -2 -2 -1 -2 -2 -2 -1),
    Mod: ( 4 -1 -2 -2 -1 -1 -2 -1 -1),
    Mod: ( 3 -1  0 -1 -1 -1 -2 -1 -1),
    Mod: ( 3 -1 -1  0 -1 -1 -1 -2 -1),
    Mod: ( 2 -1 -1 -1  0 -1 -1  0  0),
    Mod: ( 2  0  0 -1 -1 -1 -1  0 -1),
    Mod: ( 3 -1 -1  0 -1 -1 -1 -1 -2),
    Mod: ( 4 -1 -2 -2 -1 -2 -1 -1 -1),
    Mod: ( 2  0 -1  0 -1  0 -1 -1 -1),
    Mod: ( 3 -1  0 -1 -1 -2 -1 -1 -1),
    Mod: ( 3 -2 -1 -1 -1  0 -1 -1 -1),
    Mod: ( 2  0 -1  0 -1 -1  0 -1 -1)
@}
Intersection Matrix:
[-1  0  1  0  1  0  2  2  1  2  2  1  1  2  1  1  2  1  0  1]
[ 0 -1  1  0  1  0  2  2  2  1  2  2  1  1  1  1  1  2  0  1]
[ 1  1 -1  1  2  2  2  1  2  2  1  0  1  1  0  2  0  1  1  0]
[ 0  0  1 -1  2  0  2  1  1  1  2  1  1  2  2  1  1  2  0  1]
[ 1  1  2  2 -1  1  1  2  0  0  1  2  0  1  1  0  2  1  1  2]
[ 0  0  2  0  1 -1  1  2  1  1  2  1  2  2  1  1  1  2  0  1]
[ 2  2  2  2  1  1 -1  0  1  1  0  1  2  0  1  1  1  0  2  1]
[ 2  2  1  1  2  2  0 -1  1  1  0  1  1  0  2  1  1  0  2  1]
[ 1  2  2  1  0  1  1  1 -1  0  1  1  0  2  2  0  2  1  1  2]
[ 2  1  2  1  0  1  1  1  0 -1  1  2  0  1  2  0  1  2  1  2]
[ 2  2  1  2  1  2  0  0  1  1 -1  1  1  0  1  2  1  0  1  2]
[ 1  2  0  1  2  1  1  1  1  2  1 -1  2  2  0  2  0  1  1  0]
[ 1  1  1  1  0  2  2  1  0  0  1  2 -1  1  2  0  2  1  1  2]
[ 2  1  1  2  1  2  0  0  2  1  0  2  1 -1  1  1  1  0  2  1]
[ 1  1  0  2  1  1  1  2  2  2  1  0  2  1 -1  2  0  1  1  0]
[ 1  1  2  1  0  1  1  1  0  0  2  2  0  1  2 -1  2  1  2  1]
[ 2  1  0  1  2  1  1  1  2  1  1  0  2  1  0  2 -1  2  1  0]
[ 1  2  1  2  1  2  0  0  1  2  0  1  1  0  1  1  2 -1  2  1]
[ 0  0  1  0  1  0  2  2  1  1  1  1  1  2  1  2  1  2 -1  2]
[ 1  1  0  1  2  1  1  1  2  2  2  0  2  1  0  1  0  1  2 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 5  0  2  2  2  2  0  2  2]
    [ 0  1  0  0  0  0  0  0  0]
    [-2  0  0 -1 -1 -1  0 -1 -1]
    [-2  0 -1  0 -1 -1  0 -1 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]
    [-2  0 -1 -1 -1  0  0 -1 -1]
    [ 0  0  0  0  0  0  1  0  0]
    [-2  0 -1 -1 -1 -1  0 -1  0]
    [-2  0 -1 -1 -1 -1  0  0 -1]

D7(8):C2^2⋊F5

    order := 80,
    length := 2177280,
    subgroup := MatrixGroup(9, Integer Ring) of order 2^4 * 5
    Generators:
        [11  3  3  4  5  2  4  5  4]
        [-4 -1 -1 -1 -2 -1 -2 -2 -1]
        [-2  0  0 -1 -1  0 -1 -1 -1]
        [-4 -1 -1 -2 -2 -1 -1 -2 -1]
        [-4 -1 -1 -1 -2 -1 -1 -2 -2]
        [-3 -1 -1 -1 -1  0 -1 -2 -1]
        [-3 -1 -1 -1 -2  0 -1 -1 -1]
        [-5 -1 -2 -2 -2 -1 -2 -2 -2]
        [-5 -2 -1 -2 -2 -1 -2 -2 -2]

        [ 4  2  1  1  0  1  2  2  0]
        [-2 -1  0 -1  0 -1 -1 -1  0]
        [-1  0  0  0  0  0 -1 -1  0]
        [-1 -1  0  0  0  0 -1  0  0]
        [ 0  0  0  0  0  0  0  0  1]
        [-1 -1  0  0  0  0  0 -1  0]
        [-2 -1 -1 -1  0  0 -1 -1  0]
        [-2 -1 -1  0  0 -1 -1 -1  0]
        [ 0  0  0  0  1  0  0  0  0]

        [ 7  2  3  2  0  3  2  3  3]
        [-3 -1 -1 -1  0 -2 -1 -1 -1]
        [-2  0 -1  0  0 -1 -1 -1 -1]
        [-3 -1 -1 -1  0 -1 -1 -1 -2]
        [-2  0 -1 -1  0 -1  0 -1 -1]
        [-2 -1 -1  0  0 -1  0 -1 -1]
        [-3 -1 -2 -1  0 -1 -1 -1 -1]
        [-3 -1 -1 -1  0 -1 -1 -2 -1]
        [ 0  0  0  0  1  0  0  0  0]

        [ 2  1  0  0  0  1  0  1  0]
        [-1  0  0  0  0 -1  0 -1  0]
        [ 0  0  1  0  0  0  0  0  0]
        [ 0  0  0  1  0  0  0  0  0]
        [ 0  0  0  0  1  0  0  0  0]
        [-1 -1  0  0  0  0  0 -1  0]
        [ 0  0  0  0  0  0  1  0  0]
        [-1 -1  0  0  0 -1  0  0  0]
        [ 0  0  0  0  0  0  0  0  1]

        [ 3  1  1  0  0  1  1  2  0]
        [-1  0  0  0  0 -1  0 -1  0]
        [-1  0  0  0  0  0 -1 -1  0]
        [ 0  0  0  1  0  0  0  0  0]
        [ 0  0  0  0  1  0  0  0  0]
        [-1 -1  0  0  0  0  0 -1  0]
        [-1  0 -1  0  0  0  0 -1  0]
        [-2 -1 -1  0  0 -1 -1 -1  0]
        [ 0  0  0  0  0  0  0  0  1]>

Orbit type:{4,4,4,4,4,10,10,10,10,20,20,20,20,20,20,20,40}

Orbit:

1
{@
    Mod: ( 4 -2 -1 -1 -2 -1 -1 -1 -2),
    Mod: ( 2 -1 -1 -1  0 -1  0 -1  0),
    Mod: ( 5 -2 -2 -1 -2 -1 -2 -2 -2),
    Mod: ( 1  0 -1 -1  0  0  0  0  0)
@}
Intersection Matrix:
[-1  2  0  2]
[ 2 -1  2  0]
[ 0  2 -1  2]
[ 2  0  2 -1]
Stabilizer Group Name:
D10
MatrixGroup(9, Integer Ring)
Generators:
    [ 4  1  1  1  0  2  0  2  2]
    [-1  0  0  0  0 -1  0 -1  0]
    [-1  0  0  0  0 -1  0  0 -1]
    [-1  0  0  0  0  0  0 -1 -1]
    [ 0  0  0  0  1  0  0  0  0]
    [-2 -1 -1  0  0 -1  0 -1 -1]
    [ 0  0  0  0  0  0  1  0  0]
    [-2 -1  0 -1  0 -1  0 -1 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]

    [ 2  1  0  0  0  1  0  1  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  1  0  0  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

    [ 9  2  4  4  2  4  2  2  4]
    [-2  0 -1 -1  0 -1 -1  0 -1]
    [-4 -1 -1 -2 -1 -2 -1 -1 -2]
    [-4 -1 -2 -1 -1 -2 -1 -1 -2]
    [-2  0 -1 -1  0 -1  0 -1 -1]
    [-4 -1 -2 -2 -1 -1 -1 -1 -2]
    [-2 -1 -1 -1  0 -1  0  0 -1]
    [-2  0 -1 -1 -1 -1  0  0 -1]
    [-4 -1 -2 -2 -1 -2 -1 -1 -1]

2
{@
    Mod: ( 4 -1 -1 -1 -2 -1 -2 -1 -2),
    Mod: ( 2  0 -1 -1  0 -1 -1 -1  0),
    Mod: ( 5 -2 -1 -1 -2 -2 -2 -2 -2),
    Mod: ( 1  0  0 -1  0 -1  0  0  0)
@}
Intersection Matrix:
[-1  2  0  2]
[ 2 -1  2  0]
[ 0  2 -1  2]
[ 2  0  2 -1]
Stabilizer Group Name:
D10
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  1  0  0  2  1  0]
    [-1  0  0 -1  0  0 -1  0  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [-1 -1  0  0  0  0 -1  0  0]
    [ 0  0  0  0  0  0  0  0  1]
    [ 0  0  0  0  0  1  0  0  0]
    [-2 -1 -1 -1  0  0 -1 -1  0]
    [-1  0 -1  0  0  0 -1  0  0]
    [ 0  0  0  0  1  0  0  0  0]

    [11  2  5  5  3  4  3  4  4]
    [-3  0 -1 -2 -1 -1 -1 -1 -1]
    [-5 -1 -2 -2 -1 -2 -2 -2 -2]
    [-5 -1 -2 -2 -2 -2 -1 -2 -2]
    [-4 -1 -2 -2 -1 -2 -1 -1 -1]
    [-4 -1 -2 -2 -1 -1 -1 -1 -2]
    [-4 -1 -2 -2 -1 -1 -1 -2 -1]
    [-3  0 -2 -1 -1 -1 -1 -1 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]

3
{@
    Mod: ( 4 -2 -1 -1 -1 -2 -1 -2 -1),
    Mod: ( 2  0 -1 -1 -1  0 -1  0 -1),
    Mod: ( 2 -1  0 -1 -1 -1  0  0 -1),
    Mod: ( 4 -1 -2 -1 -1 -1 -2 -2 -1)
@}
Intersection Matrix:
[-1  3  1  1]
[ 3 -1  1  1]
[ 1  1 -1  3]
[ 1  1  3 -1]
Stabilizer Group Name:
D10
MatrixGroup(9, Integer Ring)
Generators:
    [ 2  0  1  0  0  0  1  1  0]
    [ 0  1  0  0  0  0  0  0  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [ 0  0  0  0  0  1  0  0  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0 -1  0  0]
    [ 0  0  0  0  0  0  0  0  1]

    [ 7  2  3  3  3  2  3  2  0]
    [-2  0 -1 -1 -1 -1 -1  0  0]
    [-3 -1 -1 -1 -1 -1 -2 -1  0]
    [-3 -1 -1 -1 -2 -1 -1 -1  0]
    [-3 -1 -1 -2 -1 -1 -1 -1  0]
    [-2 -1 -1 -1 -1  0 -1  0  0]
    [-3 -1 -2 -1 -1 -1 -1 -1  0]
    [-2  0 -1 -1 -1  0 -1 -1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [10  2  4  5  3  4  2  3  4]
    [-3  0 -1 -2 -1 -1 -1 -1 -1]
    [-4 -1 -1 -2 -1 -2 -1 -1 -2]
    [-5 -1 -2 -2 -2 -2 -1 -2 -2]
    [-4 -1 -2 -2 -1 -2 -1 -1 -1]
    [-4 -1 -2 -2 -1 -1 -1 -1 -2]
    [-3 -1 -1 -2 -1 -1  0 -1 -1]
    [-2  0 -1 -1 -1 -1  0  0 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]

4
{@
    Mod: ( 4 -1 -1 -1 -1 -2 -2 -2 -1),
    Mod: ( 3 -1  0 -1 -1 -2 -1 -1 -1),
    Mod: ( 3  0 -1 -1 -1 -1 -2 -1 -1),
    Mod: ( 2  0  0 -1 -1 -1 -1  0 -1)
@}
Intersection Matrix:
[-1  0  0  1]
[ 0 -1  1  0]
[ 0  1 -1  0]
[ 1  0  0 -1]
Stabilizer Group Name:
F5
MatrixGroup(9, Integer Ring)
Generators:
    [10  3  2  4  4  2  3  4  5]
    [-3 -1  0 -1 -1 -1 -1 -1 -2]
    [-2  0  0 -1 -1  0 -1 -1 -1]
    [-4 -1 -1 -2 -1 -1 -1 -2 -2]
    [-5 -2 -1 -2 -2 -1 -2 -2 -2]
    [-2 -1  0 -1 -1  0  0 -1 -1]
    [-3 -1 -1 -1 -1  0 -1 -1 -2]
    [-4 -1 -1 -2 -2 -1 -1 -1 -2]
    [-4 -1 -1 -1 -2 -1 -1 -2 -2]

    [12  5  3  5  4  3  5  3  5]
    [-5 -2 -1 -2 -2 -2 -2 -1 -2]
    [-4 -1 -1 -2 -1 -1 -2 -1 -2]
    [-4 -2 -1 -2 -1 -1 -2 -1 -1]
    [-4 -2 -1 -1 -1 -1 -2 -1 -2]
    [-4 -2 -1 -2 -1 -1 -1 -1 -2]
    [-5 -2 -2 -2 -2 -1 -2 -1 -2]
    [-2 -1  0 -1 -1  0 -1  0 -1]
    [-5 -2 -1 -2 -2 -1 -2 -2 -2]

5
{@
    Mod: ( 3 -1 -2 -1 -1  0 -1 -1 -1),
    Mod: ( 3 -2 -1 -1 -1 -1  0 -1 -1),
    Mod: ( 4 -2 -2 -1 -1 -1 -1 -2 -1),
    Mod: ( 2 -1 -1 -1 -1  0  0  0 -1)
@}
Intersection Matrix:
[-1  1  0  0]
[ 1 -1  0  0]
[ 0  0 -1  1]
[ 0  0  1 -1]
Stabilizer Group Name:
F5
MatrixGroup(9, Integer Ring)
Generators:
    [ 5  1  2  2  0  2  1  1  3]
    [-2  0 -1 -1  0 -1 -1  0 -1]
    [-1  0  0  0  0 -1  0  0 -1]
    [-3 -1 -1 -1  0 -1 -1 -1 -2]
    [-2  0 -1 -1  0 -1  0 -1 -1]
    [-1  0 -1  0  0  0  0  0 -1]
    [-2 -1 -1 -1  0 -1  0  0 -1]
    [-1  0  0 -1  0  0  0  0 -1]
    [ 0  0  0  0  1  0  0  0  0]

    [11  3  4  2  5  4  3  5  4]
    [-5 -1 -2 -1 -2 -2 -2 -2 -2]
    [-4 -1 -1 -1 -2 -2 -1 -2 -1]
    [-2  0 -1  0 -1 -1  0 -1 -1]
    [-3 -1 -1  0 -2 -1 -1 -1 -1]
    [-4 -1 -2 -1 -2 -1 -1 -2 -1]
    [-5 -2 -2 -1 -2 -2 -1 -2 -2]
    [-3 -1 -1  0 -1 -1 -1 -2 -1]
    [-4 -1 -1 -1 -2 -1 -1 -2 -2]

6
{@
    Mod: ( 2  0 -1 -1 -1 -1  0 -1  0),
    Mod: ( 1  0  0 -1  0  0  0 -1  0),
    Mod: ( 2 -1  0  0 -1  0 -1 -1 -1),
    Mod: ( 1  0 -1  0  0 -1  0  0  0),
    Mod: ( 6 -2 -2 -2 -2 -2 -2 -2 -3),
    Mod: ( 3 -1 -1 -2  0 -1 -1 -1 -1),
    Mod: ( 2 -1 -1 -1  0 -1 -1  0  0),
    Mod: ( 6 -2 -2 -2 -3 -2 -2 -2 -2),
    Mod: ( 3 -1 -1  0 -1 -1 -1 -1 -2),
    Mod: ( 4 -2 -1 -1 -2 -1 -2 -1 -1)
@}
Intersection Matrix:
[-1  0  2  0  2  1  1  1  2  2]
[ 0 -1  1  1  2  0  1  2  2  2]
[ 2  1 -1  2  1  2  2  1  0  0]
[ 0  1  2 -1  2  1  0  2  1  2]
[ 2  2  1  2 -1  1  2  0  0  1]
[ 1  0  2  1  1 -1  0  2  2  2]
[ 1  1  2  0  2  0 -1  2  2  1]
[ 1  2  1  2  0  2  2 -1  1  0]
[ 2  2  0  1  0  2  2  1 -1  1]
[ 2  2  0  2  1  2  1  0  1 -1]
Stabilizer Group Name:
C2^3
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  0  0  1  1  2  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-2 -1 -1  0  0 -1 -1 -1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [ 3  0  1  1  0  1  0  1  2]
    [ 0  1  0  0  0  0  0  0  0]
    [-1  0  0  0  0 -1  0  0 -1]
    [-1  0  0  0  0  0  0 -1 -1]
    [ 0  0  0  0  1  0  0  0  0]
    [-1  0 -1  0  0  0  0  0 -1]
    [ 0  0  0  0  0  0  1  0  0]
    [-1  0  0 -1  0  0  0  0 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]

    [ 2  1  0  0  0  1  0  1  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  1  0  0  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

7
{@
    Mod: ( 2  0 -1 -1  0 -1  0 -1 -1),
    Mod: (0 0 0 0 0 0 0 0 1),
    Mod: ( 4 -1 -1 -1 -2 -1 -1 -2 -2),
    Mod: ( 3 -1 -1  0 -2 -1 -1 -1 -1),
    Mod: ( 4 -1 -2 -2 -1 -2 -1 -1 -1),
    Mod: ( 4 -2 -1 -1 -1 -1 -2 -1 -2),
    Mod: ( 5 -2 -1 -2 -2 -1 -2 -2 -2),
    Mod: ( 3 -1 -1 -2 -1 -1 -1 -1  0),
    Mod: ( 5 -2 -2 -1 -2 -2 -2 -1 -2),
    Mod: (0 0 0 0 1 0 0 0 0)
@}
Intersection Matrix:
[-1  1  1  2  0  2  2  1  2  0]
[ 1 -1  2  1  1  2  2  0  2  0]
[ 1  2 -1  0  2  1  0  2  1  2]
[ 2  1  0 -1  2  1  1  2  0  2]
[ 0  1  2  2 -1  2  2  0  1  1]
[ 2  2  1  1  2 -1  0  2  0  1]
[ 2  2  0  1  2  0 -1  1  1  2]
[ 1  0  2  2  0  2  1 -1  2  1]
[ 2  2  1  0  1  0  1  2 -1  2]
[ 0  0  2  2  1  1  2  1  2 -1]
Stabilizer Group Name:
C2^3
MatrixGroup(9, Integer Ring)
Generators:
    [12  4  4  6  4  5  3  4  3]
    [-4 -1 -1 -2 -1 -2 -1 -2 -1]
    [-4 -1 -1 -2 -2 -2 -1 -1 -1]
    [-6 -2 -2 -3 -2 -2 -2 -2 -2]
    [-4 -1 -2 -2 -1 -2 -1 -1 -1]
    [-5 -2 -2 -2 -2 -2 -1 -2 -1]
    [-3 -1 -1 -2 -1 -1  0 -1 -1]
    [-4 -2 -1 -2 -1 -2 -1 -1 -1]
    [-3 -1 -1 -2 -1 -1 -1 -1  0]

    [ 3  1  1  0  0  1  1  2  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-2 -1 -1  0  0 -1 -1 -1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [ 2  1  0  0  0  1  0  1  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  1  0  0  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

8
{@
    Mod: ( 4 -2 -2 -1 -1 -1 -1 -1 -2),
    Mod: ( 5 -2 -2 -2 -2 -1 -1 -2 -2),
    Mod: ( 2 -1 -1  0 -1  0  0 -1 -1),
    Mod: ( 3 -2 -1 -1 -1  0 -1 -1 -1),
    Mod: ( 2 -1 -1 -1 -1  0  0 -1  0),
    Mod: ( 4 -2 -2 -2 -1 -1 -1 -1 -1),
    Mod: ( 3 -1 -2 -1 -1 -1  0 -1 -1),
    Mod: ( 2 -1 -1 -1  0  0  0 -1 -1),
    Mod: ( 4 -2 -2 -1 -2 -1 -1 -1 -1),
    Mod: ( 1 -1 -1  0  0  0  0  0  0)
@}
Intersection Matrix:
[-1  0  0  0  1  0  0  0  0  0]
[ 0 -1  0  0  0  0  0  0  0  1]
[ 0  0 -1  0  0  1  0  0  0  0]
[ 0  0  0 -1  0  0  1  0  0  0]
[ 1  0  0  0 -1  0  0  0  0  0]
[ 0  0  1  0  0 -1  0  0  0  0]
[ 0  0  0  1  0  0 -1  0  0  0]
[ 0  0  0  0  0  0  0 -1  1  0]
[ 0  0  0  0  0  0  0  1 -1  0]
[ 0  1  0  0  0  0  0  0  0 -1]
Stabilizer Group Name:
C2^3
MatrixGroup(9, Integer Ring)
Generators:
    [12  3  5  6  4  4  4  4  3]
    [-3  0 -1 -2 -1 -1 -1 -1 -1]
    [-5 -1 -2 -2 -2 -2 -2 -2 -1]
    [-6 -2 -2 -3 -2 -2 -2 -2 -2]
    [-4 -1 -2 -2 -1 -2 -1 -1 -1]
    [-4 -1 -2 -2 -2 -1 -1 -1 -1]
    [-4 -1 -2 -2 -1 -1 -1 -2 -1]
    [-4 -1 -2 -2 -1 -1 -2 -1 -1]
    [-3 -1 -1 -2 -1 -1 -1 -1  0]

    [ 3  1  1  0  0  1  1  2  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-2 -1 -1  0  0 -1 -1 -1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [ 2  1  0  0  0  1  0  1  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  1  0  0  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

9
{@
    Mod: ( 4 -1 -1 -2 -1 -2 -2 -1 -1),
    Mod: ( 2  0  0  0 -1 -1 -1 -1 -1),
    Mod: ( 1  0  0  0  0 -1 -1  0  0),
    Mod: ( 3 -1  0 -1 -1 -1 -2 -1 -1),
    Mod: ( 4 -1 -1 -1 -2 -2 -2 -1 -1),
    Mod: ( 5 -1 -1 -2 -2 -2 -2 -2 -2),
    Mod: ( 4 -1 -1 -1 -1 -2 -2 -1 -2),
    Mod: ( 2  0  0 -1  0 -1 -1 -1 -1),
    Mod: ( 2  0  0 -1 -1 -1 -1 -1  0),
    Mod: ( 3  0 -1 -1 -1 -2 -1 -1 -1)
@}
Intersection Matrix:
[-1  1  0  0  0  0  0  0  0  0]
[ 1 -1  0  0  0  0  0  0  0  0]
[ 0  0 -1  0  0  1  0  0  0  0]
[ 0  0  0 -1  0  0  0  0  0  1]
[ 0  0  0  0 -1  0  0  1  0  0]
[ 0  0  1  0  0 -1  0  0  0  0]
[ 0  0  0  0  0  0 -1  0  1  0]
[ 0  0  0  0  1  0  0 -1  0  0]
[ 0  0  0  0  0  0  1  0 -1  0]
[ 0  0  0  1  0  0  0  0  0 -1]
Stabilizer Group Name:
C2^3
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  0  0  1  1  2  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-2 -1 -1  0  0 -1 -1 -1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [ 4  1  1  1  0  2  0  2  2]
    [-1  0  0  0  0 -1  0 -1  0]
    [-1  0  0  0  0 -1  0  0 -1]
    [-1  0  0  0  0  0  0 -1 -1]
    [ 0  0  0  0  1  0  0  0  0]
    [-2 -1 -1  0  0 -1  0 -1 -1]
    [ 0  0  0  0  0  0  1  0  0]
    [-2 -1  0 -1  0 -1  0 -1 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]

    [ 2  1  0  0  0  1  0  1  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  1  0  0  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

10
{@
    Mod: ( 2 -1  0 -1 -1  0 -1 -1  0),
    Mod: ( 1  0  0  0  0  0  0 -1 -1),
    Mod: ( 1  0  0  0 -1  0  0 -1  0),
    Mod: ( 2 -1 -1  0  0 -1 -1  0 -1),
    Mod: ( 1 -1  0  0  0  0 -1  0  0),
    Mod: ( 4 -1 -2 -1 -1 -2 -1 -1 -2),
    Mod: ( 3 -1 -1 -1  0 -1 -1 -1 -2),
    Mod: ( 4 -1 -1 -2 -1 -1 -1 -2 -2),
    Mod: ( 5 -1 -2 -2 -2 -2 -1 -2 -2),
    Mod: ( 4 -1 -2 -1 -2 -2 -1 -1 -1),
    Mod: ( 5 -2 -2 -2 -1 -2 -2 -1 -2),
    Mod: ( 2 -1  0 -1  0  0 -1 -1 -1),
    Mod: ( 4 -1 -1 -2 -2 -1 -1 -2 -1),
    Mod: ( 3 -1 -1 -1 -2 -1 -1 -1  0),
    Mod: ( 6 -2 -2 -3 -2 -2 -2 -2 -2),
    Mod: ( 4 -2 -1 -2 -1 -1 -2 -1 -1),
    Mod: ( 2 -1 -1  0 -1 -1 -1  0  0),
    Mod: (0 0 0 1 0 0 0 0 0),
    Mod: ( 5 -2 -2 -2 -2 -2 -2 -1 -1),
    Mod: ( 2  0 -1  0 -1 -1  0 -1 -1)
@}
Intersection Matrix:
[-1  1  0  2  0  3  2  1  2  2  2  0  0  0  1  0  1  1  1  2]
[ 1 -1  0  1  1  1  0  0  1  2  2  0  1  2  2  2  2  0  3  0]
[ 0  0 -1  2  1  2  2  1  1  1  3  1  0  0  2  2  1  0  2  0]
[ 2  1  2 -1  0  0  0  2  2  1  0  1  3  2  2  1  0  0  1  1]
[ 0  1  1  0 -1  2  1  2  3  2  1  0  2  1  2  0  0  0  1  2]
[ 3  1  2  0  2 -1  0  1  0  0  0  2  2  2  1  2  1  1  1  0]
[ 2  0  2  0  1  0 -1  0  1  2  0  0  2  3  1  1  2  1  2  1]
[ 1  0  1  2  2  1  0 -1  0  2  1  0  0  2  0  1  3  2  2  1]
[ 2  1  1  2  3  0  1  0 -1  0  1  2  0  1  0  2  2  2  1  0]
[ 2  2  1  1  2  0  2  2  0 -1  1  3  1  0  1  2  0  1  0  0]
[ 2  2  3  0  1  0  0  1  1  1 -1  1  2  2  0  0  1  2  0  2]
[ 0  0  1  1  0  2  0  0  2  3  1 -1  1  2  1  0  2  1  2  2]
[ 0  1  0  3  2  2  2  0  0  1  2  1 -1  0  0  1  2  2  1  1]
[ 0  2  0  2  1  2  3  2  1  0  2  2  0 -1  1  1  0  1  0  1]
[ 1  2  2  2  2  1  1  0  0  1  0  1  0  1 -1  0  2  3  0  2]
[ 0  2  2  1  0  2  1  1  2  2  0  0  1  1  0 -1  1  2  0  3]
[ 1  2  1  0  0  1  2  3  2  0  1  2  2  0  2  1 -1  0  0  1]
[ 1  0  0  0  0  1  1  2  2  1  2  1  2  1  3  2  0 -1  2  0]
[ 1  3  2  1  1  1  2  2  1  0  0  2  1  0  0  0  0  2 -1  2]
[ 2  0  0  1  2  0  1  1  0  0  2  2  1  1  2  3  1  0  2 -1]
Stabilizer Group Name:
C2^2
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  1  0  0  1  1  2  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-2 -1 -1  0  0 -1 -1 -1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [ 2  1  0  0  0  1  0  1  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  1  0  0  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

11
{@
    Mod: ( 5 -2 -2 -2 -2 -2 -1 -2 -1),
    Mod: ( 2 -1 -1 -1 -1  0 -1  0  0),
    Mod: ( 2 -1 -1  0  0 -1  0 -1 -1),
    Mod: ( 1  0 -1  0  0  0  0  0 -1),
    Mod: ( 1 -1  0  0  0  0  0 -1  0),
    Mod: ( 3 -1 -2  0 -1 -1 -1 -1 -1),
    Mod: ( 3 -1 -1 -1 -2 -1  0 -1 -1),
    Mod: ( 3 -2 -1 -1 -1 -1 -1  0 -1),
    Mod: ( 4 -1 -2 -1 -2 -1 -1 -2 -1),
    Mod: ( 5 -2 -2 -2 -1 -1 -2 -2 -2),
    Mod: ( 2 -1  0 -1 -1  0  0 -1 -1),
    Mod: ( 4 -2 -2 -1 -1 -1 -2 -1 -1),
    Mod: ( 3 -1 -1 -1 -1  0 -1 -2 -1),
    Mod: (0 0 0 0 0 1 0 0 0),
    Mod: ( 2 -1 -1  0 -1 -1  0  0 -1),
    Mod: ( 3 -2 -1 -1 -1 -1 -1 -1  0),
    Mod: ( 4 -2 -1 -2 -1 -1 -1 -1 -2),
    Mod: ( 4 -1 -2 -2 -1 -1 -1 -1 -2),
    Mod: ( 5 -2 -2 -2 -1 -2 -1 -2 -2),
    Mod: ( 4 -1 -2 -2 -2 -1 -1 -1 -1)
@}
Intersection Matrix:
[-1  1  1  2  1  1  0  1  0  1  1  1  1  2  1  0  1  1  0  0]
[ 1 -1  2  1  1  1  1  0  1  1  1  0  1  0  1  0  1  1  2  0]
[ 1  2 -1  0  0  0  1  1  1  1  1  1  1  1  0  1  1  1  0  2]
[ 2  1  0 -1  1  0  1  1  1  1  1  1  1  0  0  2  1  0  1  1]
[ 1  1  0  1 -1  1  1  1  1  1  0  1  0  0  1  0  1  2  1  2]
[ 1  1  0  0  1 -1  1  1  0  1  2  0  1  1  0  1  2  1  1  1]
[ 0  1  1  1  1  1 -1  1  0  2  0  2  1  1  0  1  1  1  1  0]
[ 1  0  1  1  1  1  1 -1  2  1  1  0  2  1  0  0  0  1  1  1]
[ 0  1  1  1  1  0  0  2 -1  1  1  1  0  1  1  1  2  1  1  0]
[ 1  1  1  1  1  1  2  1  1 -1  1  0  0  1  2  1  0  0  0  1]
[ 1  1  1  1  0  2  0  1  1  1 -1  2  0  0  1  1  0  1  1  1]
[ 1  0  1  1  1  0  2  0  1  0  2 -1  1  1  1  0  1  1  1  1]
[ 1  1  1  1  0  1  1  2  0  0  0  1 -1  0  2  1  1  1  1  1]
[ 2  0  1  0  0  1  1  1  1  1  0  1  0 -1  1  1  1  1  2  1]
[ 1  1  0  0  1  0  0  0  1  2  1  1  2  1 -1  1  1  1  1  1]
[ 0  0  1  2  0  1  1  0  1  1  1  0  1  1  1 -1  1  2  1  1]
[ 1  1  1  1  1  2  1  0  2  0  0  1  1  1  1  1 -1  0  0  1]
[ 1  1  1  0  2  1  1  1  1  0  1  1  1  1  1  2  0 -1  0  0]
[ 0  2  0  1  1  1  1  1  1  0  1  1  1  2  1  1  0  0 -1  1]
[ 0  0  2  1  2  1  0  1  0  1  1  1  1  1  1  1  1  0  1 -1]
Stabilizer Group Name:
C2^2
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  0  1  1  0  1  0  1  2]
    [ 0  1  0  0  0  0  0  0  0]
    [-1  0  0  0  0 -1  0  0 -1]
    [-1  0  0  0  0  0  0 -1 -1]
    [ 0  0  0  0  1  0  0  0  0]
    [-1  0 -1  0  0  0  0  0 -1]
    [ 0  0  0  0  0  0  1  0  0]
    [-1  0  0 -1  0  0  0  0 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]

    [ 4  0  2  1  0  1  1  2  2]
    [ 0  1  0  0  0  0  0  0  0]
    [-2  0 -1  0  0 -1 -1 -1 -1]
    [-1  0  0  0  0  0  0 -1 -1]
    [ 0  0  0  0  1  0  0  0  0]
    [-1  0 -1  0  0  0  0  0 -1]
    [-1  0 -1  0  0  0  0 -1  0]
    [-2  0 -1 -1  0  0 -1 -1 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]

12
{@
    Mod: ( 2  0 -1 -1 -1  0  0 -1 -1),
    Mod: ( 4 -1 -2 -1 -1 -1 -1 -2 -2),
    Mod: ( 3 -2 -1 -1  0 -1 -1 -1 -1),
    Mod: ( 2 -1 -1  0 -1 -1  0 -1  0),
    Mod: ( 1 -1  0  0 -1  0  0  0  0),
    Mod: ( 3 -1 -2 -1 -1 -1 -1  0 -1),
    Mod: ( 2 -1 -1 -1  0  0 -1  0 -1),
    Mod: ( 6 -2 -3 -2 -2 -2 -2 -2 -2),
    Mod: ( 3 -1 -1 -1 -1 -1  0 -1 -2),
    Mod: ( 5 -2 -2 -2 -2 -1 -2 -2 -1),
    Mod: ( 2 -1 -1  0 -1  0 -1 -1  0),
    Mod: ( 2 -1 -1  0  0  0 -1 -1 -1),
    Mod: ( 1  0 -1  0 -1  0  0  0  0),
    Mod: ( 1 -1  0  0  0  0  0  0 -1),
    Mod: ( 3 -1 -1 -1 -1 -1  0 -2 -1),
    Mod: ( 5 -2 -2 -2 -2 -2 -1 -1 -2),
    Mod: ( 4 -2 -2 -1 -1 -2 -1 -1 -1),
    Mod: ( 3 -1 -1 -2 -1  0 -1 -1 -1),
    Mod: ( 4 -2 -1 -2 -2 -1 -1 -1 -1),
    Mod: ( 4 -2 -1 -2 -1 -1 -1 -2 -1)
@}
Intersection Matrix:
[-1  0  2  1  1  1  1  1  0  1  1  1  0  1  0  1  2  0  1  1]
[ 0 -1  1  1  2  1  1  0  0  1  1  0  1  1  0  1  1  1  2  1]
[ 2  1 -1  1  1  1  0  1  1  1  1  0  2  0  1  1  0  1  1  0]
[ 1  1  1 -1  0  1  2  1  1  1  0  1  0  1  0  1  0  2  1  1]
[ 1  2  1  0 -1  1  1  2  1  1  0  1  0  0  1  1  1  1  0  1]
[ 1  1  1  1  1 -1  0  0  1  1  1  1  0  1  2  0  0  1  1  2]
[ 1  1  0  2  1  0 -1  1  1  1  1  0  1  0  2  1  1  0  1  1]
[ 1  0  1  1  2  0  1 -1  1  0  1  1  1  2  1  0  0  1  1  1]
[ 0  0  1  1  1  1  1  1 -1  2  2  1  1  0  0  0  1  1  1  1]
[ 1  1  1  1  1  1  1  0  2 -1  0  1  1  2  1  1  1  0  0  0]
[ 1  1  1  0  0  1  1  1  2  0 -1  0  0  1  1  2  1  1  1  1]
[ 1  0  0  1  1  1  0  1  1  1  0 -1  1  0  1  2  1  1  2  1]
[ 0  1  2  0  0  0  1  1  1  1  0  1 -1  1  1  1  1  1  1  2]
[ 1  1  0  1  0  1  0  2  0  2  1  0  1 -1  1  1  1  1  1  1]
[ 0  0  1  0  1  2  2  1  0  1  1  1  1  1 -1  1  1  1  1  0]
[ 1  1  1  1  1  0  1  0  0  1  2  2  1  1  1 -1  0  1  0  1]
[ 2  1  0  0  1  0  1  0  1  1  1  1  1  1  1  0 -1  2  1  1]
[ 0  1  1  2  1  1  0  1  1  0  1  1  1  1  1  1  2 -1  0  0]
[ 1  2  1  1  0  1  1  1  1  0  1  2  1  1  1  0  1  0 -1  0]
[ 1  1  0  1  1  2  1  1  1  0  1  1  2  1  0  1  1  0  0 -1]
Stabilizer Group Name:
C2^2
MatrixGroup(9, Integer Ring)
Generators:
    [ 2  0  1  0  0  0  1  1  0]
    [ 0  1  0  0  0  0  0  0  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [ 0  0  0  0  0  1  0  0  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0 -1  0  0]
    [ 0  0  0  0  0  0  0  0  1]

    [12  3  5  6  4  4  4  4  3]
    [-3  0 -1 -2 -1 -1 -1 -1 -1]
    [-5 -1 -2 -2 -2 -2 -2 -2 -1]
    [-6 -2 -2 -3 -2 -2 -2 -2 -2]
    [-4 -1 -2 -2 -1 -2 -1 -1 -1]
    [-4 -1 -2 -2 -2 -1 -1 -1 -1]
    [-4 -1 -2 -2 -1 -1 -1 -2 -1]
    [-4 -1 -2 -2 -1 -1 -2 -1 -1]
    [-3 -1 -1 -2 -1 -1 -1 -1  0]

13
{@
    Mod: ( 3 -1 -1 -1 -1 -2 -1 -1  0),
    Mod: ( 1  0  0  0  0 -1  0 -1  0),
    Mod: ( 4 -1 -1 -1 -1 -1 -2 -2 -2),
    Mod: ( 3 -1 -1  0 -1 -1 -2 -1 -1),
    Mod: ( 2  0 -1 -1  0 -1 -1  0 -1),
    Mod: ( 4 -1 -1 -1 -2 -1 -2 -2 -1),
    Mod: ( 5 -1 -2 -1 -2 -2 -2 -2 -2),
    Mod: ( 3 -1 -1 -1  0 -2 -1 -1 -1),
    Mod: ( 4 -1 -1 -2 -1 -2 -1 -2 -1),
    Mod: ( 3 -1  0 -1 -2 -1 -1 -1 -1),
    Mod: ( 4 -1 -1 -1 -2 -2 -1 -1 -2),
    Mod: ( 1  0  0 -1  0  0 -1  0  0),
    Mod: ( 2 -1  0 -1  0 -1 -1 -1  0),
    Mod: ( 2 -1  0  0 -1 -1 -1  0 -1),
    Mod: ( 3 -1  0 -1 -1 -1 -1 -1 -2),
    Mod: ( 2  0 -1 -1 -1 -1 -1  0  0),
    Mod: ( 6 -2 -2 -2 -2 -2 -3 -2 -2),
    Mod: ( 3  0 -1 -2 -1 -1 -1 -1 -1),
    Mod: ( 5 -2 -1 -2 -2 -2 -2 -1 -2),
    Mod: (0 1 0 0 0 0 0 0 0)
@}
Intersection Matrix:
[-1  0  2  1  1  1  1  0  0  1  1  1  0  1  2  0  1  1  1  1]
[ 0 -1  1  1  1  1  1  0  0  1  1  1  0  1  1  1  2  1  2  0]
[ 2  1 -1  0  1  0  0  1  1  1  1  1  1  1  0  2  0  1  1  1]
[ 1  1  0 -1  1  0  0  1  2  1  1  1  1  0  1  1  0  2  1  1]
[ 1  1  1  1 -1  2  1  0  1  2  1  0  1  1  1  0  1  0  1  0]
[ 1  1  0  0  2 -1  0  2  1  0  1  1  1  1  1  1  0  1  1  1]
[ 1  1  0  0  1  0 -1  1  1  1  0  2  2  1  1  1  0  1  1  1]
[ 0  0  1  1  0  2  1 -1  0  2  1  1  0  1  1  1  1  1  1  1]
[ 0  0  1  2  1  1  1  0 -1  1  1  1  0  2  1  1  1  0  1  1]
[ 1  1  1  1  2  0  1  2  1 -1  0  1  1  0  0  1  1  1  0  1]
[ 1  1  1  1  1  1  0  1  1  0 -1  2  2  0  0  1  1  1  0  1]
[ 1  1  1  1  0  1  2  1  1  1  2 -1  0  1  1  0  1  0  1  0]
[ 0  0  1  1  1  1  2  0  0  1  2  0 -1  1  1  1  1  1  1  1]
[ 1  1  1  0  1  1  1  1  2  0  0  1  1 -1  0  1  1  2  0  1]
[ 2  1  0  1  1  1  1  1  1  0  0  1  1  0 -1  2  1  1  0  1]
[ 0  1  2  1  0  1  1  1  1  1  1  0  1  1  2 -1  1  0  1  0]
[ 1  2  0  0  1  0  0  1  1  1  1  1  1  1  1  1 -1  1  0  2]
[ 1  1  1  2  0  1  1  1  0  1  1  0  1  2  1  0  1 -1  1  0]
[ 1  2  1  1  1  1  1  1  1  0  0  1  1  0  0  1  0  1 -1  2]
[ 1  0  1  1  0  1  1  1  1  1  1  0  1  1  1  0  2  0  2 -1]
Stabilizer Group Name:
C2^2
MatrixGroup(9, Integer Ring)
Generators:
    [10  2  5  4  2  4  3  3  4]
    [-2  0 -1 -1  0 -1 -1  0 -1]
    [-5 -1 -2 -2 -1 -2 -2 -2 -2]
    [-4 -1 -2 -1 -1 -2 -1 -1 -2]
    [-2  0 -1 -1  0 -1  0 -1 -1]
    [-4 -1 -2 -2 -1 -1 -1 -1 -2]
    [-3 -1 -2 -1  0 -1 -1 -1 -1]
    [-3  0 -2 -1 -1 -1 -1 -1 -1]
    [-4 -1 -2 -2 -1 -2 -1 -1 -1]

    [ 9  2  4  4  2  4  2  2  4]
    [-2  0 -1 -1  0 -1 -1  0 -1]
    [-4 -1 -1 -2 -1 -2 -1 -1 -2]
    [-4 -1 -2 -1 -1 -2 -1 -1 -2]
    [-2  0 -1 -1  0 -1  0 -1 -1]
    [-4 -1 -2 -2 -1 -1 -1 -1 -2]
    [-2 -1 -1 -1  0 -1  0  0 -1]
    [-2  0 -1 -1 -1 -1  0  0 -1]
    [-4 -1 -2 -2 -1 -2 -1 -1 -1]

14
{@
    Mod: ( 3 -1 -1  0 -1 -2 -1 -1 -1),
    Mod: ( 2  0  0 -1 -1  0 -1 -1 -1),
    Mod: ( 2  0 -1  0 -1 -1 -1  0 -1),
    Mod: ( 4 -1 -1 -2 -2 -2 -1 -1 -1),
    Mod: ( 1  0  0  0  0  0 -1 -1  0),
    Mod: ( 2  0 -1  0  0 -1 -1 -1 -1),
    Mod: (0 0 1 0 0 0 0 0 0),
    Mod: ( 1  0  0  0  0 -1  0  0 -1),
    Mod: ( 2 -1  0 -1 -1 -1 -1  0  0),
    Mod: ( 3 -1 -1 -1 -1 -1 -2  0 -1),
    Mod: ( 4 -1 -1 -2 -1 -1 -2 -1 -2),
    Mod: ( 4 -1 -1 -1 -2 -2 -1 -2 -1),
    Mod: ( 5 -2 -1 -2 -1 -2 -2 -2 -2),
    Mod: ( 5 -1 -2 -2 -1 -2 -2 -2 -2),
    Mod: ( 3  0 -1 -1 -2 -1 -1 -1 -1),
    Mod: ( 4 -2 -1 -1 -1 -2 -2 -1 -1),
    Mod: ( 5 -1 -2 -2 -2 -2 -2 -2 -1),
    Mod: ( 3 -1 -1 -1 -1 -1 -2 -1  0),
    Mod: ( 3 -1  0 -1 -1 -1 -1 -2 -1),
    Mod: ( 4 -1 -1 -2 -1 -2 -1 -1 -2)
@}
Intersection Matrix:
[-1  2  0  1  1  0  1  0  1  1  2  0  1  1  1  0  1  1  1  1]
[ 2 -1  1  1  0  1  0  1  1  1  0  1  1  1  0  2  1  1  0  1]
[ 0  1 -1  1  1  0  1  0  1  0  1  1  2  1  0  1  1  1  2  1]
[ 1  1  1 -1  2  2  1  1  0  1  1  0  1  1  0  1  0  1  1  0]
[ 1  0  1  2 -1  0  0  1  1  1  1  1  1  1  1  1  1  0  0  2]
[ 0  1  0  2  0 -1  1  0  2  1  1  1  1  0  1  1  1  1  1  1]
[ 1  0  1  1  0  1 -1  0  0  1  1  1  1  2  1  1  2  1  0  1]
[ 0  1  0  1  1  0  0 -1  1  1  1  1  1  1  1  1  2  2  1  0]
[ 1  1  1  0  1  2  0  1 -1  0  1  1  1  2  1  0  1  0  1  1]
[ 1  1  0  1  1  1  1  1  0 -1  0  2  1  1  1  0  1  0  2  1]
[ 2  0  1  1  1  1  1  1  1  0 -1  2  0  0  1  1  1  1  1  0]
[ 0  1  1  0  1  1  1  1  1  2  2 -1  1  1  0  1  0  1  0  1]
[ 1  1  2  1  1  1  1  1  1  1  0  1 -1  0  2  0  1  1  0  0]
[ 1  1  1  1  1  0  2  1  2  1  0  1  0 -1  1  1  0  1  1  0]
[ 1  0  0  0  1  1  1  1  1  1  1  0  2  1 -1  2  0  1  1  1]
[ 0  2  1  1  1  1  1  1  0  0  1  1  0  1  2 -1  1  0  1  1]
[ 1  1  1  0  1  1  2  2  1  1  1  0  1  0  0  1 -1  0  1  1]
[ 1  1  1  1  0  1  1  2  0  0  1  1  1  1  1  0  0 -1  1  2]
[ 1  0  2  1  0  1  0  1  1  2  1  0  0  1  1  1  1  1 -1  1]
[ 1  1  1  0  2  1  1  0  1  1  0  1  0  0  1  1  1  2  1 -1]
Stabilizer Group Name:
C2^2
MatrixGroup(9, Integer Ring)
Generators:
    [10  2  5  4  2  4  3  3  4]
    [-2  0 -1 -1  0 -1 -1  0 -1]
    [-5 -1 -2 -2 -1 -2 -2 -2 -2]
    [-4 -1 -2 -1 -1 -2 -1 -1 -2]
    [-2  0 -1 -1  0 -1  0 -1 -1]
    [-4 -1 -2 -2 -1 -1 -1 -1 -2]
    [-3 -1 -2 -1  0 -1 -1 -1 -1]
    [-3  0 -2 -1 -1 -1 -1 -1 -1]
    [-4 -1 -2 -2 -1 -2 -1 -1 -1]

    [ 2  0  1  0  0  0  1  1  0]
    [ 0  1  0  0  0  0  0  0  0]
    [-1  0  0  0  0  0 -1 -1  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [ 0  0  0  0  0  1  0  0  0]
    [-1  0 -1  0  0  0  0 -1  0]
    [-1  0 -1  0  0  0 -1  0  0]
    [ 0  0  0  0  0  0  0  0  1]

15
{@
    Mod: ( 5 -2 -2 -1 -2 -2 -1 -2 -2),
    Mod: ( 4 -1 -2 -2 -1 -1 -1 -2 -1),
    Mod: ( 4 -1 -2 -1 -2 -1 -1 -1 -2),
    Mod: ( 2 -1 -1  0 -1  0 -1  0 -1),
    Mod: ( 1  0 -1  0  0  0  0 -1  0),
    Mod: ( 3 -1 -2 -1  0 -1 -1 -1 -1),
    Mod: ( 1 -1  0 -1  0  0  0  0  0),
    Mod: ( 6 -3 -2 -2 -2 -2 -2 -2 -2),
    Mod: ( 5 -2 -2 -2 -2 -1 -2 -1 -2),
    Mod: ( 2 -1 -1 -1 -1 -1  0  0  0),
    Mod: (0 0 0 0 0 0 1 0 0),
    Mod: ( 2 -1 -1 -1  0  0 -1 -1  0),
    Mod: ( 3 -1 -2 -1 -1 -1 -1 -1  0),
    Mod: ( 3 -2 -1  0 -1 -1 -1 -1 -1),
    Mod: ( 4 -2 -1 -1 -1 -1 -1 -2 -2),
    Mod: ( 3 -1 -1 -1 -2  0 -1 -1 -1),
    Mod: ( 2 -1 -1 -1  0 -1  0  0 -1),
    Mod: ( 4 -2 -1 -1 -2 -1 -1 -2 -1),
    Mod: ( 3 -1 -1 -1 -1  0 -1 -1 -2),
    Mod: ( 3 -1 -1 -2 -1 -1  0 -1 -1)
@}
Intersection Matrix:
[-1  1  0  1  1  1  2  0  1  1  1  2  1  0  0  1  1  0  1  1]
[ 1 -1  1  2  0  0  1  1  1  1  1  0  0  2  1  1  1  1  1  0]
[ 0  1 -1  0  1  1  2  1  0  1  1  2  1  1  1  0  1  1  0  1]
[ 1  2  0 -1  1  1  1  1  0  1  1  1  1  0  1  0  1  1  0  2]
[ 1  0  1  1 -1  0  1  2  2  1  0  0  0  1  1  1  1  1  1  1]
[ 1  0  1  1  0 -1  1  1  1  1  1  0  0  1  1  2  0  2  1  1]
[ 2  1  2  1  1  1 -1  1  1  0  0  0  1  1  1  1  0  1  1  0]
[ 0  1  1  1  2  1  1 -1  0  1  2  1  1  0  0  1  1  0  1  1]
[ 1  1  0  0  2  1  1  0 -1  1  2  1  1  1  1  0  1  1  0  1]
[ 1  1  1  1  1  1  0  1  1 -1  0  1  0  1  2  1  0  1  2  0]
[ 1  1  1  1  0  1  0  2  2  0 -1  1  1  1  1  1  0  1  1  0]
[ 2  0  2  1  0  0  0  1  1  1  1 -1  0  1  1  1  1  1  1  1]
[ 1  0  1  1  0  0  1  1  1  0  1  0 -1  1  2  1  1  1  2  1]
[ 0  2  1  0  1  1  1  0  1  1  1  1  1 -1  0  1  1  0  1  2]
[ 0  1  1  1  1  1  1  0  1  2  1  1  2  0 -1  1  1  0  0  1]
[ 1  1  0  0  1  2  1  1  0  1  1  1  1  1  1 -1  2  0  0  1]
[ 1  1  1  1  1  0  0  1  1  0  0  1  1  1  1  2 -1  2  1  0]
[ 0  1  1  1  1  2  1  0  1  1  1  1  1  0  0  0  2 -1  1  1]
[ 1  1  0  0  1  1  1  1  0  2  1  1  2  1  0  0  1  1 -1  1]
[ 1  0  1  2  1  1  0  1  1  0  0  1  1  2  1  1  0  1  1 -1]
Stabilizer Group Name:
C2^2
MatrixGroup(9, Integer Ring)
Generators:
    [ 7  2  3  3  3  2  3  2  0]
    [-2  0 -1 -1 -1 -1 -1  0  0]
    [-3 -1 -1 -1 -1 -1 -2 -1  0]
    [-3 -1 -1 -1 -2 -1 -1 -1  0]
    [-3 -1 -1 -2 -1 -1 -1 -1  0]
    [-2 -1 -1 -1 -1  0 -1  0  0]
    [-3 -1 -2 -1 -1 -1 -1 -1  0]
    [-2  0 -1 -1 -1  0 -1 -1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [ 6  2  2  3  3  2  2  1  0]
    [-2  0 -1 -1 -1 -1 -1  0  0]
    [-2 -1  0 -1 -1 -1 -1  0  0]
    [-3 -1 -1 -1 -2 -1 -1 -1  0]
    [-3 -1 -1 -2 -1 -1 -1 -1  0]
    [-2 -1 -1 -1 -1  0 -1  0  0]
    [-2 -1 -1 -1 -1 -1  0  0  0]
    [-1  0  0 -1 -1  0  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

16
{@
    Mod: ( 2 -1  0 -1  0 -1 -1  0 -1),
    Mod: ( 1  0  0  0 -1 -1  0  0  0),
    Mod: ( 1  0  0  0  0  0 -1  0 -1),
    Mod: ( 3 -1 -1 -1  0 -1 -2 -1 -1),
    Mod: ( 5 -2 -1 -2 -2 -2 -2 -2 -1),
    Mod: ( 4 -1 -1 -2 -1 -1 -2 -2 -1),
    Mod: ( 4 -1 -2 -1 -1 -2 -2 -1 -1),
    Mod: ( 4 -1 -1 -2 -2 -1 -2 -1 -1),
    Mod: ( 6 -2 -2 -2 -2 -3 -2 -2 -2),
    Mod: ( 5 -1 -2 -2 -2 -2 -2 -1 -2),
    Mod: ( 2 -1  0  0 -1 -1 -1 -1  0),
    Mod: ( 2  0  0 -1 -1 -1  0 -1 -1),
    Mod: ( 3 -1 -1 -1 -1 -2 -1  0 -1),
    Mod: ( 4 -1 -1 -1 -1 -2 -1 -2 -2),
    Mod: ( 2 -1  0  0  0 -1 -1 -1 -1),
    Mod: ( 1  0  0  0 -1  0 -1  0  0),
    Mod: ( 3  0 -1 -1 -1 -1 -1 -2 -1),
    Mod: ( 2  0 -1  0 -1 -1 -1 -1  0),
    Mod: ( 3 -1  0 -2 -1 -1 -1 -1 -1),
    Mod: ( 3  0 -1 -1 -1 -1 -1 -1 -2)
@}
Intersection Matrix:
[-1  1  0  0  1  1  1  1  1  1  1  1  0  1  0  1  2  2  0  1]
[ 1 -1  1  2  1  2  1  1  1  1  0  0  0  1  1  0  1  0  1  1]
[ 0  1 -1  0  2  1  1  1  2  1  1  1  1  1  0  0  1  1  1  0]
[ 0  2  0 -1  1  0  0  1  1  1  1  2  1  1  0  1  1  1  1  1]
[ 1  1  2  1 -1  0  1  0  0  1  0  1  1  1  1  1  1  1  0  2]
[ 1  2  1  0  0 -1  1  0  1  1  1  1  2  1  1  1  0  1  0  1]
[ 1  1  1  0  1  1 -1  1  0  0  1  2  0  1  1  1  1  0  2  1]
[ 1  1  1  1  0  0  1 -1  1  0  1  1  1  2  2  0  1  1  0  1]
[ 1  1  2  1  0  1  0  1 -1  0  1  1  0  0  1  2  1  1  1  1]
[ 1  1  1  1  1  1  0  0  0 -1  2  1  0  1  2  1  1  1  1  0]
[ 1  0  1  1  0  1  1  1  1  2 -1  1  1  1  0  0  1  0  1  2]
[ 1  0  1  2  1  1  2  1  1  1  1 -1  1  0  1  1  0  1  0  0]
[ 0  0  1  1  1  2  0  1  0  0  1  1 -1  1  1  1  2  1  1  1]
[ 1  1  1  1  1  1  1  2  0  1  1  0  1 -1  0  2  0  1  1  0]
[ 0  1  0  0  1  1  1  2  1  2  0  1  1  0 -1  1  1  1  1  1]
[ 1  0  0  1  1  1  1  0  2  1  0  1  1  2  1 -1  1  0  1  1]
[ 2  1  1  1  1  0  1  1  1  1  1  0  2  0  1  1 -1  0  1  0]
[ 2  0  1  1  1  1  0  1  1  1  0  1  1  1  1  0  0 -1  2  1]
[ 0  1  1  1  0  0  2  0  1  1  1  0  1  1  1  1  1  2 -1  1]
[ 1  1  0  1  2  1  1  1  1  0  2  0  1  0  1  1  0  1  1 -1]
Stabilizer Group Name:
C2^2
MatrixGroup(9, Integer Ring)
Generators:
    [ 4  1  1  1  0  2  0  2  2]
    [-1  0  0  0  0 -1  0 -1  0]
    [-1  0  0  0  0 -1  0  0 -1]
    [-1  0  0  0  0  0  0 -1 -1]
    [ 0  0  0  0  1  0  0  0  0]
    [-2 -1 -1  0  0 -1  0 -1 -1]
    [ 0  0  0  0  0  0  1  0  0]
    [-2 -1  0 -1  0 -1  0 -1 -1]
    [-2  0 -1 -1  0 -1  0 -1 -1]

    [ 2  1  0  0  0  1  0  1  0]
    [-1  0  0  0  0 -1  0 -1  0]
    [ 0  0  1  0  0  0  0  0  0]
    [ 0  0  0  1  0  0  0  0  0]
    [ 0  0  0  0  1  0  0  0  0]
    [-1 -1  0  0  0  0  0 -1  0]
    [ 0  0  0  0  0  0  1  0  0]
    [-1 -1  0  0  0 -1  0  0  0]
    [ 0  0  0  0  0  0  0  0  1]

17
{@
    Mod: ( 1 -1  0  0  0 -1  0  0  0),
    Mod: ( 2 -1  0 -1 -1  0 -1  0 -1),
    Mod: ( 4 -2 -1 -2 -1 -2 -1 -1 -1),
    Mod: ( 3 -1 -1  0 -1 -1 -1 -2 -1),
    Mod: ( 3 -1 -1 -1  0 -1 -1 -2 -1),
    Mod: ( 4 -2 -1 -1 -2 -2 -1 -1 -1),
    Mod: (0 0 0 0 0 0 0 1 0),
    Mod: ( 2 -1  0 -1  0 -1  0 -1 -1),
    Mod: ( 5 -1 -2 -2 -2 -1 -2 -2 -2),
    Mod: ( 2 -1  0  0 -1 -1  0 -1 -1),
    Mod: ( 3 -1 -1 -1 -1 -1 -1 -2  0),
    Mod: ( 1  0  0 -1 -1  0  0  0  0),
    Mod: ( 2  0 -1 -1 -1 -1  0  0 -1),
    Mod: ( 2 -1  0 -1 -1 -1  0 -1  0),
    Mod: ( 4 -1 -1 -2 -2 -1 -1 -1 -2),
    Mod: ( 4 -2 -1 -1 -1 -1 -2 -2 -1),
    Mod: ( 6 -2 -2 -2 -2 -2 -2 -3 -2),
    Mod: ( 3 -1 -1 -1 -1  0 -2 -1 -1),
    Mod: ( 1  0 -1  0  0  0 -1  0  0),
    Mod: ( 4 -1 -2 -1 -1 -2 -1 -2 -1),
    Mod: ( 2  0 -1  0 -1  0 -1 -1 -1),
    Mod: ( 3 -1 -1 -1 -1 -2  0 -1 -1),
    Mod: ( 2  0 -1 -1  0  0 -1 -1 -1),
    Mod: ( 3  0 -2 -1 -1 -1 -1 -1 -1),
    Mod: ( 5 -2 -1 -2 -2 -2 -1 -2 -2),
    Mod: ( 2 -1 -1  0  0 -1 -1 -1  0),
    Mod: ( 3 -1 -1 -1 -2 -1 -1  0 -1),
    Mod: ( 1  0  0  0 -1  0  0  0 -1),
    Mod: ( 1  0  0 -1  0  0  0  0 -1),
    Mod: ( 2  0 -1 -1 -1  0 -1 -1  0),
    Mod: ( 3 -1 -1 -2 -1 -1 -1  0 -1),
    Mod: ( 4 -1 -2 -1 -1 -1 -2 -1 -2),
    Mod: ( 3 -2  0 -1 -1 -1 -1 -1 -1),
    Mod: ( 3 -1 -1 -1 -1 -1 -1  0 -2),
    Mod: ( 4 -1 -2 -2 -1 -1 -2 -1 -1),
    Mod: ( 4 -1 -2 -1 -2 -1 -2 -1 -1),
    Mod: ( 5 -2 -2 -1 -1 -2 -2 -2 -2),
    Mod: ( 5 -2 -2 -2 -1 -2 -2 -2 -1),
    Mod: ( 5 -2 -2 -1 -2 -2 -2 -2 -1),
    Mod: ( 4 -2 -1 -1 -1 -2 -1 -1 -2)
@}
Intersection Matrix:
[-1  1  0  1  1  0  0  0  3  0  1  1  1  0  2  1  2  2  1  1  2  0  2  2  1  0  1  1  1  2  1  2  0  1  2  2  1  1  1  0]
[ 1 -1  1  2  2  1  0  1  1  1  2  0  1  1  0  1  2  0  1  3  1  2  1  2  1  2  0  0  0  1  0  1  0  0  1  1  2  2  2  1]
[ 0  1 -1  2  1  0  1  0  2  1  1  1  1  0  1  1  1  2  2  1  3  0  2  2  0  1  1  2  1  2  0  2  0  1  1  2  1  0  1  0]
[ 1  2  2 -1  0  1  2  1  1  0  0  2  2  1  2  0  0  1  1  0  0  1  1  1  1  0  2  1  2  1  3  1  1  2  2  1  0  1  0  1]
[ 1  2  1  0 -1  2  2  0  1  1  0  2  2  1  2  0  0  1  1  0  1  1  0  1  1  0  3  2  1  1  2  1  1  2  1  2  0  0  1  1]
[ 0  1  0  1  2 -1  1  1  2  0  1  1  1  0  1  1  1  2  2  1  2  0  3  2  0  1  0  1  2  2  1  2  0  1  2  1  1  1  0  0]
[ 0  0  1  2  2  1 -1  1  2  1  2  0  0  1  1  2  3  1  0  2  1  1  1  1  2  1  0  0  0  1  0  1  1  0  1  1  2  2  2  1]
[ 0  1  0  1  0  1  1 -1  2  0  1  1  1  0  1  1  1  2  2  1  2  0  1  2  0  1  2  1  0  2  1  2  0  1  2  3  1  1  2  0]
[ 3  1  2  1  1  2  2  2 -1  2  1  1  1  2  0  1  0  0  1  1  0  2  0  0  1  2  1  1  1  0  1  0  2  1  0  0  1  1  1  2]
[ 0  1  1  0  1  0  1  0  2 -1  1  1  1  0  1  1  1  2  2  1  1  0  2  2  0  1  1  0  1  2  2  2  0  1  3  2  1  2  1  0]
[ 1  2  1  0  0  1  2  1  1  1 -1  1  2  0  2  0  0  1  1  0  1  1  1  1  1  0  2  2  2  0  2  2  1  3  1  1  1  0  0  2]
[ 1  0  1  2  2  1  0  1  1  1  1 -1  0  0  0  2  2  1  1  2  1  1  1  1  1  2  0  0  0  0  0  2  1  1  1  1  3  2  2  2]
[ 1  1  1  2  2  1  0  1  1  1  2  0 -1  1  0  3  2  2  1  1  1  0  1  0  1  2  0  0  0  1  0  1  2  0  1  1  2  2  2  1]
[ 0  1  0  1  1  0  1  0  2  0  0  0  1 -1  1  1  1  2  2  1  2  0  2  2  0  1  1  1  1  1  1  3  0  2  2  2  2  1  1  1]
[ 2  0  1  2  2  1  1  1  0  1  2  0  0  1 -1  2  1  1  2  2  1  1  1  1  0  3  0  0  0  1  0  1  1  0  1  1  2  2  2  1]
[ 1  1  1  0  0  1  2  1  1  1  0  2  3  1  2 -1  0  0  1  1  1  2  1  2  1  0  2  2  2  1  2  1  0  2  1  1  0  0  0  1]
[ 2  2  1  0  0  1  3  1  0  1  0  2  2  1  1  0 -1  1  2  0  1  1  1  1  0  1  2  2  2  1  2  1  1  2  1  1  0  0  0  1]
[ 2  0  2  1  1  2  1  2  0  2  1  1  2  2  1  0  1 -1  0  2  0  3  0  1  2  1  1  1  1  0  1  0  1  1  0  0  1  1  1  2]
[ 1  1  2  1  1  2  0  2  1  2  1  1  1  2  2  1  2  0 -1  1  0  2  0  0  3  0  1  1  1  0  1  0  2  1  0  0  1  1  1  2]
[ 1  3  1  0  0  1  2  1  1  1  0  2  1  1  2  1  0  2  1 -1  1  0  1  0  1  0  2  2  2  1  2  1  2  2  1  1  0  0  0  1]
[ 2  1  3  0  1  2  1  2  0  1  1  1  1  2  1  1  1  0  0  1 -1  2  0  0  2  1  1  0  1  0  2  0  2  1  1  0  1  2  1  2]
[ 0  2  0  1  1  0  1  0  2  0  1  1  0  0  1  2  1  3  2  0  2 -1  2  1  0  1  1  1  1  2  1  2  1  1  2  2  1  1  1  0]
[ 2  1  2  1  0  3  1  1  0  2  1  1  1  2  1  1  1  0  0  1  0  2 -1  0  2  1  2  1  0  0  1  0  2  1  0  1  1  1  2  2]
[ 2  2  2  1  1  2  1  2  0  2  1  1  0  2  1  2  1  1  0  0  0  1  0 -1  2  1  1  1  1  0  1  0  3  1  0  0  1  1  1  2]
[ 1  1  0  1  1  0  2  0  1  0  1  1  1  0  0  1  0  2  3  1  2  0  2  2 -1  2  1  1  1  2  1  2  0  1  2  2  1  1  1  0]
[ 0  2  1  0  0  1  1  1  2  1  0  2  2  1  3  0  1  1  0  0  1  1  1  1  2 -1  2  2  2  1  2  1  1  2  1  1  0  0  0  1]
[ 1  0  1  2  3  0  0  2  1  1  2  0  0  1  0  2  2  1  1  2  1  1  2  1  1  2 -1  0  1  1  0  1  1  0  1  0  2  2  1  1]
[ 1  0  2  1  2  1  0  1  1  0  2  0  0  1  0  2  2  1  1  2  0  1  1  1  1  2  0 -1  0  1  1  1  1  0  2  1  2  3  2  1]
[ 1  0  1  2  1  2  0  0  1  1  2  0  0  1  0  2  2  1  1  2  1  1  0  1  1  2  1  0 -1  1  0  1  1  0  1  2  2  2  3  1]
[ 2  1  2  1  1  2  1  2  0  2  0  0  1  1  1  1  1  0  0  1  0  2  0  0  2  1  1  1  1 -1  1  1  2  2  0  0  2  1  1  3]
[ 1  0  0  3  2  1  0  1  1  2  2  0  0  1  0  2  2  1  1  2  2  1  1  1  1  2  0  1  0  1 -1  1  1  0  0  1  2  1  2  1]
[ 2  1  2  1  1  2  1  2  0  2  2  2  1  3  1  1  1  0  0  1  0  2  0  0  2  1  1  1  1  1  1 -1  2  0  0  0  0  1  1  1]
[ 0  0  0  1  1  0  1  0  2  0  1  1  2  0  1  0  1  1  2  2  2  1  2  3  0  1  1  1  1  2  1  2 -1  1  2  2  1  1  1  0]
[ 1  0  1  2  2  1  0  1  1  1  3  1  0  2  0  2  2  1  1  2  1  1  1  1  1  2  0  0  0  2  0  0  1 -1  1  1  1  2  2  0]
[ 2  1  1  2  1  2  1  2  0  3  1  1  1  2  1  1  1  0  0  1  1  2  0  0  2  1  1  2  1  0  0  0  2  1 -1  0  1  0  1  2]
[ 2  1  2  1  2  1  1  3  0  2  1  1  1  2  1  1  1  0  0  1  0  2  1  0  2  1  0  1  2  0  1  0  2  1  0 -1  1  1  0  2]
[ 1  2  1  0  0  1  2  1  1  1  1  3  2  2  2  0  0  1  1  0  1  1  1  1  1  0  2  2  2  2  2  0  1  1  1  1 -1  0  0  0]
[ 1  2  0  1  0  1  2  1  1  2  0  2  2  1  2  0  0  1  1  0  2  1  1  1  1  0  2  3  2  1  1  1  1  2  0  1  0 -1  0  1]
[ 1  2  1  0  1  0  2  2  1  1  0  2  2  1  2  0  0  1  1  0  1  1  2  1  1  0  1  2  3  1  2  1  1  2  1  0  0  0 -1  1]
[ 0  1  0  1  1  0  1  0  2  0  2  2  1  1  1  1  1  2  2  1  2  0  2  2  0  1  1  1  1  3  1  1  0  0  2  2  0  1  1 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 2  1  0  1  0  0  1  0  0]
    [-1  0  0 -1  0  0 -1  0  0]
    [ 0  0  1  0  0  0  0  0  0]
    [-1 -1  0  0  0  0 -1  0  0]
    [ 0  0  0  0  0  0  0  0  1]
    [ 0  0  0  0  0  1  0  0  0]
    [-1 -1  0 -1  0  0  0  0  0]
    [ 0  0  0  0  0  0  0  1  0]
    [ 0  0  0  0  1  0  0  0  0]

D7(9):C3⋊S3⋊C2

    order := 36,
    length := 2419200,
    subgroup := MatrixGroup(9, Integer Ring) of order 2^2 * 3^2
    Generators:
        [ 9  5  3  2  2  2  4  3  3]
        [-4 -2 -1 -1 -1 -1 -2 -1 -2]
        [-3 -2 -1 -1  0 -1 -1 -1 -1]
        [-4 -2 -1 -1 -1 -1 -2 -2 -1]
        [-4 -2 -2 -1 -1 -1 -2 -1 -1]
        [-1 -1  0  0  0  0 -1  0  0]
        [-3 -2 -1  0 -1 -1 -1 -1 -1]
        [-2 -1 -1  0  0  0 -1 -1 -1]
        [-3 -2 -1 -1 -1  0 -1 -1 -1]

        [ 7  2  3  3  2  2  3  3  0]
        [-2  0 -1 -1  0 -1 -1 -1  0]
        [-3 -1 -2 -1 -1 -1 -1 -1  0]
        [-3 -1 -1 -2 -1 -1 -1 -1  0]
        [-2  0 -1 -1 -1  0 -1 -1  0]
        [-2 -1 -1 -1  0  0 -1 -1  0]
        [-3 -1 -1 -1 -1 -1 -1 -2  0]
        [-3 -1 -1 -1 -1 -1 -2 -1  0]
        [ 0  0  0  0  0  0  0  0  1]

        [10  3  6  3  3  3  3  3  3]
        [-3 -1 -2 -1 -1  0 -1 -1 -1]
        [-3 -1 -2 -1 -1 -1 -1 -1  0]
        [-3 -1 -2  0 -1 -1 -1 -1 -1]
        [-3  0 -2 -1 -1 -1 -1 -1 -1]
        [-3 -1 -2 -1  0 -1 -1 -1 -1]
        [-3 -1 -2 -1 -1 -1  0 -1 -1]
        [-3 -1 -2 -1 -1 -1 -1  0 -1]
        [-6 -2 -3 -2 -2 -2 -2 -2 -2]

        [1 0 0 0 0 0 0 0 0]
        [0 0 0 0 0 1 0 0 0]
        [0 0 1 0 0 0 0 0 0]
        [0 0 0 1 0 0 0 0 0]
        [0 1 0 0 0 0 0 0 0]
        [0 0 0 0 1 0 0 0 0]
        [0 0 0 0 0 0 1 0 0]
        [0 0 0 0 0 0 0 1 0]
        [0 0 0 0 0 0 0 0 1]>

Orbit type:{2,2,4,4,6,6,12,12,12,12,12,12,12,12,12,36,36,36}

Orbit:
1
{@
    Mod: ( 3 -1 -1 -1 -1 -1 -2  0 -1),
    Mod: ( 2  0 -1 -1  0  0 -1 -1 -1)
@}
Intersection Matrix:
[-1  1]
[ 1 -1]
Stabilizer Group Name:
C3:S3
MatrixGroup(9, Integer Ring)
Generators:
    [ 7  2  3  3  2  2  3  3  0]
    [-2  0 -1 -1  0 -1 -1 -1  0]
    [-3 -1 -2 -1 -1 -1 -1 -1  0]
    [-3 -1 -1 -2 -1 -1 -1 -1  0]
    [-2  0 -1 -1 -1  0 -1 -1  0]
    [-2 -1 -1 -1  0  0 -1 -1  0]
    [-3 -1 -1 -1 -1 -1 -1 -2  0]
    [-3 -1 -1 -1 -1 -1 -2 -1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [1 0 0 0 0 0 0 0 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 0 0 0 1]

    [10  3  6  3  3  3  3  3  3]
    [-3 -1 -2 -1 -1  0 -1 -1 -1]
    [-3 -1 -2 -1 -1 -1 -1 -1  0]
    [-3 -1 -2  0 -1 -1 -1 -1 -1]
    [-3  0 -2 -1 -1 -1 -1 -1 -1]
    [-3 -1 -2 -1  0 -1 -1 -1 -1]
    [-3 -1 -2 -1 -1 -1  0 -1 -1]
    [-3 -1 -2 -1 -1 -1 -1  0 -1]
    [-6 -2 -3 -2 -2 -2 -2 -2 -2]

2
{@
    Mod: ( 4 -2 -1 -1 -2 -2 -1 -1 -1),
    Mod: ( 3 -1 -1 -1 -1 -1  0 -2 -1)
@}
Intersection Matrix:
[-1  1]
[ 1 -1]
Stabilizer Group Name:
C3:S3
MatrixGroup(9, Integer Ring)
Generators:
    [ 7  2  3  3  2  2  3  3  0]
    [-2  0 -1 -1  0 -1 -1 -1  0]
    [-3 -1 -2 -1 -1 -1 -1 -1  0]
    [-3 -1 -1 -2 -1 -1 -1 -1  0]
    [-2  0 -1 -1 -1  0 -1 -1  0]
    [-2 -1 -1 -1  0  0 -1 -1  0]
    [-3 -1 -1 -1 -1 -1 -1 -2  0]
    [-3 -1 -1 -1 -1 -1 -2 -1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [1 0 0 0 0 0 0 0 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 0 0 0 1]

    [10  3  6  3  3  3  3  3  3]
    [-3 -1 -2 -1 -1  0 -1 -1 -1]
    [-3 -1 -2 -1 -1 -1 -1 -1  0]
    [-3 -1 -2  0 -1 -1 -1 -1 -1]
    [-3  0 -2 -1 -1 -1 -1 -1 -1]
    [-3 -1 -2 -1  0 -1 -1 -1 -1]
    [-3 -1 -2 -1 -1 -1  0 -1 -1]
    [-3 -1 -2 -1 -1 -1 -1  0 -1]
    [-6 -2 -3 -2 -2 -2 -2 -2 -2]

3
{@
    Mod: ( 3 -1 -1  0 -1 -1 -2 -1 -1),
    Mod: ( 3 -1 -1 -2 -1 -1 -1  0 -1),
    Mod: ( 1  0 -1  0  0  0  0  0 -1),
    Mod: ( 4 -1 -1 -2 -1 -1 -2 -2 -1)
@}
Intersection Matrix:
[-1  2  1  1]
[ 2 -1  1  1]
[ 1  1 -1  2]
[ 1  1  2 -1]
Stabilizer Group Name:
C3^2
MatrixGroup(9, Integer Ring)
Generators:
    [1 0 0 0 0 0 0 0 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 0 0 0 1]

    [10  3  6  3  3  3  3  3  3]
    [-3 -1 -2 -1 -1  0 -1 -1 -1]
    [-3 -1 -2 -1 -1 -1 -1 -1  0]
    [-3 -1 -2  0 -1 -1 -1 -1 -1]
    [-3  0 -2 -1 -1 -1 -1 -1 -1]
    [-3 -1 -2 -1  0 -1 -1 -1 -1]
    [-3 -1 -2 -1 -1 -1  0 -1 -1]
    [-3 -1 -2 -1 -1 -1 -1  0 -1]
    [-6 -2 -3 -2 -2 -2 -2 -2 -2]

4
{@
    Mod: ( 2 -1 -1  0 -1 -1  0  0 -1),
    Mod: ( 3 -1 -1 -2 -1 -1  0 -1 -1),
    Mod: ( 3 -1 -1  0 -1 -1 -1 -2 -1),
    Mod: ( 5 -2 -1 -2 -2 -2 -2 -2 -1)
@}
Intersection Matrix:
[-1  1  1  2]
[ 1 -1  2  1]
[ 1  2 -1  1]
[ 2  1  1 -1]
Stabilizer Group Name:
C3^2
MatrixGroup(9, Integer Ring)
Generators:
    [1 0 0 0 0 0 0 0 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 0 0 0 1]

    [10  3  6  3  3  3  3  3  3]
    [-3 -1 -2 -1 -1  0 -1 -1 -1]
    [-3 -1 -2 -1 -1 -1 -1 -1  0]
    [-3 -1 -2  0 -1 -1 -1 -1 -1]
    [-3  0 -2 -1 -1 -1 -1 -1 -1]
    [-3 -1 -2 -1  0 -1 -1 -1 -1]
    [-3 -1 -2 -1 -1 -1  0 -1 -1]
    [-3 -1 -2 -1 -1 -1 -1  0 -1]
    [-6 -2 -3 -2 -2 -2 -2 -2 -2]

5
{@
    Mod: (0 0 1 0 0 0 0 0 0),
    Mod: ( 6 -2 -2 -2 -2 -2 -2 -2 -3),
    Mod: ( 3  0 -1 -1 -1 -2 -1 -1 -1),
    Mod: ( 3 -2 -1 -1  0 -1 -1 -1 -1),
    Mod: ( 3 -1 -2 -1 -1 -1 -1 -1  0),
    Mod: ( 3 -1 -1 -1 -2  0 -1 -1 -1)
@}
Intersection Matrix:
[-1  2  1  1  2  1]
[ 2 -1  1  1  2  1]
[ 1  1 -1  2  1  2]
[ 1  1  2 -1  1  2]
[ 2  2  1  1 -1  1]
[ 1  1  2  2  1 -1]
Stabilizer Group Name:
S3
MatrixGroup(9, Integer Ring)
Generators:
    [1 0 0 0 0 0 0 0 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 0 0 0 1]

    [ 7  2  0  3  2  2  3  3  3]
    [-2  0  0 -1  0 -1 -1 -1 -1]
    [ 0  0  1  0  0  0  0  0  0]
    [-3 -1  0 -2 -1 -1 -1 -1 -1]
    [-2  0  0 -1 -1  0 -1 -1 -1]
    [-2 -1  0 -1  0  0 -1 -1 -1]
    [-3 -1  0 -1 -1 -1 -1 -2 -1]
    [-3 -1  0 -1 -1 -1 -2 -1 -1]
    [-3 -1  0 -1 -1 -1 -1 -1 -2]

6
{@
    Mod: ( 3 -1 -1 -1  0 -2 -1 -1 -1),
    Mod: (0 0 0 0 0 0 0 0 1),
    Mod: ( 3 -2 -1 -1 -1  0 -1 -1 -1),
    Mod: ( 3 -1  0 -1 -1 -1 -1 -1 -2),
    Mod: ( 6 -2 -3 -2 -2 -2 -2 -2 -2),
    Mod: ( 3  0 -1 -1 -2 -1 -1 -1 -1)
@}
Intersection Matrix:
[-1  1  2  1  1  2]
[ 1 -1  1  2  2  1]
[ 2  1 -1  1  1  2]
[ 1  2  1 -1  2  1]
[ 1  2  1  2 -1  1]
[ 2  1  2  1  1 -1]
Stabilizer Group Name:
S3
MatrixGroup(9, Integer Ring)
Generators:
    [16  5  6  6  5  5  6  6  6]
    [-5 -2 -2 -2 -1 -1 -2 -2 -2]
    [-6 -2 -2 -2 -2 -2 -2 -2 -3]
    [-6 -2 -2 -3 -2 -2 -2 -2 -2]
    [-5 -1 -2 -2 -1 -2 -2 -2 -2]
    [-5 -1 -2 -2 -2 -1 -2 -2 -2]
    [-6 -2 -2 -2 -2 -2 -2 -3 -2]
    [-6 -2 -2 -2 -2 -2 -3 -2 -2]
    [-6 -2 -3 -2 -2 -2 -2 -2 -2]

    [ 7  2  0  3  2  2  3  3  3]
    [-2 -1  0 -1  0  0 -1 -1 -1]
    [ 0  0  1  0  0  0  0  0  0]
    [-3 -1  0 -2 -1 -1 -1 -1 -1]
    [-2  0  0 -1  0 -1 -1 -1 -1]
    [-2  0  0 -1 -1  0 -1 -1 -1]
    [-3 -1  0 -1 -1 -1 -1 -2 -1]
    [-3 -1  0 -1 -1 -1 -2 -1 -1]
    [-3 -1  0 -1 -1 -1 -1 -1 -2]

7
{@
    Mod: ( 2  0 -1 -1  0 -1  0 -1 -1),
    Mod: ( 2 -1  0 -1 -1 -1 -1  0  0),
    Mod: ( 2 -1 -1  0 -1 -1 -1  0  0),
    Mod: ( 5 -2 -1 -2 -2 -2 -2 -1 -2),
    Mod: ( 5 -2 -2 -2 -2 -2 -2 -1 -1),
    Mod: ( 3  0 -1 -1 -1 -1 -1 -2 -1),
    Mod: ( 2 -1  0  0 -1 -1 -1  0 -1),
    Mod: ( 3 -1 -1 -1  0 -1 -1 -2 -1),
    Mod: ( 2 -1 -1 -1  0  0  0 -1 -1),
    Mod: ( 3 -1 -1 -1 -1  0 -1 -2 -1),
    Mod: ( 5 -2 -2 -1 -2 -2 -2 -1 -2),
    Mod: ( 2  0 -1 -1 -1  0  0 -1 -1)
@}
Intersection Matrix:
[-1  2  2  2  2  0  2  0  0  1  2  0]
[ 2 -1  0  0  0  2  0  2  2  2  1  2]
[ 2  0 -1  1  0  2  0  2  2  2  0  2]
[ 2  0  1 -1  0  2  0  2  2  2  0  2]
[ 2  0  0  0 -1  2  1  2  2  2  0  2]
[ 0  2  2  2  2 -1  2  0  1  0  2  0]
[ 2  0  0  0  1  2 -1  2  2  2  0  2]
[ 0  2  2  2  2  0  2 -1  0  0  2  1]
[ 0  2  2  2  2  1  2  0 -1  0  2  0]
[ 1  2  2  2  2  0  2  0  0 -1  2  0]
[ 2  1  0  0  0  2  0  2  2  2 -1  2]
[ 0  2  2  2  2  0  2  1  0  0  2 -1]
Stabilizer Group Name:
C3
MatrixGroup(9, Integer Ring)
Generators:
    [10  3  6  3  3  3  3  3  3]
    [-3  0 -2 -1 -1 -1 -1 -1 -1]
    [-3 -1 -2 -1 -1 -1 -1 -1  0]
    [-3 -1 -2  0 -1 -1 -1 -1 -1]
    [-3 -1 -2 -1  0 -1 -1 -1 -1]
    [-3 -1 -2 -1 -1  0 -1 -1 -1]
    [-3 -1 -2 -1 -1 -1  0 -1 -1]
    [-3 -1 -2 -1 -1 -1 -1  0 -1]
    [-6 -2 -3 -2 -2 -2 -2 -2 -2]

8
{@
    Mod: ( 4 -1 -2 -2 -1 -1 -1 -2 -1),
    Mod: ( 3 -1 -1 -1 -1 -2 -1  0 -1),
    Mod: ( 1  0  0 -1  0  0  0 -1  0),
    Mod: ( 4 -1 -2 -1 -1 -1 -1 -2 -2),
    Mod: ( 1  0  0  0  0  0  0 -1 -1),
    Mod: ( 4 -2 -1 -1 -2 -1 -2 -1 -1),
    Mod: ( 3 -2 -1 -1 -1 -1 -1  0 -1),
    Mod: ( 4 -1 -1 -1 -2 -2 -2 -1 -1),
    Mod: ( 3 -1 -1 -1 -2 -1 -1  0 -1),
    Mod: ( 1  0 -1  0  0  0  0 -1  0),
    Mod: ( 4 -1 -1 -2 -1 -1 -1 -2 -2),
    Mod: ( 4 -2 -1 -1 -1 -2 -2 -1 -1)
@}
Intersection Matrix:
[-1  2  0  0  1  2  2  2  2  0  0  2]
[ 2 -1  2  2  2  1  0  0  0  2  2  0]
[ 0  2 -1  1  0  2  2  2  2  0  0  2]
[ 0  2  1 -1  0  2  2  2  2  0  0  2]
[ 1  2  0  0 -1  2  2  2  2  0  0  2]
[ 2  1  2  2  2 -1  0  0  0  2  2  0]
[ 2  0  2  2  2  0 -1  1  0  2  2  0]
[ 2  0  2  2  2  0  1 -1  0  2  2  0]
[ 2  0  2  2  2  0  0  0 -1  2  2  1]
[ 0  2  0  0  0  2  2  2  2 -1  1  2]
[ 0  2  0  0  0  2  2  2  2  1 -1  2]
[ 2  0  2  2  2  0  0  0  1  2  2 -1]
Stabilizer Group Name:
C3
MatrixGroup(9, Integer Ring)
Generators:
    [1 0 0 0 0 0 0 0 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 0 0 0 1]

9
{@
    Mod: ( 3 -1 -1  0 -1 -2 -1 -1 -1),
    Mod: ( 3 -1 -2 -1 -1 -1  0 -1 -1),
    Mod: ( 4 -1 -1 -2 -2 -2 -1 -1 -1),
    Mod: ( 6 -2 -2 -2 -2 -2 -2 -3 -2),
    Mod: (0 0 0 0 0 0 1 0 0),
    Mod: ( 3 -2 -1  0 -1 -1 -1 -1 -1),
    Mod: ( 4 -2 -1 -2 -1 -2 -1 -1 -1),
    Mod: ( 3 -1 -1 -1 -1 -1  0 -1 -2),
    Mod: ( 3 -1 -1 -1 -1 -1 -1 -2  0),
    Mod: ( 3 -1 -1  0 -2 -1 -1 -1 -1),
    Mod: ( 4 -2 -1 -2 -2 -1 -1 -1 -1),
    Mod: ( 3 -1  0 -1 -1 -1 -1 -2 -1)
@}
Intersection Matrix:
[-1  1  1  1  1  0  1  1  1  0  2  1]
[ 1 -1  1  1  0  1  1  0  1  1  1  2]
[ 1  1 -1  1  1  2  0  1  1  1  0  1]
[ 1  1  1 -1  2  1  1  1  0  1  1  0]
[ 1  0  1  2 -1  1  1  0  1  1  1  1]
[ 0  1  2  1  1 -1  1  1  1  0  1  1]
[ 1  1  0  1  1  1 -1  1  1  2  0  1]
[ 1  0  1  1  0  1  1 -1  2  1  1  1]
[ 1  1  1  0  1  1  1  2 -1  1  1  0]
[ 0  1  1  1  1  0  2  1  1 -1  1  1]
[ 2  1  0  1  1  1  0  1  1  1 -1  1]
[ 1  2  1  0  1  1  1  1  0  1  1 -1]
Stabilizer Group Name:
C3
MatrixGroup(9, Integer Ring)
Generators:
    [10  3  6  3  3  3  3  3  3]
    [-3  0 -2 -1 -1 -1 -1 -1 -1]
    [-3 -1 -2 -1 -1 -1 -1 -1  0]
    [-3 -1 -2  0 -1 -1 -1 -1 -1]
    [-3 -1 -2 -1  0 -1 -1 -1 -1]
    [-3 -1 -2 -1 -1  0 -1 -1 -1]
    [-3 -1 -2 -1 -1 -1  0 -1 -1]
    [-3 -1 -2 -1 -1 -1 -1  0 -1]
    [-6 -2 -3 -2 -2 -2 -2 -2 -2]

10
{@
    Mod: ( 4 -1 -1 -2 -1 -2 -2 -1 -1),
    Mod: ( 2 -1 -1  0 -1  0 -1  0 -1),
    Mod: ( 2  0 -1  0 -1 -1 -1  0 -1),
    Mod: ( 4 -1 -2 -1 -1 -1 -2 -2 -1),
    Mod: ( 2 -1 -1  0  0 -1 -1  0 -1),
    Mod: ( 1  0  0  0  0  0 -1 -1  0),
    Mod: ( 1  0 -1 -1  0  0  0  0  0),
    Mod: ( 1  0  0 -1  0  0  0  0 -1),
    Mod: ( 4 -1 -1 -2 -2 -1 -2 -1 -1),
    Mod: ( 4 -1 -2 -2 -1 -1 -1 -1 -2),
    Mod: ( 4 -1 -1 -1 -1 -1 -2 -2 -2),
    Mod: ( 4 -2 -1 -2 -1 -1 -2 -1 -1)
@}
Intersection Matrix:
[-1  2  1  1  1  1  1  1  0  1  1  0]
[ 2 -1  0  1  0  1  1  1  1  1  1  1]
[ 1  0 -1  1  0  1  1  1  1  1  1  2]
[ 1  1  1 -1  1  0  1  2  1  1  0  1]
[ 1  0  0  1 -1  1  1  1  2  1  1  1]
[ 1  1  1  0  1 -1  1  1  1  2  0  1]
[ 1  1  1  1  1  1 -1  0  1  0  2  1]
[ 1  1  1  2  1  1  0 -1  1  0  1  1]
[ 0  1  1  1  2  1  1  1 -1  1  1  0]
[ 1  1  1  1  1  2  0  0  1 -1  1  1]
[ 1  1  1  0  1  0  2  1  1  1 -1  1]
[ 0  1  2  1  1  1  1  1  0  1  1 -1]
Stabilizer Group Name:
C3
MatrixGroup(9, Integer Ring)
Generators:
    [10  3  3  3  3  3  3  3  6]
    [-3  0 -1 -1 -1 -1 -1 -1 -2]
    [-6 -2 -2 -2 -2 -2 -2 -2 -3]
    [-3 -1 -1  0 -1 -1 -1 -1 -2]
    [-3 -1 -1 -1  0 -1 -1 -1 -2]
    [-3 -1 -1 -1 -1  0 -1 -1 -2]
    [-3 -1 -1 -1 -1 -1  0 -1 -2]
    [-3 -1 -1 -1 -1 -1 -1  0 -2]
    [-3 -1  0 -1 -1 -1 -1 -1 -2]

11
{@
    Mod: ( 3 -1  0 -1 -1 -1 -2 -1 -1),
    Mod: ( 6 -2 -2 -2 -2 -2 -3 -2 -2),
    Mod: ( 3 -1 -2 -1 -1 -1 -1  0 -1),
    Mod: (0 0 0 0 0 0 0 1 0),
    Mod: ( 2  0 -1  0 -1  0 -1 -1 -1),
    Mod: ( 2  0 -1  0  0 -1 -1 -1 -1),
    Mod: ( 2 -1 -1  0  0  0 -1 -1 -1),
    Mod: ( 3 -1 -1 -2  0 -1 -1 -1 -1),
    Mod: ( 3 -1 -1 -1 -1 -1 -1  0 -2),
    Mod: ( 3  0 -1 -2 -1 -1 -1 -1 -1),
    Mod: ( 3 -1 -1 -2 -1  0 -1 -1 -1),
    Mod: ( 3 -1 -1 -1 -1 -1 -2 -1  0)
@}
Intersection Matrix:
[-1  0  2  1  1  1  1  1  1  1  1  0]
[ 0 -1  1  2  1  1  1  1  1  1  1  0]
[ 2  1 -1  0  1  1  1  1  0  1  1  1]
[ 1  2  0 -1  1  1  1  1  0  1  1  1]
[ 1  1  1  1 -1  0  0  2  1  1  1  1]
[ 1  1  1  1  0 -1  0  1  1  1  2  1]
[ 1  1  1  1  0  0 -1  1  1  2  1  1]
[ 1  1  1  1  2  1  1 -1  1  0  0  1]
[ 1  1  0  0  1  1  1  1 -1  1  1  2]
[ 1  1  1  1  1  1  2  0  1 -1  0  1]
[ 1  1  1  1  1  2  1  0  1  0 -1  1]
[ 0  0  1  1  1  1  1  1  2  1  1 -1]
Stabilizer Group Name:
C3
MatrixGroup(9, Integer Ring)
Generators:
    [1 0 0 0 0 0 0 0 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 0 0 0 1]

12
{@
    Mod: ( 2 -1 -1  0  0 -1  0 -1 -1),
    Mod: ( 2 -1  0 -1 -1 -1  0  0 -1),
    Mod: ( 4 -1 -1 -2 -1 -2 -1 -2 -1),
    Mod: ( 5 -2 -2 -1 -2 -2 -2 -2 -1),
    Mod: ( 2 -1 -1 -1 -1 -1  0  0  0),
    Mod: ( 5 -2 -2 -2 -2 -2 -1 -1 -2),
    Mod: ( 4 -1 -1 -2 -2 -1 -1 -2 -1),
    Mod: ( 2 -1 -1  0 -1  0  0 -1 -1),
    Mod: ( 5 -2 -1 -1 -2 -2 -2 -2 -2),
    Mod: ( 2  0 -1  0 -1 -1  0 -1 -1),
    Mod: ( 2 -1  0  0 -1 -1 -1 -1  0),
    Mod: ( 4 -2 -1 -2 -1 -1 -1 -2 -1)
@}
Intersection Matrix:
[-1  1  1  1  1  1  2  0  1  0  1  1]
[ 1 -1  1  2  0  0  1  1  1  1  1  1]
[ 1  1 -1  1  1  1  0  2  1  1  1  0]
[ 1  2  1 -1  1  1  1  1  0  1  0  1]
[ 1  0  1  1 -1  0  1  1  2  1  1  1]
[ 1  0  1  1  0 -1  1  1  1  1  2  1]
[ 2  1  0  1  1  1 -1  1  1  1  1  0]
[ 0  1  2  1  1  1  1 -1  1  0  1  1]
[ 1  1  1  0  2  1  1  1 -1  1  0  1]
[ 0  1  1  1  1  1  1  0  1 -1  1  2]
[ 1  1  1  0  1  2  1  1  0  1 -1  1]
[ 1  1  0  1  1  1  0  1  1  2  1 -1]
Stabilizer Group Name:
C3
MatrixGroup(9, Integer Ring)
Generators:
    [10  3  6  3  3  3  3  3  3]
    [-3  0 -2 -1 -1 -1 -1 -1 -1]
    [-3 -1 -2 -1 -1 -1 -1 -1  0]
    [-3 -1 -2  0 -1 -1 -1 -1 -1]
    [-3 -1 -2 -1  0 -1 -1 -1 -1]
    [-3 -1 -2 -1 -1  0 -1 -1 -1]
    [-3 -1 -2 -1 -1 -1  0 -1 -1]
    [-3 -1 -2 -1 -1 -1 -1  0 -1]
    [-6 -2 -3 -2 -2 -2 -2 -2 -2]

13
{@
    Mod: ( 3 -1 -1  0 -1 -1 -1 -1 -2),
    Mod: ( 2  0 -1 -1 -1 -1  0  0 -1),
    Mod: ( 2 -1 -1 -1 -1  0  0  0 -1),
    Mod: ( 2 -1 -1 -1  0 -1  0  0 -1),
    Mod: ( 6 -2 -2 -3 -2 -2 -2 -2 -2),
    Mod: (0 0 0 1 0 0 0 0 0),
    Mod: ( 3 -1  0 -2 -1 -1 -1 -1 -1),
    Mod: ( 3 -1 -1 -2 -1 -1 -1 -1  0),
    Mod: ( 4 -1 -1 -1 -2 -1 -2 -2 -1),
    Mod: ( 4 -1 -1 -1 -1 -2 -2 -2 -1),
    Mod: ( 4 -2 -1 -1 -1 -1 -2 -2 -1),
    Mod: ( 3 -1 -2  0 -1 -1 -1 -1 -1)
@}
Intersection Matrix:
[-1  1  1  1  2  0  2  3  1  1  1  0]
[ 1 -1  0  0  1  1  1  1  2  2  3  1]
[ 1  0 -1  0  1  1  1  1  2  3  2  1]
[ 1  0  0 -1  1  1  1  1  3  2  2  1]
[ 2  1  1  1 -1  3  0  0  1  1  1  2]
[ 0  1  1  1  3 -1  2  2  1  1  1  0]
[ 2  1  1  1  0  2 -1  0  1  1  1  3]
[ 3  1  1  1  0  2  0 -1  1  1  1  2]
[ 1  2  2  3  1  1  1  1 -1  0  0  1]
[ 1  2  3  2  1  1  1  1  0 -1  0  1]
[ 1  3  2  2  1  1  1  1  0  0 -1  1]
[ 0  1  1  1  2  0  3  2  1  1  1 -1]
Stabilizer Group Name:
C3
MatrixGroup(9, Integer Ring)
Generators:
    [1 0 0 0 0 0 0 0 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 0 0 0 1]

14
{@
    Mod: ( 1  0  0 -1  0  0 -1  0  0),
    Mod: ( 1  0 -1  0  0  0 -1  0  0),
    Mod: ( 3 -1 -1 -1 -1  0 -2 -1 -1),
    Mod: ( 4 -1 -2 -2 -1 -1 -2 -1 -1),
    Mod: ( 2  0 -1 -1 -1  0 -1  0 -1),
    Mod: ( 3  0 -1 -1 -1 -1 -2 -1 -1),
    Mod: ( 1  0  0  0  0  0 -1  0 -1),
    Mod: ( 3 -1 -1 -1  0 -1 -2 -1 -1),
    Mod: ( 4 -1 -2 -1 -1 -1 -2 -1 -2),
    Mod: ( 2 -1 -1 -1  0  0 -1  0 -1),
    Mod: ( 4 -1 -1 -2 -1 -1 -2 -1 -2),
    Mod: ( 2  0 -1 -1  0 -1 -1  0 -1)
@}
Intersection Matrix:
[-1  0  0  0  0  0  0  0  1  0  0  0]
[ 0 -1  0  0  0  0  0  0  0  0  1  0]
[ 0  0 -1  0  0  0  0  0  0  0  0  1]
[ 0  0  0 -1  0  0  1  0  0  0  0  0]
[ 0  0  0  0 -1  0  0  1  0  0  0  0]
[ 0  0  0  0  0 -1  0  0  0  1  0  0]
[ 0  0  0  1  0  0 -1  0  0  0  0  0]
[ 0  0  0  0  1  0  0 -1  0  0  0  0]
[ 1  0  0  0  0  0  0  0 -1  0  0  0]
[ 0  0  0  0  0  1  0  0  0 -1  0  0]
[ 0  1  0  0  0  0  0  0  0  0 -1  0]
[ 0  0  1  0  0  0  0  0  0  0  0 -1]
Stabilizer Group Name:
C3
MatrixGroup(9, Integer Ring)
Generators:
    [1 0 0 0 0 0 0 0 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 0 0 0 1]

15
{@
    Mod: ( 5 -2 -2 -2 -2 -2 -1 -2 -1),
    Mod: ( 3 -2 -1 -1 -1 -1  0 -1 -1),
    Mod: ( 5 -2 -2 -1 -2 -2 -1 -2 -2),
    Mod: ( 2 -1 -1  0 -1 -1  0 -1  0),
    Mod: ( 3 -1 -1 -1 -2 -1  0 -1 -1),
    Mod: ( 4 -2 -1 -1 -2 -1 -1 -2 -1),
    Mod: ( 2 -1  0  0 -1 -1  0 -1 -1),
    Mod: ( 4 -1 -1 -1 -2 -2 -1 -2 -1),
    Mod: ( 5 -2 -1 -2 -2 -2 -1 -2 -2),
    Mod: ( 4 -2 -1 -1 -1 -2 -1 -2 -1),
    Mod: ( 2 -1  0 -1 -1 -1  0 -1  0),
    Mod: ( 3 -1 -1 -1 -1 -2  0 -1 -1)
@}
Intersection Matrix:
[-1  0  0  0  0  0  1  0  0  0  0  0]
[ 0 -1  0  0  0  0  0  1  0  0  0  0]
[ 0  0 -1  0  0  0  0  0  0  0  1  0]
[ 0  0  0 -1  0  0  0  0  1  0  0  0]
[ 0  0  0  0 -1  0  0  0  0  1  0  0]
[ 0  0  0  0  0 -1  0  0  0  0  0  1]
[ 1  0  0  0  0  0 -1  0  0  0  0  0]
[ 0  1  0  0  0  0  0 -1  0  0  0  0]
[ 0  0  0  1  0  0  0  0 -1  0  0  0]
[ 0  0  0  0  1  0  0  0  0 -1  0  0]
[ 0  0  1  0  0  0  0  0  0  0 -1  0]
[ 0  0  0  0  0  1  0  0  0  0  0 -1]
Stabilizer Group Name:
C3
MatrixGroup(9, Integer Ring)
Generators:
    [1 0 0 0 0 0 0 0 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 0 0 0 1]

16
{@
    Mod: ( 1 -1  0  0  0 -1  0  0  0),
    Mod: ( 4 -2 -2 -1 -1 -1 -1 -2 -1),
    Mod: ( 4 -2 -2 -1 -2 -1 -1 -1 -1),
    Mod: ( 3 -2 -1 -1 -1 -1 -1 -1  0),
    Mod: ( 2 -1  0 -1  0 -1  0 -1 -1),
    Mod: ( 3 -1 -1 -1 -2 -1 -1 -1  0),
    Mod: ( 2 -1 -1 -1 -1  0  0 -1  0),
    Mod: ( 2  0  0 -1 -1 -1  0 -1 -1),
    Mod: ( 2  0 -1 -1 -1 -1  0 -1  0),
    Mod: ( 1 -1  0  0 -1  0  0  0  0),
    Mod: ( 3 -1  0 -1 -1 -2 -1 -1 -1),
    Mod: ( 1  0  0  0  0 -1  0 -1  0),
    Mod: ( 4 -1 -1 -1 -2 -1 -1 -2 -2),
    Mod: ( 6 -2 -2 -2 -3 -2 -2 -2 -2),
    Mod: ( 4 -1 -2 -1 -1 -2 -1 -2 -1),
    Mod: ( 4 -2 -1 -1 -1 -1 -1 -2 -2),
    Mod: ( 5 -2 -2 -2 -2 -1 -1 -2 -2),
    Mod: ( 4 -1 -2 -1 -2 -2 -1 -1 -1),
    Mod: ( 4 -2 -1 -1 -2 -1 -1 -1 -2),
    Mod: ( 6 -3 -2 -2 -2 -2 -2 -2 -2),
    Mod: ( 4 -2 -2 -1 -1 -2 -1 -1 -1),
    Mod: ( 2 -1 -1 -1  0 -1  0 -1  0),
    Mod: ( 1  0  0  0 -1  0  0 -1  0),
    Mod: ( 3 -1 -1 -1 -1 -2 -1 -1  0),
    Mod: ( 3 -2  0 -1 -1 -1 -1 -1 -1),
    Mod: ( 1 -1  0  0  0  0  0 -1  0),
    Mod: ( 3 -1  0 -1 -2 -1 -1 -1 -1),
    Mod: ( 2 -1  0 -1 -1  0  0 -1 -1),
    Mod: ( 1  0  0  0 -1 -1  0  0  0),
    Mod: ( 4 -1 -1 -1 -1 -2 -1 -2 -2),
    Mod: ( 5 -1 -2 -2 -2 -2 -1 -2 -2),
    Mod: ( 4 -1 -1 -1 -2 -2 -1 -1 -2),
    Mod: ( 6 -2 -2 -2 -2 -3 -2 -2 -2),
    Mod: ( 4 -1 -2 -1 -2 -1 -1 -2 -1),
    Mod: ( 4 -2 -1 -1 -1 -2 -1 -1 -2),
    Mod: ( 5 -2 -2 -2 -1 -2 -1 -2 -2)
@}
Intersection Matrix:
[-1  1  1  0  0  1  1  1  1  0  0  0  2  2  1  1  2  1  1  1  0  0  1  0  0  0  1  1  0  1  2  1  1  2  0  1]
[ 1 -1  0  0  1  1  0  2  1  1  2  1  1  1  0  0  0  1  1  0  0  0  1  1  1  0  2  1  2  1  1  2  1  0  1  0]
[ 1  0 -1  0  2  0  0  2  1  0  2  2  1  0  1  1  0  0  0  0  0  1  1  1  1  1  1  1  1  2  1  1  1  0  1  1]
[ 0  0  0 -1  1  0  0  2  1  0  1  1  2  1  1  1  1  1  1  0  0  0  1  0  0  0  1  1  1  2  2  2  1  1  1  1]
[ 0  1  2  1 -1  2  1  0  1  1  0  0  1  2  1  0  1  2  1  1  1  0  1  1  0  0  1  0  1  0  1  1  1  2  0  0]
[ 1  1  0  0  2 -1  0  1  0  0  1  1  1  0  1  2  1  0  1  1  1  1  0  0  1  1  0  1  0  2  1  1  1  0  2  2]
[ 1  0  0  0  1  0 -1  1  0  0  2  1  1  1  1  1  0  1  1  1  1  0  0  1  1  0  1  0  1  2  1  2  2  0  2  1]
[ 1  2  2  2  0  1  1 -1  0  1  0  0  0  1  1  1  1  1  1  2  2  1  0  1  1  1  0  0  0  0  0  0  1  1  1  1]
[ 1  1  1  1  1  0  0  0 -1  1  1  0  1  1  0  2  1  0  2  2  1  0  0  0  2  1  1  1  0  1  0  1  1  0  2  1]
[ 0  1  0  0  1  0  0  1  1 -1  1  1  1  1  2  1  1  1  0  1  1  1  0  1  0  0  0  0  0  2  2  1  2  1  1  2]
[ 0  2  2  1  0  1  2  0  1  1 -1  0  1  1  1  1  2  1  1  1  1  1  1  0  0  1  0  1  0  0  1  0  0  2  0  1]
[ 0  1  2  1  0  1  1  0  0  1  0 -1  1  2  0  1  2  1  2  2  1  0  0  0  1  0  1  1  0  0  1  1  1  1  1  1]
[ 2  1  1  2  1  1  1  0  1  1  1  1 -1  0  1  0  0  1  0  1  2  2  0  2  1  1  0  0  1  0  0  0  1  0  1  1]
[ 2  1  0  1  2  0  1  1  1  1  1  2  0 -1  1  1  0  0  0  0  1  2  1  1  1  2  0  1  1  1  0  0  0  0  1  1]
[ 1  0  1  1  1  1  1  1  0  2  1  0  1  1 -1  1  1  0  2  1  0  0  1  0  2  1  2  2  1  0  0  1  0  0  1  0]
[ 1  0  1  1  0  2  1  1  2  1  1  1  0  1  1 -1  0  2  0  0  1  1  1  2  0  0  1  0  2  0  1  1  1  1  0  0]
[ 2  0  0  1  1  1  0  1  1  1  2  2  0  0  1  0 -1  1  0  0  1  1  1  2  1  1  1  0  2  1  0  1  1  0  1  0]
[ 1  1  0  1  2  0  1  1  0  1  1  1  1  0  0  2  1 -1  1  1  0  1  1  0  2  2  1  2  0  1  0  0  0  0  1  1]
[ 1  1  0  1  1  1  1  1  2  0  1  2  0  0  2  0  0  1 -1  0  1  2  1  2  0  1  0  0  1  1  1  0  1  1  0  1]
[ 1  0  0  0  1  1  1  2  2  1  1  2  1  0  1  0  0  1  0 -1  0  1  2  1  0  1  1  1  2  1  1  1  0  1  0  0]
[ 0  0  0  0  1  1  1  2  1  1  1  1  2  1  0  1  1  0  1  0 -1  0  2  0  1  1  2  2  1  1  1  1  0  1  0  0]
[ 0  0  1  0  0  1  0  1  0  1  1  0  2  2  0  1  1  1  2  1  0 -1  1  0  1  0  2  1  1  1  1  2  1  1  1  0]
[ 1  1  1  1  1  0  0  0  0  0  1  0  0  1  1  1  1  1  1  2  2  1 -1  1  1  0  0  0  0  1  1  1  2  0  2  2]
[ 0  1  1  0  1  0  1  1  0  1  0  0  2  1  0  2  2  0  2  1  0  0  1 -1  1  1  1  2  0  1  1  1  0  1  1  1]
[ 0  1  1  0  0  1  1  1  2  0  0  1  1  1  2  0  1  2  0  0  1  1  1  1 -1  0  0  0  1  1  2  1  1  2  0  1]
[ 0  0  1  0  0  1  0  1  1  0  1  0  1  2  1  0  1  2  1  1  1  0  0  1  0 -1  1  0  1  1  2  2  2  1  1  1]
[ 1  2  1  1  1  0  1  0  1  0  0  1  0  0  2  1  1  1  0  1  2  2  0  1  0  1 -1  0  0  1  1  0  1  1  1  2]
[ 1  1  1  1  0  1  0  0  1  0  1  1  0  1  2  0  0  2  0  1  2  1  0  2  0  0  0 -1  1  1  1  1  2  1  1  1]
[ 0  2  1  1  1  0  1  0  0  0  0  0  1  1  1  2  2  0  1  2  1  1  0  0  1  1  0  1 -1  1  1  0  1  1  1  2]
[ 1  1  2  2  0  2  2  0  1  2  0  0  0  1  0  0  1  1  1  1  1  1  1  1  1  1  1  1  1 -1  0  0  0  1  0  0]
[ 2  1  1  2  1  1  1  0  0  2  1  1  0  0  0  1  0  0  1  1  1  1  1  1  2  2  1  1  1  0 -1  0  0  0  1  0]
[ 1  2  1  2  1  1  2  0  1  1  0  1  0  0  1  1  1  0  0  1  1  2  1  1  1  2  0  1  0  0  0 -1  0  1  0  1]
[ 1  1  1  1  1  1  2  1  1  2  0  1  1  0  0  1  1  0  1  0  0  1  2  0  1  2  1  2  1  0  0  0 -1  1  0  0]
[ 2  0  0  1  2  0  0  1  0  1  2  1  0  0  0  1  0  0  1  1  1  1  0  1  2  1  1  1  1  1  0  1  1 -1  2  1]
[ 0  1  1  1  0  2  2  1  2  1  0  1  1  1  1  0  1  1  0  0  0  1  2  1  0  1  1  1  1  0  1  0  0  2 -1  0]
[ 1  0  1  1  0  2  1  1  1  2  1  1  1  1  0  0  0  1  1  0  0  0  2  1  1  1  2  1  2  0  0  1  0  1  0 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

17
{@
    Mod: ( 2 -1  0 -1 -1  0 -1  0 -1),
    Mod: ( 2  0 -1 -1 -1 -1 -1  0  0),
    Mod: (0 0 0 0 1 0 0 0 0),
    Mod: ( 3 -1 -1 -1  0 -1 -1 -1 -2),
    Mod: ( 1  0  0  0 -1  0 -1  0  0),
    Mod: ( 5 -1 -2 -2 -2 -1 -2 -2 -2),
    Mod: ( 4 -1 -1 -1 -2 -1 -2 -1 -2),
    Mod: ( 5 -2 -2 -2 -1 -1 -2 -2 -2),
    Mod: ( 4 -2 -1 -1 -1 -1 -2 -1 -2),
    Mod: ( 4 -1 -2 -1 -1 -2 -2 -1 -1),
    Mod: ( 5 -2 -2 -2 -2 -1 -2 -1 -2),
    Mod: ( 2  0  0 -1  0 -1 -1 -1 -1),
    Mod: ( 2  0 -1 -1  0 -1 -1 -1  0),
    Mod: ( 1 -1  0  0  0  0 -1  0  0),
    Mod: ( 2 -1 -1 -1  0 -1 -1  0  0),
    Mod: ( 3 -1 -1 -1 -1  0 -1 -1 -2),
    Mod: ( 3  0 -2 -1 -1 -1 -1 -1 -1),
    Mod: ( 2 -1  0 -1  0  0 -1 -1 -1),
    Mod: ( 1  0  0  0  0 -1 -1  0  0),
    Mod: ( 2  0  0 -1 -1  0 -1 -1 -1),
    Mod: ( 3 -1 -2 -1  0 -1 -1 -1 -1),
    Mod: ( 2  0 -1 -1 -1  0 -1 -1  0),
    Mod: ( 2 -1 -1 -1 -1  0 -1  0  0),
    Mod: (0 0 0 0 0 1 0 0 0),
    Mod: ( 5 -1 -2 -2 -1 -2 -2 -2 -2),
    Mod: ( 4 -1 -1 -1 -1 -2 -2 -1 -2),
    Mod: ( 5 -1 -2 -2 -2 -2 -2 -1 -2),
    Mod: ( 2 -1  0 -1  0 -1 -1  0 -1),
    Mod: ( 4 -1 -2 -1 -2 -1 -2 -1 -1),
    Mod: (0 1 0 0 0 0 0 0 0),
    Mod: ( 2  0  0 -1 -1 -1 -1  0 -1),
    Mod: ( 5 -2 -2 -2 -1 -2 -2 -1 -2),
    Mod: ( 3 -1 -2 -1 -1  0 -1 -1 -1),
    Mod: ( 3  0 -1 -1 -1 -1 -1 -1 -2),
    Mod: ( 4 -2 -2 -1 -1 -1 -2 -1 -1),
    Mod: ( 2 -1 -1 -1  0  0 -1 -1  0)
@}
Intersection Matrix:
[-1  1  1  1  0  1  0  1  0  2  0  1  2  0  1  0  2  0  1  0  2  1  0  0  2  1  1  0  1  1  0  1  1  1  1  1]
[ 1 -1  1  2  0  1  1  2  2  0  1  1  0  1  0  2  0  2  0  1  1  0  0  1  1  1  0  1  0  0  0  1  1  1  1  1]
[ 1  1 -1  0  1  2  2  1  1  1  2  0  0  0  0  1  1  0  0  1  0  1  1  0  1  1  2  0  2  0  1  1  1  1  1  0]
[ 1  2  0 -1  2  1  1  0  0  1  1  0  1  1  1  0  1  0  1  1  0  2  2  1  0  0  1  0  2  1  1  0  1  0  1  1]
[ 0  0  1  2 -1  1  0  2  1  1  1  1  1  0  1  1  1  1  0  0  2  0  0  0  2  1  1  1  0  0  0  2  1  1  1  1]
[ 1  1  2  1  1 -1  0  0  1  1  0  1  1  2  2  0  0  1  2  0  1  0  1  1  0  1  0  2  0  1  1  1  0  0  1  1]
[ 0  1  2  1  0  0 -1  1  0  1  0  1  2  1  2  0  1  1  1  0  2  1  1  1  1  0  0  1  0  1  0  1  1  0  1  2]
[ 1  2  1  0  2  0  1 -1  0  1  0  1  1  1  1  0  1  0  2  1  0  1  1  1  0  1  1  1  1  2  2  0  0  1  0  0]
[ 0  2  1  0  1  1  0  0 -1  1  0  1  2  0  1  0  2  0  1  1  1  2  1  1  1  0  1  0  1  2  1  0  1  1  0  1]
[ 2  0  1  1  1  1  1  1  1 -1  1  1  0  1  0  2  0  2  0  2  0  1  1  2  0  0  0  1  0  1  1  0  1  1  0  1]
[ 0  1  2  1  1  0  0  0  0  1 -1  2  2  1  1  0  1  1  2  1  1  1  0  1  1  1  0  1  0  2  1  0  0  1  0  1]
[ 1  1  0  0  1  1  1  1  1  1  2 -1  0  1  1  1  1  0  0  0  1  1  2  1  0  0  1  0  2  0  0  1  2  0  2  1]
[ 2  0  0  1  1  1  2  1  2  0  2  0 -1  1  0  2  0  1  0  1  0  0  1  1  0  1  1  1  1  0  1  1  1  1  1  0]
[ 0  1  0  1  0  2  1  1  0  1  1  1  1 -1  0  1  2  0  0  1  1  1  0  0  2  1  2  0  1  1  1  1  1  2  0  0]
[ 1  0  0  1  1  2  2  1  1  0  1  1  0  0 -1  2  1  1  0  2  0  1  0  1  1  1  1  0  1  1  1  0  1  2  0  0]
[ 0  2  1  0  1  0  0  0  0  2  0  1  2  1  2 -1  1  0  2  0  1  1  1  0  1  1  1  1  1  1  1  1  0  0  1  1]
[ 2  0  1  1  1  0  1  1  2  0  1  1  0  2  1  1 -1  2  1  1  0  0  1  1  0  1  0  2  0  0  1  1  0  0  1  1]
[ 0  2  0  0  1  1  1  0  0  2  1  0  1  0  1  0  2 -1  1  0  1  1  1  0  1  1  2  0  2  1  1  1  1  1  1  0]
[ 1  0  0  1  0  2  1  2  1  0  2  0  0  0  0  2  1  1 -1  1  1  1  1  1  1  0  1  0  1  0  0  1  2  1  1  1]
[ 0  1  1  1  0  0  0  1  1  2  1  0  1  1  2  0  1  0  1 -1  2  0  1  0  1  1  1  1  1  0  0  2  1  0  2  1]
[ 2  1  0  0  2  1  2  0  1  0  1  1  0  1  0  1  0  1  1  2 -1  1  1  1  0  1  1  1  1  1  2  0  0  1  0  0]
[ 1  0  1  2  0  0  1  1  2  1  1  1  0  1  1  1  0  1  1  0  1 -1  0  0  1  2  1  2  0  0  1  2  0  1  1  0]
[ 0  0  1  2  0  1  1  1  1  1  0  2  1  0  0  1  1  1  1  1  1  0 -1  0  2  2  1  1  0  1  1  1  0  2  0  0]
[ 0  1  0  1  0  1  1  1  1  2  1  1  1  0  1  0  1  0  1  0  1  0  0 -1  2  2  2  1  1  0  1  2  0  1  1  0]
[ 2  1  1  0  2  0  1  0  1  0  1  0  0  2  1  1  0  1  1  1  0  1  2  2 -1  0  0  1  1  1  1  0  1  0  1  1]
[ 1  1  1  0  1  1  0  1  0  0  1  0  1  1  1  1  1  1  0  1  1  2  2  2  0 -1  0  0  1  1  0  0  2  0  1  2]
[ 1  0  2  1  1  0  0  1  1  0  0  1  1  2  1  1  0  2  1  1  1  1  1  2  0  0 -1  1  0  1  0  0  1  0  1  2]
[ 0  1  0  0  1  2  1  1  0  1  1  0  1  0  0  1  2  0  0  1  1  2  1  1  1  0  1 -1  2  1  0  0  2  1  1  1]
[ 1  0  2  2  0  0  0  1  1  0  0  2  1  1  1  1  0  2  1  1  1  0  0  1  1  1  0  2 -1  1  1  1  0  1  0  1]
[ 1  0  0  1  0  1  1  2  2  1  2  0  0  1  1  1  0  1  0  0  1  0  1  0  1  1  1  1  1 -1  0  2  1  0  2  1]
[ 0  0  1  1  0  1  0  2  1  1  1  0  1  1  1  1  1  1  0  0  2  1  1  1  1  0  0  0  1  0 -1  1  2  0  2  2]
[ 1  1  1  0  2  1  1  0  0  0  0  1  1  1  0  1  1  1  1  2  0  2  1  2  0  0  0  0  1  2  1 -1  1  1  0  1]
[ 1  1  1  1  1  0  1  0  1  1  0  2  1  1  1  0  0  1  2  1  0  0  0  0  1  2  1  2  0  1  2  1 -1  1  0  0]
[ 1  1  1  0  1  0  0  1  1  1  1  0  1  2  2  0  0  1  1  0  1  1  2  1  0  0  0  1  1  0  0  1  1 -1  2  2]
[ 1  1  1  1  1  1  1  0  0  0  0  2  1  0  0  1  1  1  1  2  0  1  0  1  1  1  1  1  0  2  2  0  0  2 -1  0]
[ 1  1  0  1  1  1  2  0  1  1  1  1  0  0  0  1  1  0  1  1  0  0  0  0  1  2  2  1  1  1  2  1  0  2  0 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

18
{@
    Mod: ( 1  0 -1  0  0 -1  0  0  0),
    Mod: ( 2 -1  0  0  0 -1 -1 -1 -1),
    Mod: ( 1 -1 -1  0  0  0  0  0  0),
    Mod: ( 1  0  0 -1 -1  0  0  0  0),
    Mod: ( 5 -1 -1 -2 -2 -2 -2 -2 -2),
    Mod: ( 1 -1  0 -1  0  0  0  0  0),
    Mod: ( 4 -1 -1 -2 -2 -1 -1 -1 -2),
    Mod: ( 1  0  0  0  0 -1  0  0 -1),
    Mod: ( 2  0 -1  0 -1 -1 -1 -1  0),
    Mod: ( 5 -2 -1 -2 -1 -2 -2 -2 -2),
    Mod: ( 2  0  0  0 -1 -1 -1 -1 -1),
    Mod: ( 5 -2 -2 -1 -2 -1 -2 -2 -2),
    Mod: ( 4 -1 -2 -1 -1 -2 -1 -1 -2),
    Mod: ( 1  0 -1  0 -1  0  0  0  0),
    Mod: ( 2 -1  0 -1  0 -1 -1 -1  0),
    Mod: ( 4 -2 -1 -2 -1 -1 -1 -1 -2),
    Mod: ( 5 -2 -2 -2 -2 -1 -2 -2 -1),
    Mod: ( 4 -1 -2 -2 -1 -2 -1 -1 -1),
    Mod: ( 2  0  0 -1 -1 -1 -1 -1  0),
    Mod: ( 2 -1 -1  0  0 -1 -1 -1  0),
    Mod: ( 2 -1  0  0 -1  0 -1 -1 -1),
    Mod: ( 1  0  0  0 -1  0  0  0 -1),
    Mod: ( 2 -1  0 -1 -1  0 -1 -1  0),
    Mod: ( 1 -1  0  0  0  0  0  0 -1),
    Mod: ( 5 -1 -2 -1 -2 -2 -2 -2 -2),
    Mod: ( 5 -1 -2 -2 -2 -2 -2 -2 -1),
    Mod: ( 5 -2 -1 -2 -2 -1 -2 -2 -2),
    Mod: ( 4 -1 -1 -2 -1 -2 -1 -1 -2),
    Mod: ( 4 -1 -2 -1 -2 -1 -1 -1 -2),
    Mod: ( 5 -2 -2 -1 -1 -2 -2 -2 -2),
    Mod: ( 1  0  0 -1  0 -1  0  0  0),
    Mod: ( 4 -1 -2 -2 -2 -1 -1 -1 -1),
    Mod: ( 2 -1 -1  0 -1  0 -1 -1  0),
    Mod: ( 5 -2 -2 -2 -1 -2 -2 -2 -1),
    Mod: ( 4 -2 -2 -1 -1 -1 -1 -1 -2),
    Mod: ( 4 -2 -2 -2 -1 -1 -1 -1 -1)
@}
Intersection Matrix:
[-1  1  0  1  2  1  2  0  0  2  1  2  0  0  1  2  2  0  1  0  2  1  2  1  1  1  3  1  1  1  0  1  1  1  1  1]
[ 1 -1  1  2  1  1  2  0  1  0  0  1  1  2  0  1  2  2  1  0  0  1  1  0  1  2  1  1  2  0  1  3  1  1  1  2]
[ 0  1 -1  1  3  0  2  1  1  2  2  1  1  0  1  1  1  1  2  0  1  1  1  0  2  2  2  2  1  1  1  1  0  1  0  0]
[ 1  2  1 -1  1  0  0  1  1  2  1  2  2  0  1  1  1  1  0  2  1  0  0  1  2  1  1  1  1  3  0  0  1  2  2  1]
[ 2  1  3  1 -1  2  0  1  1  0  0  1  1  2  1  1  1  1  0  2  1  1  1  2  0  0  0  0  1  1  1  1  2  1  2  2]
[ 1  1  0  0  2 -1  1  1  2  1  2  2  2  1  0  0  1  1  1  1  1  1  0  0  3  2  1  1  2  2  0  1  1  1  1  0]
[ 2  2  2  0  0  1 -1  1  2  1  1  1  1  1  2  0  1  1  1  3  1  0  1  1  1  1  0  0  0  2  1  0  2  2  1  1]
[ 0  0  1  1  1  1  1 -1  1  1  0  2  0  1  1  1  3  1  1  1  1  0  2  0  1  2  2  0  1  1  0  2  2  2  1  2]
[ 0  1  1  1  1  2  2  1 -1  2  0  1  1  0  1  3  1  1  0  0  1  1  1  2  0  0  2  2  1  1  1  1  0  1  2  2]
[ 2  0  2  2  0  1  1  1  2 -1  1  1  1  3  0  0  1  1  1  1  1  2  1  1  1  1  0  0  2  0  1  2  2  0  1  1]
[ 1  0  2  1  0  2  1  0  0  1 -1  1  1  1  1  2  2  2  0  1  0  0  1  1  0  1  1  1  1  1  1  2  1  2  2  3]
[ 2  1  1  2  1  2  1  2  1  1  1 -1  1  1  2  1  0  2  2  1  0  1  1  1  0  1  0  2  0  0  3  1  0  1  0  1]
[ 0  1  1  2  1  2  1  0  1  1  1  1 -1  1  2  1  2  0  2  1  2  1  3  1  0  1  2  0  0  0  1  1  2  1  0  1]
[ 0  2  0  0  2  1  1  1  0  3  1  1  1 -1  2  2  1  1  1  1  1  0  1  1  1  1  2  2  0  2  1  0  0  2  1  1]
[ 1  0  1  1  1  0  2  1  1  0  1  2  2  2 -1  1  1  1  0  0  1  2  0  1  2  1  1  1  3  1  0  2  1  0  2  1]
[ 2  1  1  1  1  0  0  1  3  0  2  1  1  2  1 -1  1  1  2  2  1  1  1  0  2  2  0  0  1  1  1  1  2  1  0  0]
[ 2  2  1  1  1  1  1  3  1  1  2  0  2  1  1  1 -1  1  1  1  1  2  0  2  1  0  0  2  1  1  2  0  0  0  1  0]
[ 0  2  1  1  1  1  1  1  1  1  2  2  0  1  1  1  1 -1  1  1  3  2  2  2  1  0  2  0  1  1  0  0  2  0  1  0]
[ 1  1  2  0  0  1  1  1  0  1  0  2  2  1  0  2  1  1 -1  1  1  1  0  2  1  0  1  1  2  2  0  1  1  1  3  2]
[ 0  0  0  2  2  1  3  1  0  1  1  1  1  1  0  2  1  1  1 -1  1  2  1  1  1  1  2  2  2  0  1  2  0  0  1  1]
[ 2  0  1  1  1  1  1  1  1  1  0  0  2  1  1  1  1  3  1  1 -1  0  0  0  1  2  0  2  1  1  2  2  0  2  1  2]
[ 1  1  1  0  1  1  0  0  1  2  0  1  1  0  2  1  2  2  1  2  0 -1  1  0  1  2  1  1  0  2  1  1  1  3  1  2]
[ 2  1  1  0  1  0  1  2  1  1  1  1  3  1  0  1  0  2  0  1  0  1 -1  1  2  1  0  2  2  2  1  1  0  1  2  1]
[ 1  0  0  1  2  0  1  0  2  1  1  1  1  1  1  0  2  2  2  1  0  0  1 -1  2  3  1  1  1  1  1  2  1  2  0  1]
[ 1  1  2  2  0  3  1  1  0  1  0  0  0  1  2  2  1  1  1  1  1  1  2  2 -1  0  1  1  0  0  2  1  1  1  1  2]
[ 1  2  2  1  0  2  1  2  0  1  1  1  1  1  1  2  0  0  0  1  2  2  1  3  0 -1  1  1  1  1  1  0  1  0  2  1]
[ 3  1  2  1  0  1  0  2  2  0  1  0  2  2  1  0  0  2  1  2  0  1  0  1  1  1 -1  1  1  1  2  1  1  1  1  1]
[ 1  1  2  1  0  1  0  0  2  0  1  2  0  2  1  0  2  0  1  2  2  1  2  1  1  1  1 -1  1  1  0  1  3  1  1  1]
[ 1  2  1  1  1  2  0  1  1  2  1  0  0  0  3  1  1  1  2  2  1  0  2  1  0  1  1  1 -1  1  2  0  1  2  0  1]
[ 1  0  1  3  1  2  2  1  1  0  1  0  0  2  1  1  1  1  2  0  1  2  2  1  0  1  1  1  1 -1  2  2  1  0  0  1]
[ 0  1  1  0  1  0  1  0  1  1  1  3  1  1  0  1  2  0  0  1  2  1  1  1  2  1  2  0  2  2 -1  1  2  1  2  1]
[ 1  3  1  0  1  1  0  2  1  2  2  1  1  0  2  1  0  0  1  2  2  1  1  2  1  0  1  1  0  2  1 -1  1  1  1  0]
[ 1  1  0  1  2  1  2  2  0  2  1  0  2  0  1  2  0  2  1  0  0  1  0  1  1  1  1  3  1  1  2  1 -1  1  1  1]
[ 1  1  1  2  1  1  2  2  1  0  2  1  1  2  0  1  0  0  1  0  2  3  1  2  1  0  1  1  2  0  1  1  1 -1  1  0]
[ 1  1  0  2  2  1  1  1  2  1  2  0  0  1  2  0  1  1  3  1  1  1  2  0  1  2  1  1  0  0  2  1  1  1 -1  0]
[ 1  2  0  1  2  0  1  2  2  1  3  1  1  1  1  0  0  0  2  1  2  2  1  1  2  1  1  1  1  1  1  0  1  0  0 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1

D7(10):S3≀C2

    order := 72,
    length := 2419200,
    subgroup := MatrixGroup(9, Integer Ring) of order 2^3 * 3^2
    Generators:
        [ 3  1  0  2  1  1  1  0  0]
        [-1  0  0 -1  0 -1  0  0  0]
        [ 0  0  1  0  0  0  0  0  0]
        [-2 -1  0 -1 -1 -1 -1  0  0]
        [-1  0  0 -1 -1  0  0  0  0]
        [-1 -1  0 -1  0  0  0  0  0]
        [-1  0  0 -1  0  0 -1  0  0]
        [ 0  0  0  0  0  0  0  1  0]
        [ 0  0  0  0  0  0  0  0  1]

        [ 9  5  3  4  2  2  3  2  3]
        [-4 -2 -1 -2 -1 -1 -1 -1 -2]
        [-3 -2 -1 -1  0 -1 -1 -1 -1]
        [-2 -1 -1 -1  0  0 -1  0 -1]
        [-4 -2 -2 -2 -1 -1 -1 -1 -1]
        [-1 -1  0 -1  0  0  0  0  0]
        [-4 -2 -1 -2 -1 -1 -2 -1 -1]
        [-3 -2 -1 -1 -1 -1 -1  0 -1]
        [-3 -2 -1 -1 -1  0 -1 -1 -1]

        [ 7  3  3  2  3  3  2  2  0]
        [-3 -1 -1 -1 -1 -2 -1 -1  0]
        [-3 -1 -2 -1 -1 -1 -1 -1  0]
        [-2 -1 -1 -1 -1 -1  0  0  0]
        [-3 -1 -1 -1 -2 -1 -1 -1  0]
        [-3 -2 -1 -1 -1 -1 -1 -1  0]
        [-2 -1 -1  0 -1 -1  0 -1  0]
        [-2 -1 -1  0 -1 -1 -1  0  0]
        [ 0  0  0  0  0  0  0  0  1]

        [10  3  6  3  3  3  3  3  3]
        [-3 -1 -2 -1 -1  0 -1 -1 -1]
        [-3 -1 -2 -1 -1 -1 -1 -1  0]
        [-3 -1 -2  0 -1 -1 -1 -1 -1]
        [-3  0 -2 -1 -1 -1 -1 -1 -1]
        [-3 -1 -2 -1  0 -1 -1 -1 -1]
        [-3 -1 -2 -1 -1 -1  0 -1 -1]
        [-3 -1 -2 -1 -1 -1 -1  0 -1]
        [-6 -2 -3 -2 -2 -2 -2 -2 -2]

        [1 0 0 0 0 0 0 0 0]
        [0 0 0 0 0 1 0 0 0]
        [0 0 1 0 0 0 0 0 0]
        [0 0 0 1 0 0 0 0 0]
        [0 1 0 0 0 0 0 0 0]
        [0 0 0 0 1 0 0 0 0]
        [0 0 0 0 0 0 1 0 0]
        [0 0 0 0 0 0 0 1 0]
        [0 0 0 0 0 0 0 0 1]>

Orbit type:{2,2,4,4,6,6,12,12,12,24,24,24,36,36,36}

Orbit:
1
{@
    Mod: ( 4 -1 -1 -2 -1 -1 -2 -2 -1),
    Mod: ( 3 -1 -1 -1 -1 -1  0 -2 -1)
@}
Intersection Matrix:
[-1  1]
[ 1 -1]
Stabilizer Group Name:
S3^2
MatrixGroup(9, Integer Ring)
Generators:
    [ 7  3  3  2  0  3  2  2  3]
    [ 0  0  0  0  1  0  0  0  0]
    [-3 -2 -1 -1  0 -1 -1 -1 -1]
    [-2 -1 -1 -1  0 -1  0  0 -1]
    [-3 -1 -1 -1  0 -1 -1 -1 -2]
    [-3 -1 -2 -1  0 -1 -1 -1 -1]
    [-2 -1 -1  0  0 -1  0 -1 -1]
    [-2 -1 -1  0  0 -1 -1  0 -1]
    [-3 -1 -1 -1  0 -2 -1 -1 -1]

    [1 0 0 0 0 0 0 0 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 0 0 0 1]

    [10  3  6  3  3  3  3  3  3]
    [-3 -1 -2 -1 -1  0 -1 -1 -1]
    [-3 -1 -2 -1 -1 -1 -1 -1  0]
    [-3 -1 -2  0 -1 -1 -1 -1 -1]
    [-3  0 -2 -1 -1 -1 -1 -1 -1]
    [-3 -1 -2 -1  0 -1 -1 -1 -1]
    [-3 -1 -2 -1 -1 -1  0 -1 -1]
    [-3 -1 -2 -1 -1 -1 -1  0 -1]
    [-6 -2 -3 -2 -2 -2 -2 -2 -2]

    [ 7  3  3  2  3  3  2  2  0]
    [-3 -1 -1 -1 -1 -2 -1 -1  0]
    [-3 -1 -2 -1 -1 -1 -1 -1  0]
    [-2 -1 -1 -1 -1 -1  0  0  0]
    [-3 -1 -1 -1 -2 -1 -1 -1  0]
    [-3 -2 -1 -1 -1 -1 -1 -1  0]
    [-2 -1 -1  0 -1 -1  0 -1  0]
    [-2 -1 -1  0 -1 -1 -1  0  0]
    [ 0  0  0  0  0  0  0  0  1]

14
{@
    Mod: ( 2 -1 -1  0 -1 -1  0  0 -1),
    Mod: ( 3 -1 -1 -1 -1 -1 -2  0 -1)
@}
Intersection Matrix:
[-1  1]
[ 1 -1]
Stabilizer Group Name:
S3^2
MatrixGroup(9, Integer Ring)
Generators:
    [1 0 0 0 0 0 0 0 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 0 0 0 1]

    [10  3  6  3  3  3  3  3  3]
    [-3 -1 -2 -1 -1  0 -1 -1 -1]
    [-3 -1 -2 -1 -1 -1 -1 -1  0]
    [-3 -1 -2  0 -1 -1 -1 -1 -1]
    [-3  0 -2 -1 -1 -1 -1 -1 -1]
    [-3 -1 -2 -1  0 -1 -1 -1 -1]
    [-3 -1 -2 -1 -1 -1  0 -1 -1]
    [-3 -1 -2 -1 -1 -1 -1  0 -1]
    [-6 -2 -3 -2 -2 -2 -2 -2 -2]

    [ 7  3  3  2  3  0  2  2  3]
    [ 0  0  0  0  0  1  0  0  0]
    [-3 -1 -1 -1 -2  0 -1 -1 -1]
    [-2 -1 -1 -1 -1  0  0  0 -1]
    [-3 -1 -1 -1 -1  0 -1 -1 -2]
    [-3 -1 -2 -1 -1  0 -1 -1 -1]
    [-2 -1 -1  0 -1  0  0 -1 -1]
    [-2 -1 -1  0 -1  0 -1  0 -1]
    [-3 -2 -1 -1 -1  0 -1 -1 -1]

    [ 7  3  3  2  3  3  2  2  0]
    [-3 -1 -1 -1 -1 -2 -1 -1  0]
    [-3 -1 -2 -1 -1 -1 -1 -1  0]
    [-2 -1 -1 -1 -1 -1  0  0  0]
    [-3 -1 -1 -1 -2 -1 -1 -1  0]
    [-3 -2 -1 -1 -1 -1 -1 -1  0]
    [-2 -1 -1  0 -1 -1  0 -1  0]
    [-2 -1 -1  0 -1 -1 -1  0  0]
    [ 0  0  0  0  0  0  0  0  1]

3
{@
    Mod: ( 3 -1 -1 -2 -1 -1  0 -1 -1),
    Mod: ( 3 -1 -1  0 -1 -1 -1 -2 -1),
    Mod: ( 2  0 -1 -1  0  0 -1 -1 -1),
    Mod: ( 5 -2 -1 -2 -2 -2 -2 -2 -1)
@}
Intersection Matrix:
[-1  2  1  1]
[ 2 -1  1  1]
[ 1  1 -1  2]
[ 1  1  2 -1]
Stabilizer Group Name:
C3*S3
MatrixGroup(9, Integer Ring)
Generators:
    [10  3  3  3  6  3  3  3  3]
    [-6 -2 -2 -2 -3 -2 -2 -2 -2]
    [-3 -1 -1 -1 -2  0 -1 -1 -1]
    [-3 -1 -1  0 -2 -1 -1 -1 -1]
    [-3 -1  0 -1 -2 -1 -1 -1 -1]
    [-3 -1 -1 -1 -2 -1 -1 -1  0]
    [-3 -1 -1 -1 -2 -1  0 -1 -1]
    [-3 -1 -1 -1 -2 -1 -1  0 -1]
    [-3  0 -1 -1 -2 -1 -1 -1 -1]

    [1 0 0 0 0 0 0 0 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 0 0 0 1]

    [10  3  6  3  3  3  3  3  3]
    [-3 -1 -2 -1 -1  0 -1 -1 -1]
    [-3 -1 -2 -1 -1 -1 -1 -1  0]
    [-3 -1 -2  0 -1 -1 -1 -1 -1]
    [-3  0 -2 -1 -1 -1 -1 -1 -1]
    [-3 -1 -2 -1  0 -1 -1 -1 -1]
    [-3 -1 -2 -1 -1 -1  0 -1 -1]
    [-3 -1 -2 -1 -1 -1 -1  0 -1]
    [-6 -2 -3 -2 -2 -2 -2 -2 -2]

4
{@
    Mod: ( 3 -1 -1  0 -1 -1 -2 -1 -1),
    Mod: ( 3 -1 -1 -2 -1 -1 -1  0 -1),
    Mod: ( 1  0 -1  0  0  0  0  0 -1),
    Mod: ( 4 -2 -1 -1 -2 -2 -1 -1 -1)
@}
Intersection Matrix:
[-1  2  1  1]
[ 2 -1  1  1]
[ 1  1 -1  2]
[ 1  1  2 -1]
Stabilizer Group Name:
C3*S3
MatrixGroup(9, Integer Ring)
Generators:
    [10  6  3  3  3  3  3  3  3]
    [-3 -2  0 -1 -1 -1 -1 -1 -1]
    [-3 -2 -1 -1  0 -1 -1 -1 -1]
    [-3 -2 -1  0 -1 -1 -1 -1 -1]
    [-3 -2 -1 -1 -1 -1 -1 -1  0]
    [-6 -3 -2 -2 -2 -2 -2 -2 -2]
    [-3 -2 -1 -1 -1 -1  0 -1 -1]
    [-3 -2 -1 -1 -1 -1 -1  0 -1]
    [-3 -2 -1 -1 -1  0 -1 -1 -1]

    [1 0 0 0 0 0 0 0 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 0 0 0 1]

    [10  3  6  3  3  3  3  3  3]
    [-3 -1 -2 -1 -1  0 -1 -1 -1]
    [-3 -1 -2 -1 -1 -1 -1 -1  0]
    [-3 -1 -2  0 -1 -1 -1 -1 -1]
    [-3  0 -2 -1 -1 -1 -1 -1 -1]
    [-3 -1 -2 -1  0 -1 -1 -1 -1]
    [-3 -1 -2 -1 -1 -1  0 -1 -1]
    [-3 -1 -2 -1 -1 -1 -1  0 -1]
    [-6 -2 -3 -2 -2 -2 -2 -2 -2]

5
{@
    Mod: (0 0 1 0 0 0 0 0 0),
    Mod: ( 6 -2 -2 -2 -2 -2 -2 -2 -3),
    Mod: ( 3  0 -1 -1 -1 -2 -1 -1 -1),
    Mod: ( 3 -2 -1 -1  0 -1 -1 -1 -1),
    Mod: ( 3 -1 -2 -1 -1 -1 -1 -1  0),
    Mod: ( 3 -1 -1 -1 -2  0 -1 -1 -1)
@}
Intersection Matrix:
[-1  2  1  1  2  1]
[ 2 -1  1  1  2  1]
[ 1  1 -1  2  1  2]
[ 1  1  2 -1  1  2]
[ 2  2  1  1 -1  1]
[ 1  1  2  2  1 -1]
Stabilizer Group Name:
D6
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  0  2  1  1  1  0  0]
    [-1  0  0 -1  0 -1  0  0  0]
    [ 0  0  1  0  0  0  0  0  0]
    [-2 -1  0 -1 -1 -1 -1  0  0]
    [-1  0  0 -1 -1  0  0  0  0]
    [-1 -1  0 -1  0  0  0  0  0]
    [-1  0  0 -1  0  0 -1  0  0]
    [ 0  0  0  0  0  0  0  1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [1 0 0 0 0 0 0 0 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 0 0 0 1]

    [ 7  3  0  2  3  3  2  2  3]
    [-3 -1  0 -1 -2 -1 -1 -1 -1]
    [ 0  0  1  0  0  0  0  0  0]
    [-2 -1  0 -1 -1 -1  0  0 -1]
    [-3 -2  0 -1 -1 -1 -1 -1 -1]
    [-3 -1  0 -1 -1 -2 -1 -1 -1]
    [-2 -1  0  0 -1 -1  0 -1 -1]
    [-2 -1  0  0 -1 -1 -1  0 -1]
    [-3 -1  0 -1 -1 -1 -1 -1 -2]

6
{@
    Mod: ( 3 -1 -1 -1  0 -2 -1 -1 -1),
    Mod: (0 0 0 0 0 0 0 0 1),
    Mod: ( 3 -2 -1 -1 -1  0 -1 -1 -1),
    Mod: ( 3 -1  0 -1 -1 -1 -1 -1 -2),
    Mod: ( 6 -2 -3 -2 -2 -2 -2 -2 -2),
    Mod: ( 3  0 -1 -1 -2 -1 -1 -1 -1)
@}
Intersection Matrix:
[-1  1  2  1  1  2]
[ 1 -1  1  2  2  1]
[ 2  1 -1  1  1  2]
[ 1  2  1 -1  2  1]
[ 1  2  1  2 -1  1]
[ 2  1  2  1  1 -1]
Stabilizer Group Name:
D6
MatrixGroup(9, Integer Ring)
Generators:
    [10  3  3  3  3  3  3  3  6]
    [-3  0 -1 -1 -1 -1 -1 -1 -2]
    [-6 -2 -2 -2 -2 -2 -2 -2 -3]
    [-3 -1 -1  0 -1 -1 -1 -1 -2]
    [-3 -1 -1 -1  0 -1 -1 -1 -2]
    [-3 -1 -1 -1 -1  0 -1 -1 -2]
    [-3 -1 -1 -1 -1 -1  0 -1 -2]
    [-3 -1 -1 -1 -1 -1 -1  0 -2]
    [-3 -1  0 -1 -1 -1 -1 -1 -2]

    [ 6  2  0  1  2  2  3  2  3]
    [-2  0  0  0 -1 -1 -1 -1 -1]
    [ 0  0  1  0  0  0  0  0  0]
    [-1  0  0  0  0  0 -1  0 -1]
    [-2 -1  0  0  0 -1 -1 -1 -1]
    [-2 -1  0  0 -1  0 -1 -1 -1]
    [-3 -1  0 -1 -1 -1 -2 -1 -1]
    [-2 -1  0  0 -1 -1 -1  0 -1]
    [-3 -1  0 -1 -1 -1 -1 -1 -2]

    [ 7  3  0  2  3  3  2  2  3]
    [-3 -2  0 -1 -1 -1 -1 -1 -1]
    [ 0  0  1  0  0  0  0  0  0]
    [-2 -1  0 -1 -1 -1  0  0 -1]
    [-3 -1  0 -1 -1 -2 -1 -1 -1]
    [-3 -1  0 -1 -2 -1 -1 -1 -1]
    [-2 -1  0  0 -1 -1  0 -1 -1]
    [-2 -1  0  0 -1 -1 -1  0 -1]
    [-3 -1  0 -1 -1 -1 -1 -1 -2]

7
{@
    Mod: ( 2 -1  0  0 -1 -1 -1 -1  0),
    Mod: ( 5 -2 -1 -1 -2 -2 -2 -2 -2),
    Mod: ( 4 -2 -1 -2 -2 -1 -1 -1 -1),
    Mod: ( 4 -1 -1 -2 -2 -2 -1 -1 -1),
    Mod: ( 5 -2 -2 -1 -2 -2 -2 -2 -1),
    Mod: ( 1  0 -1 -1  0  0  0  0  0),
    Mod: ( 4 -2 -1 -2 -1 -2 -1 -1 -1),
    Mod: ( 4 -1 -2 -2 -1 -1 -1 -1 -2),
    Mod: ( 2 -1 -1  0  0  0 -1 -1 -1),
    Mod: ( 2  0 -1  0  0 -1 -1 -1 -1),
    Mod: ( 2  0 -1  0 -1  0 -1 -1 -1),
    Mod: ( 1  0  0 -1  0  0  0  0 -1)
@}
Intersection Matrix:
[-1  0  1  1  0  2  1  3  1  1  1  2]
[ 0 -1  1  1  0  3  1  2  1  1  1  2]
[ 1  1 -1  0  1  1  0  1  2  3  2  1]
[ 1  1  0 -1  1  1  0  1  3  2  2  1]
[ 0  0  1  1 -1  2  1  2  1  1  1  3]
[ 2  3  1  1  2 -1  1  0  1  1  1  0]
[ 1  1  0  0  1  1 -1  1  2  2  3  1]
[ 3  2  1  1  2  0  1 -1  1  1  1  0]
[ 1  1  2  3  1  1  2  1 -1  0  0  1]
[ 1  1  3  2  1  1  2  1  0 -1  0  1]
[ 1  1  2  2  1  1  3  1  0  0 -1  1]
[ 2  2  1  1  3  0  1  0  1  1  1 -1]
Stabilizer Group Name:
S3
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  0  2  1  1  1  0  0]
    [-1  0  0 -1  0 -1  0  0  0]
    [ 0  0  1  0  0  0  0  0  0]
    [-2 -1  0 -1 -1 -1 -1  0  0]
    [-1  0  0 -1 -1  0  0  0  0]
    [-1 -1  0 -1  0  0  0  0  0]
    [-1  0  0 -1  0  0 -1  0  0]
    [ 0  0  0  0  0  0  0  1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [1 0 0 0 0 0 0 0 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 0 0 0 1]

8
{@
    Mod: ( 2  0 -1  0 -1 -1 -1  0 -1),
    Mod: ( 2 -1 -1  0 -1 -1 -1  0  0),
    Mod: ( 2 -1 -1  0  0 -1 -1  0 -1),
    Mod: ( 2 -1 -1  0 -1  0 -1  0 -1),
    Mod: (0 0 0 0 0 0 0 1 0),
    Mod: ( 3 -1 -2 -1 -1 -1 -1  0 -1),
    Mod: ( 2 -1  0  0 -1 -1 -1  0 -1),
    Mod: ( 3 -2 -1 -1 -1 -1 -1  0 -1),
    Mod: ( 3 -1 -1 -1 -1 -2 -1  0 -1),
    Mod: ( 3 -1 -1 -1 -1 -1 -1  0 -2),
    Mod: ( 3 -1 -1 -1 -2 -1 -1  0 -1),
    Mod: ( 5 -2 -2 -1 -2 -2 -2 -1 -2)
@}
Intersection Matrix:
[-1  0  0  0  0  0  0  1  0  0  0  0]
[ 0 -1  0  0  0  0  0  0  0  1  0  0]
[ 0  0 -1  0  0  0  0  0  0  0  1  0]
[ 0  0  0 -1  0  0  0  0  1  0  0  0]
[ 0  0  0  0 -1  0  0  0  0  0  0  1]
[ 0  0  0  0  0 -1  1  0  0  0  0  0]
[ 0  0  0  0  0  1 -1  0  0  0  0  0]
[ 1  0  0  0  0  0  0 -1  0  0  0  0]
[ 0  0  0  1  0  0  0  0 -1  0  0  0]
[ 0  1  0  0  0  0  0  0  0 -1  0  0]
[ 0  0  1  0  0  0  0  0  0  0 -1  0]
[ 0  0  0  0  1  0  0  0  0  0  0 -1]
Stabilizer Group Name:
S3
MatrixGroup(9, Integer Ring)
Generators:
    [ 6  2  3  1  2  2  3  2  0]
    [-2  0 -1  0 -1 -1 -1 -1  0]
    [-3 -1 -2 -1 -1 -1 -1 -1  0]
    [-1  0 -1  0  0  0 -1  0  0]
    [-2 -1 -1  0  0 -1 -1 -1  0]
    [-2 -1 -1  0 -1  0 -1 -1  0]
    [-3 -1 -1 -1 -1 -1 -2 -1  0]
    [-2 -1 -1  0 -1 -1 -1  0  0]
    [ 0  0  0  0  0  0  0  0  1]

    [ 6  2  0  1  2  2  3  2  3]
    [-2  0  0  0 -1 -1 -1 -1 -1]
    [ 0  0  1  0  0  0  0  0  0]
    [-1  0  0  0  0  0 -1  0 -1]
    [-2 -1  0  0  0 -1 -1 -1 -1]
    [-2 -1  0  0 -1  0 -1 -1 -1]
    [-3 -1  0 -1 -1 -1 -2 -1 -1]
    [-2 -1  0  0 -1 -1 -1  0 -1]
    [-3 -1  0 -1 -1 -1 -1 -1 -2]

9
{@
    Mod: ( 4 -1 -2 -2 -1 -1 -1 -2 -1),
    Mod: ( 1  0  0 -1  0  0  0 -1  0),
    Mod: ( 6 -2 -2 -2 -2 -2 -2 -3 -2),
    Mod: ( 4 -1 -1 -2 -1 -2 -1 -2 -1),
    Mod: ( 3 -1 -1 -1  0 -1 -1 -2 -1),
    Mod: ( 3  0 -1 -1 -1 -1 -1 -2 -1),
    Mod: ( 3 -1 -1 -1 -1  0 -1 -2 -1),
    Mod: ( 4 -1 -1 -2 -1 -1 -1 -2 -2),
    Mod: ( 4 -1 -1 -2 -2 -1 -1 -2 -1),
    Mod: ( 3 -1 -1 -1 -1 -1 -1 -2  0),
    Mod: ( 3 -1  0 -1 -1 -1 -1 -2 -1),
    Mod: ( 4 -2 -1 -2 -1 -1 -1 -2 -1)
@}
Intersection Matrix:
[-1  0  0  0  0  0  0  0  0  0  1  0]
[ 0 -1  1  0  0  0  0  0  0  0  0  0]
[ 0  1 -1  0  0  0  0  0  0  0  0  0]
[ 0  0  0 -1  0  0  1  0  0  0  0  0]
[ 0  0  0  0 -1  0  0  0  1  0  0  0]
[ 0  0  0  0  0 -1  0  0  0  0  0  1]
[ 0  0  0  1  0  0 -1  0  0  0  0  0]
[ 0  0  0  0  0  0  0 -1  0  1  0  0]
[ 0  0  0  0  1  0  0  0 -1  0  0  0]
[ 0  0  0  0  0  0  0  1  0 -1  0  0]
[ 1  0  0  0  0  0  0  0  0  0 -1  0]
[ 0  0  0  0  0  1  0  0  0  0  0 -1]
Stabilizer Group Name:
S3
MatrixGroup(9, Integer Ring)
Generators:
    [ 3  1  0  2  1  1  1  0  0]
    [-1  0  0 -1  0 -1  0  0  0]
    [ 0  0  1  0  0  0  0  0  0]
    [-2 -1  0 -1 -1 -1 -1  0  0]
    [-1  0  0 -1 -1  0  0  0  0]
    [-1 -1  0 -1  0  0  0  0  0]
    [-1  0  0 -1  0  0 -1  0  0]
    [ 0  0  0  0  0  0  0  1  0]
    [ 0  0  0  0  0  0  0  0  1]

    [1 0 0 0 0 0 0 0 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 0 0 0 1]

10
{@
    Mod: ( 3 -2 -1 -1 -1 -1  0 -1 -1),
    Mod: ( 3 -1 -1 -1 -1 -1  0 -1 -2),
    Mod: ( 5 -2 -2 -1 -2 -2 -1 -2 -2),
    Mod: ( 3 -1 -1 -1  0 -1 -2 -1 -1),
    Mod: ( 3 -1 -1 -1 -1 -2  0 -1 -1),
    Mod: ( 2 -1 -1  0  0 -1  0 -1 -1),
    Mod: ( 4 -1 -1 -2 -2 -1 -2 -1 -1),
    Mod: ( 3 -1  0 -1 -1 -1 -2 -1 -1),
    Mod: ( 4 -1 -2 -2 -1 -1 -2 -1 -1),
    Mod: ( 3 -1 -1 -1 -1 -1 -2 -1  0),
    Mod: ( 2 -1  0  0 -1 -1  0 -1 -1),
    Mod: ( 3 -1 -1 -1 -1  0 -2 -1 -1),
    Mod: (0 0 0 0 0 0 1 0 0),
    Mod: ( 3  0 -1 -1 -1 -1 -2 -1 -1),
    Mod: ( 3 -1 -2 -1 -1 -1  0 -1 -1),
    Mod: ( 1  0  0 -1  0  0 -1  0  0),
    Mod: ( 3 -1 -1 -1 -2 -1  0 -1 -1),
    Mod: ( 2 -1 -1  0 -1  0  0 -1 -1),
    Mod: ( 6 -2 -2 -2 -2 -2 -3 -2 -2),
    Mod: ( 4 -1 -1 -2 -1 -2 -2 -1 -1),
    Mod: ( 2 -1 -1  0 -1 -1  0 -1  0),
    Mod: ( 2  0 -1  0 -1 -1  0 -1 -1),
    Mod: ( 4 -1 -1 -2 -1 -1 -2 -1 -2),
    Mod: ( 4 -2 -1 -2 -1 -1 -2 -1 -1)
@}
Intersection Matrix:
[-1  0  0  2  0  0  2  2  2  2  0  2  0  3  0  2  0  0  2  2  0  1  2  1]
[ 0 -1  0  2  0  0  2  2  2  3  0  2  0  2  0  2  0  0  2  2  1  0  1  2]
[ 0  0 -1  2  0  0  2  2  2  2  0  2  1  2  0  3  0  0  1  2  0  0  2  2]
[ 2  2  2 -1  2  1  1  0  0  0  2  0  2  0  2  0  3  2  0  0  2  2  0  0]
[ 0  0  0  2 -1  0  2  2  2  2  0  3  0  2  0  2  0  1  2  1  0  0  2  2]
[ 0  0  0  1  0 -1  3  2  2  2  0  2  0  2  0  2  1  0  2  2  0  0  2  2]
[ 2  2  2  1  2  3 -1  0  0  0  2  0  2  0  2  0  1  2  0  0  2  2  0  0]
[ 2  2  2  0  2  2  0 -1  1  0  1  0  2  0  3  0  2  2  0  0  2  2  0  0]
[ 2  2  2  0  2  2  0  1 -1  0  3  0  2  0  1  0  2  2  0  0  2  2  0  0]
[ 2  3  2  0  2  2  0  0  0 -1  2  0  2  0  2  0  2  2  0  0  1  2  1  0]
[ 0  0  0  2  0  0  2  1  3  2 -1  2  0  2  1  2  0  0  2  2  0  0  2  2]
[ 2  2  2  0  3  2  0  0  0  0  2 -1  2  0  2  0  2  1  0  1  2  2  0  0]
[ 0  0  1  2  0  0  2  2  2  2  0  2 -1  2  0  1  0  0  3  2  0  0  2  2]
[ 3  2  2  0  2  2  0  0  0  0  2  0  2 -1  2  0  2  2  0  0  2  1  0  1]
[ 0  0  0  2  0  0  2  3  1  2  1  2  0  2 -1  2  0  0  2  2  0  0  2  2]
[ 2  2  3  0  2  2  0  0  0  0  2  0  1  0  2 -1  2  2  1  0  2  2  0  0]
[ 0  0  0  3  0  1  1  2  2  2  0  2  0  2  0  2 -1  0  2  2  0  0  2  2]
[ 0  0  0  2  1  0  2  2  2  2  0  1  0  2  0  2  0 -1  2  3  0  0  2  2]
[ 2  2  1  0  2  2  0  0  0  0  2  0  3  0  2  1  2  2 -1  0  2  2  0  0]
[ 2  2  2  0  1  2  0  0  0  0  2  1  2  0  2  0  2  3  0 -1  2  2  0  0]
[ 0  1  0  2  0  0  2  2  2  1  0  2  0  2  0  2  0  0  2  2 -1  0  3  2]
[ 1  0  0  2  0  0  2  2  2  2  0  2  0  1  0  2  0  0  2  2  0 -1  2  3]
[ 2  1  2  0  2  2  0  0  0  1  2  0  2  0  2  0  2  2  0  0  3  2 -1  0]
[ 1  2  2  0  2  2  0  0  0  0  2  0  2  1  2  0  2  2  0  0  2  3  0 -1]
Stabilizer Group Name:
C3
MatrixGroup(9, Integer Ring)
Generators:
    [10  3  6  3  3  3  3  3  3]
    [-3  0 -2 -1 -1 -1 -1 -1 -1]
    [-3 -1 -2 -1 -1 -1 -1 -1  0]
    [-3 -1 -2  0 -1 -1 -1 -1 -1]
    [-3 -1 -2 -1  0 -1 -1 -1 -1]
    [-3 -1 -2 -1 -1  0 -1 -1 -1]
    [-3 -1 -2 -1 -1 -1  0 -1 -1]
    [-3 -1 -2 -1 -1 -1 -1  0 -1]
    [-6 -2 -3 -2 -2 -2 -2 -2 -2]

11
{@
    Mod: ( 4 -1 -2 -1 -1 -1 -1 -2 -2),
    Mod: ( 4 -1 -1 -1 -1 -2 -2 -2 -1),
    Mod: ( 5 -2 -2 -2 -2 -2 -1 -2 -1),
    Mod: ( 2 -1  0 -1 -1 -1  0 -1  0),
    Mod: ( 4 -1 -1 -1 -1 -1 -2 -2 -2),
    Mod: ( 4 -2 -1 -1 -1 -1 -2 -2 -1),
    Mod: ( 2  0 -1 -1 -1  0  0 -1 -1),
    Mod: ( 1  0 -1  0  0  0  0 -1  0),
    Mod: ( 4 -1 -1 -1 -2 -1 -2 -2 -1),
    Mod: ( 1  0  0  0  0  0 -1 -1  0),
    Mod: ( 6 -2 -2 -3 -2 -2 -2 -2 -2),
    Mod: ( 1  0  0  0  0  0  0 -1 -1),
    Mod: ( 4 -1 -2 -1 -1 -1 -2 -2 -1),
    Mod: ( 2 -1 -1 -1  0  0  0 -1 -1),
    Mod: ( 4 -2 -1 -1 -1 -2 -1 -2 -1),
    Mod: ( 3 -1 -1 -2  0 -1 -1 -1 -1),
    Mod: ( 5 -2 -1 -2 -2 -2 -1 -2 -2),
    Mod: ( 4 -1 -1 -1 -2 -2 -1 -2 -1),
    Mod: ( 3 -1  0 -2 -1 -1 -1 -1 -1),
    Mod: ( 3 -1 -1 -2 -1 -1 -1 -1  0),
    Mod: ( 4 -2 -1 -1 -2 -1 -1 -2 -1),
    Mod: ( 2  0 -1 -1  0 -1  0 -1 -1),
    Mod: ( 3 -1 -1 -2 -1  0 -1 -1 -1),
    Mod: ( 3  0 -1 -2 -1 -1 -1 -1 -1)
@}
Intersection Matrix:
[-1  1  1  2  0  1  0  0  1  1  1  0  0  0  1  1  1  1  2  2  1  0  1  1]
[ 1 -1  1  1  0  0  2  1  0  0  1  1  0  2  0  1  1  0  1  1  1  1  2  1]
[ 1  1 -1  0  2  1  1  1  1  2  0  2  1  1  0  1  0  0  1  0  0  1  1  1]
[ 2  1  0 -1  2  1  1  1  1  1  1  1  2  1  0  1  0  0  0  0  0  1  1  1]
[ 0  0  2  2 -1  0  1  1  0  0  1  0  0  1  1  1  1  1  1  2  1  1  1  1]
[ 1  0  1  1  0 -1  2  1  0  0  1  1  0  1  0  1  1  1  1  1  0  2  1  2]
[ 0  2  1  1  1  2 -1  0  1  1  1  0  1  0  2  1  1  1  1  1  1  0  0  0]
[ 0  1  1  1  1  1  0 -1  1  0  2  0  0  0  1  1  2  1  2  1  1  0  1  1]
[ 1  0  1  1  0  0  1  1 -1  0  1  1  0  2  1  2  1  0  1  1  0  2  1  1]
[ 1  0  2  1  0  0  1  0  0 -1  2  0  0  1  1  1  2  1  1  1  1  1  1  1]
[ 1  1  0  1  1  1  1  2  1  2 -1  2  1  1  1  0  0  1  0  0  1  1  0  0]
[ 0  1  2  1  0  1  0  0  1  0  2 -1  1  0  1  1  1  1  1  2  1  0  1  1]
[ 0  0  1  2  0  0  1  0  0  0  1  1 -1  1  1  1  2  1  2  1  1  1  1  1]
[ 0  2  1  1  1  1  0  0  2  1  1  0  1 -1  1  0  1  2  1  1  1  0  0  1]
[ 1  0  0  0  1  0  2  1  1  1  1  1  1  1 -1  1  0  0  1  1  0  1  2  2]
[ 1  1  1  1  1  1  1  1  2  1  0  1  1  0  1 -1  1  2  0  0  2  0  0  0]
[ 1  1  0  0  1  1  1  2  1  2  0  1  2  1  0  1 -1  0  0  1  0  1  1  1]
[ 1  0  0  0  1  1  1  1  0  1  1  1  1  2  0  2  0 -1  1  1  0  1  2  1]
[ 2  1  1  0  1  1  1  2  1  1  0  1  2  1  1  0  0  1 -1  0  1  1  0  0]
[ 2  1  0  0  2  1  1  1  1  1  0  2  1  1  1  0  1  1  0 -1  1  1  0  0]
[ 1  1  0  0  1  0  1  1  0  1  1  1  1  1  0  2  0  0  1  1 -1  2  1  2]
[ 0  1  1  1  1  2  0  0  2  1  1  0  1  0  1  0  1  1  1  1  2 -1  1  0]
[ 1  2  1  1  1  1  0  1  1  1  0  1  1  0  2  0  1  2  0  0  1  1 -1  0]
[ 1  1  1  1  1  2  0  1  1  1  0  1  1  1  2  0  1  1  0  0  2  0  0 -1]
Stabilizer Group Name:
C3
MatrixGroup(9, Integer Ring)
Generators:
    [1 0 0 0 0 0 0 0 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 0 0 0 1]

12
{@
    Mod: ( 1  0  0  0  0  0 -1  0 -1),
    Mod: ( 2 -1 -1 -1 -1  0  0  0 -1),
    Mod: ( 2 -1  0 -1 -1 -1  0  0 -1),
    Mod: (0 0 0 1 0 0 0 0 0),
    Mod: ( 4 -1 -1 -1 -2 -2 -2 -1 -1),
    Mod: ( 2  0 -1 -1  0 -1 -1  0 -1),
    Mod: ( 4 -2 -1 -1 -2 -1 -2 -1 -1),
    Mod: ( 2  0 -1 -1 -1 -1  0  0 -1),
    Mod: ( 3 -1 -2  0 -1 -1 -1 -1 -1),
    Mod: ( 4 -1 -2 -1 -1 -1 -2 -1 -2),
    Mod: ( 5 -2 -2 -2 -2 -2 -2 -1 -1),
    Mod: ( 1  0 -1  0  0  0 -1  0  0),
    Mod: ( 2 -1 -1 -1 -1 -1  0  0  0),
    Mod: ( 2  0 -1 -1 -1  0 -1  0 -1),
    Mod: ( 3 -2 -1  0 -1 -1 -1 -1 -1),
    Mod: ( 3 -1 -1  0 -1 -1 -1 -1 -2),
    Mod: ( 2 -1  0 -1 -1 -1 -1  0  0),
    Mod: ( 3 -1 -1  0 -1 -2 -1 -1 -1),
    Mod: ( 2 -1 -1 -1  0 -1  0  0 -1),
    Mod: ( 4 -2 -1 -1 -1 -2 -2 -1 -1),
    Mod: ( 5 -2 -2 -2 -2 -2 -1 -1 -2),
    Mod: ( 2 -1 -1 -1  0  0 -1  0 -1),
    Mod: ( 3 -1 -1  0 -2 -1 -1 -1 -1),
    Mod: ( 5 -2 -1 -2 -2 -2 -2 -1 -2)
@}
Intersection Matrix:
[-1  1  1  0  1  0  1  1  1  0  2  0  2  0  1  0  1  1  1  1  2  0  1  1]
[ 1 -1  0  1  2  1  1  0  1  1  1  1  0  0  1  1  1  2  0  2  0  0  1  1]
[ 1  0 -1  1  1  1  1  0  2  2  1  2  0  1  1  1  0  1  0  1  0  1  1  0]
[ 0  1  1 -1  1  1  1  1  0  1  2  0  1  1  0  0  1  0  1  1  2  1  0  2]
[ 1  2  1  1 -1  1  0  1  1  1  0  1  1  1  1  1  0  0  2  0  1  2  0  0]
[ 0  1  1  1  1 -1  2  0  1  0  1  0  1  0  2  1  1  1  0  1  1  0  2  1]
[ 1  1  1  1  0  2 -1  2  1  1  0  1  1  1  0  1  0  1  2  0  1  1  0  0]
[ 1  0  0  1  1  0  2 -1  1  1  1  1  0  0  2  1  1  1  0  2  0  1  1  1]
[ 1  1  2  0  1  1  1  1 -1  0  1  0  1  1  0  0  2  0  1  1  1  1  0  2]
[ 0  1  2  1  1  0  1  1  0 -1  1  0  2  0  1  0  2  1  1  1  1  0  1  1]
[ 2  1  1  2  0  1  0  1  1  1 -1  1  0  1  1  2  0  1  1  0  0  1  1  0]
[ 0  1  2  0  1  0  1  1  0  0  1 -1  1  0  1  1  1  1  1  1  2  0  1  2]
[ 2  0  0  1  1  1  1  0  1  2  0  1 -1  1  1  2  0  1  0  1  0  1  1  1]
[ 0  0  1  1  1  0  1  0  1  0  1  0  1 -1  2  1  1  2  1  2  1  0  1  1]
[ 1  1  1  0  1  2  0  2  0  1  1  1  1  2 -1  0  1  0  1  0  1  1  0  1]
[ 0  1  1  0  1  1  1  1  0  0  2  1  2  1  0 -1  2  0  1  1  1  1  0  1]
[ 1  1  0  1  0  1  0  1  2  2  0  1  0  1  1  2 -1  1  1  0  1  1  1  0]
[ 1  2  1  0  0  1  1  1  0  1  1  1  1  2  0  0  1 -1  1  0  1  2  0  1]
[ 1  0  0  1  2  0  2  0  1  1  1  1  0  1  1  1  1  1 -1  1  0  0  2  1]
[ 1  2  1  1  0  1  0  2  1  1  0  1  1  2  0  1  0  0  1 -1  1  1  1  0]
[ 2  0  0  2  1  1  1  0  1  1  0  2  0  1  1  1  1  1  0  1 -1  1  1  0]
[ 0  0  1  1  2  0  1  1  1  0  1  0  1  0  1  1  1  2  0  1  1 -1  2  1]
[ 1  1  1  0  0  2  0  1  0  1  1  1  1  1  0  0  1  0  2  1  1  2 -1  1]
[ 1  1  0  2  0  1  0  1  2  1  0  2  1  1  1  1  0  1  1  0  0  1  1 -1]
Stabilizer Group Name:
C3
MatrixGroup(9, Integer Ring)
Generators:
    [1 0 0 0 0 0 0 0 0]
    [0 0 0 0 0 1 0 0 0]
    [0 0 1 0 0 0 0 0 0]
    [0 0 0 1 0 0 0 0 0]
    [0 1 0 0 0 0 0 0 0]
    [0 0 0 0 1 0 0 0 0]
    [0 0 0 0 0 0 1 0 0]
    [0 0 0 0 0 0 0 1 0]
    [0 0 0 0 0 0 0 0 1]

13
{@
    Mod: ( 1 -1  0  0  0 -1  0  0  0),
    Mod: ( 2 -1  0 -1 -1  0 -1  0 -1),
    Mod: ( 4 -2 -2 -1 -2 -1 -1 -1 -1),
    Mod: ( 2  0 -1 -1 -1 -1 -1  0  0),
    Mod: ( 1  0 -1  0  0 -1  0  0  0),
    Mod: ( 1 -1 -1  0  0  0  0  0  0),
    Mod: ( 1  0  0  0 -1  0 -1  0  0),
    Mod: ( 4 -1 -1 -1 -2 -1 -2 -1 -2),
    Mod: ( 1 -1  0  0 -1  0  0  0  0),
    Mod: ( 4 -2 -1 -1 -1 -1 -2 -1 -2),
    Mod: ( 4 -1 -2 -1 -1 -2 -2 -1 -1),
    Mod: ( 5 -2 -2 -2 -2 -1 -2 -1 -2),
    Mod: ( 1  0  0  0  0 -1  0  0 -1),
    Mod: ( 4 -1 -2 -1 -1 -2 -1 -1 -2),
    Mod: ( 1 -1  0  0  0  0 -1  0  0),
    Mod: ( 1  0 -1  0 -1  0  0  0  0),
    Mod: ( 2 -1 -1 -1  0 -1 -1  0  0),
    Mod: ( 4 -2 -1 -1 -2 -1 -1 -1 -2),
    Mod: ( 4 -1 -2 -1 -2 -2 -1 -1 -1),
    Mod: ( 1  0  0  0  0 -1 -1  0  0),
    Mod: ( 4 -2 -2 -1 -1 -2 -1 -1 -1),
    Mod: ( 1  0  0  0 -1  0  0  0 -1),
    Mod: ( 2 -1 -1 -1 -1  0 -1  0  0),
    Mod: ( 4 -1 -1 -1 -1 -2 -2 -1 -2),
    Mod: ( 5 -1 -2 -2 -2 -2 -2 -1 -2),
    Mod: ( 1 -1  0  0  0  0  0  0 -1),
    Mod: ( 2 -1  0 -1  0 -1 -1  0 -1),
    Mod: ( 4 -1 -2 -1 -2 -1 -2 -1 -1),
    Mod: ( 2  0  0 -1 -1 -1 -1  0 -1),
    Mod: ( 5 -2 -2 -2 -1 -2 -2 -1 -2),
    Mod: ( 4 -1 -2 -1 -2 -1 -1 -1 -2),
    Mod: ( 1  0  0  0 -1 -1  0  0  0),
    Mod: ( 4 -2 -2 -1 -1 -1 -2 -1 -1),
    Mod: ( 4 -1 -1 -1 -2 -2 -1 -1 -2),
    Mod: ( 4 -2 -2 -1 -1 -1 -1 -1 -2),
    Mod: ( 4 -2 -1 -1 -1 -2 -1 -1 -2)
@}
Intersection Matrix:
[-1  1  1  1  0  0  1  2  0  1  1  2  0  1  0  1  0  1  1  0  0  1  1  1  2  0  0  2  1  1  2  0  1  1  1  0]
[ 1 -1  1  1  2  1  0  0  0  0  2  0  1  2  0  1  1  0  2  1  2  0  0  1  1  0  0  1  0  1  1  1  1  1  1  1]
[ 1  1 -1  1  1  0  1  1  0  1  1  0  2  1  1  0  1  0  0  2  0  1  0  2  1  1  2  0  2  1  0  1  0  1  0  1]
[ 1  1  1 -1  0  1  0  1  1  2  0  1  1  1  1  0  0  2  0  0  1  1  0  1  0  2  1  0  0  1  1  0  1  1  2  2]
[ 0  2  1  0 -1  0  1  2  1  2  0  2  0  0  1  0  0  2  0  0  0  1  1  1  1  1  1  1  1  1  1  0  1  1  1  1]
[ 0  1  0  1  0 -1  1  2  0  1  1  1  1  1  0  0  0  1  1  1  0  1  0  2  2  0  1  1  2  1  1  1  0  2  0  1]
[ 1  0  1  0  1  1 -1  0  0  1  1  1  1  2  0  0  1  1  1  0  2  0  0  1  1  1  1  0  0  2  1  0  1  1  2  2]
[ 2  0  1  1  2  2  0 -1  1  0  1  0  1  1  1  1  2  0  1  1  2  0  1  0  0  1  1  0  0  1  0  1  1  0  1  1]
[ 0  0  0  1  1  0  0  1 -1  1  2  1  1  2  0  0  1  0  1  1  1  0  0  2  2  0  1  1  1  2  1  0  1  1  1  1]
[ 1  0  1  2  2  1  1  0  1 -1  1  0  1  1  0  2  1  0  2  1  1  1  1  0  1  0  0  1  1  0  1  2  0  1  0  0]
[ 1  2  1  0  0  1  1  1  2  1 -1  1  1  0  1  1  0  2  0  0  0  2  1  0  0  2  1  0  1  0  1  1  0  1  1  1]
[ 2  0  0  1  2  1  1  0  1  0  1 -1  2  1  1  1  1  0  1  2  1  1  0  1  0  1  1  0  1  0  0  2  0  1  0  1]
[ 0  1  2  1  0  1  1  1  1  1  1  2 -1  0  1  1  1  1  1  0  1  0  2  0  1  0  0  2  0  1  1  0  2  0  1  0]
[ 1  2  1  1  0  1  2  1  2  1  0  1  0 -1  2  1  1  1  0  1  0  1  2  0  0  1  1  1  1  0  0  1  1  0  0  0]
[ 0  0  1  1  1  0  0  1  0  0  1  1  1  2 -1  1  0  1  2  0  1  1  0  1  2  0  0  1  1  1  2  1  0  2  1  1]
[ 1  1  0  0  0  0  0  1  0  2  1  1  1  1  1 -1  1  1  0  1  1  0  0  2  1  1  2  0  1  2  0  0  1  1  1  2]
[ 0  1  1  0  0  0  1  2  1  1  0  1  1  1  0  1 -1  2  1  0  0  2  0  1  1  1  0  1  1  0  2  1  0  2  1  1]
[ 1  0  0  2  2  1  1  0  0  0  2  0  1  1  1  1  2 -1  1  2  1  0  1  1  1  0  1  1  1  1  0  1  1  0  0  0]
[ 1  2  0  0  0  1  1  1  1  2  0  1  1  0  2  0  1  1 -1  1  0  1  1  1  0  2  2  0  1  1  0  0  1  0  1  1]
[ 0  1  2  0  0  1  0  1  1  1  0  2  0  1  0  1  0  2  1 -1  1  1  1  0  1  1  0  1  0  1  2  0  1  1  2  1]
[ 0  2  0  1  0  0  2  2  1  1  0  1  1  0  1  1  0  1  0  1 -1  2  1  1  1  1  1  1  2  0  1  1  0  1  0  0]
[ 1  0  1  1  1  1  0  0  0  1  2  1  0  1  1  0  2  0  1  1  2 -1  1  1  1  0  1  1  0  2  0  0  2  0  1  1]
[ 1  0  0  0  1  0  0  1  0  1  1  0  2  2  0  0  0  1  1  1  1  1 -1  2  1  1  1  0  1  1  1  1  0  2  1  2]
[ 1  1  2  1  1  2  1  0  2  0  0  1  0  0  1  2  1  1  1  0  1  1  2 -1  0  1  0  1  0  0  1  1  1  0  1  0]
[ 2  1  1  0  1  2  1  0  2  1  0  0  1  0  2  1  1  1  0  1  1  1  1  0 -1  2  1  0  0  0  0  1  1  0  1  1]
[ 0  0  1  2  1  0  1  1  0  0  2  1  0  1  0  1  1  0  2  1  1  0  1  1  2 -1  0  2  1  1  1  1  1  1  0  0]
[ 0  0  2  1  1  1  1  1  1  0  1  1  0  1  0  2  0  1  2  0  1  1  1  0  1  0 -1  2  0  0  2  1  1  1  1  0]
[ 2  1  0  0  1  1  0  0  1  1  0  0  2  1  1  0  1  1  0  1  1  1  0  1  0  2  2 -1  1  1  0  1  0  1  1  2]
[ 1  0  2  0  1  2  0  0  1  1  1  1  0  1  1  1  1  1  1  0  2  0  1  0  0  1  0  1 -1  1  1  0  2  0  2  1]
[ 1  1  1  1  1  1  2  1  2  0  0  0  1  0  1  2  0  1  1  1  0  2  1  0  0  1  0  1  1 -1  1  2  0  1  0  0]
[ 2  1  0  1  1  1  1  0  1  1  1  0  1  0  2  0  2  0  0  2  1  0  1  1  0  1  2  0  1  1 -1  1  1  0  0  1]
[ 0  1  1  0  0  1  0  1  0  2  1  2  0  1  1  0  1  1  0  0  1  0  1  1  1  1  1  1  0  2  1 -1  2  0  2  1]
[ 1  1  0  1  1  0  1  1  1  0  0  0  2  1  0  1  0  1  1  1  0  2  0  1  1  1  1  0  2  0  1  2 -1  2  0  1]
[ 1  1  1  1  1  2  1  0  1  1  1  1  0  0  2  1  2  0  0  1  1  0  2  0  0  1  1  1  0  1  0  0  2 -1  1  0]
[ 1  1  0  2  1  0  2  1  1  0  1  0  1  0  1  1  1  0  1  2  0  1  1  1  1  0  1  1  2  0  0  2  0  1 -1  0]
[ 0  1  1  2  1  1  2  1  1  0  1  1  0  0  1  2  1  0  1  1  0  1  2  0  1  0  0  2  1  0  1  1  1  0  0 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 7  3  3  2  0  3  2  2  3]
    [-3 -1 -2 -1  0 -1 -1 -1 -1]
    [-3 -2 -1 -1  0 -1 -1 -1 -1]
    [-2 -1 -1 -1  0 -1  0  0 -1]
    [ 0  0  0  0  1  0  0  0  0]
    [-3 -1 -1 -1  0 -1 -1 -1 -2]
    [-2 -1 -1  0  0 -1  0 -1 -1]
    [-2 -1 -1  0  0 -1 -1  0 -1]
    [-3 -1 -1 -1  0 -2 -1 -1 -1]

14
{@
    Mod: ( 4 -2 -2 -1 -1 -1 -1 -2 -1),
    Mod: ( 2 -1  0 -1  0 -1  0 -1 -1),
    Mod: ( 5 -1 -2 -2 -2 -1 -2 -2 -2),
    Mod: ( 2 -1 -1 -1 -1  0  0 -1  0),
    Mod: ( 2  0  0 -1 -1 -1  0 -1 -1),
    Mod: ( 5 -1 -1 -2 -2 -2 -2 -2 -2),
    Mod: ( 2  0 -1 -1 -1 -1  0 -1  0),
    Mod: ( 5 -2 -2 -2 -1 -1 -2 -2 -2),
    Mod: ( 2  0  0 -1  0 -1 -1 -1 -1),
    Mod: ( 5 -2 -1 -2 -1 -2 -2 -2 -2),
    Mod: ( 1  0  0  0  0 -1  0 -1  0),
    Mod: ( 4 -1 -1 -1 -2 -1 -1 -2 -2),
    Mod: ( 2  0 -1 -1  0 -1 -1 -1  0),
    Mod: ( 2 -1  0 -1  0 -1 -1 -1  0),
    Mod: ( 5 -2 -2 -2 -2 -1 -2 -2 -1),
    Mod: ( 2  0  0 -1 -1 -1 -1 -1  0),
    Mod: ( 4 -2 -1 -1 -1 -1 -1 -2 -2),
    Mod: ( 4 -1 -2 -1 -1 -2 -1 -2 -1),
    Mod: ( 5 -2 -2 -2 -2 -1 -1 -2 -2),
    Mod: ( 2 -1  0 -1  0  0 -1 -1 -1),
    Mod: ( 2  0  0 -1 -1  0 -1 -1 -1),
    Mod: ( 2 -1 -1 -1  0 -1  0 -1  0),
    Mod: ( 1  0  0  0 -1  0  0 -1  0),
    Mod: ( 2  0 -1 -1 -1  0 -1 -1  0),
    Mod: ( 2 -1  0 -1 -1  0 -1 -1  0),
    Mod: ( 5 -1 -2 -2 -1 -2 -2 -2 -2),
    Mod: ( 1 -1  0  0  0  0  0 -1  0),
    Mod: ( 2 -1  0 -1 -1  0  0 -1 -1),
    Mod: ( 5 -1 -2 -2 -2 -2 -2 -2 -1),
    Mod: ( 5 -2 -1 -2 -2 -1 -2 -2 -2),
    Mod: ( 4 -1 -1 -1 -1 -2 -1 -2 -2),
    Mod: ( 5 -1 -2 -2 -2 -2 -1 -2 -2),
    Mod: ( 2 -1 -1 -1  0  0 -1 -1  0),
    Mod: ( 5 -2 -2 -2 -1 -2 -2 -2 -1),
    Mod: ( 4 -1 -2 -1 -2 -1 -1 -2 -1),
    Mod: ( 5 -2 -2 -2 -1 -2 -1 -2 -2)
@}
Intersection Matrix:
[-1  1  1  0  2  2  1  0  2  1  1  1  1  1  0  2  0  0  0  1  2  0  1  1  1  1  0  1  1  1  1  1  0  0  0  0]
[ 1 -1  2  1  0  1  1  1  0  0  0  1  1  0  2  1  0  1  1  0  1  0  1  2  1  1  0  0  2  1  0  1  1  1  2  0]
[ 1  2 -1  1  1  0  1  0  1  1  2  0  1  2  0  1  1  1  0  1  0  2  1  0  1  0  2  1  0  0  1  0  1  1  0  1]
[ 0  1  1 -1  1  2  0  1  2  2  1  1  1  1  0  1  1  1  0  1  1  0  0  0  0  2  0  0  1  1  2  1  0  1  0  1]
[ 2  0  1  1 -1  0  0  2  0  1  0  0  1  1  2  0  1  1  1  1  0  1  0  1  1  1  1  0  1  1  0  0  2  2  1  1]
[ 2  1  0  2  0 -1  1  1  0  0  1  0  1  1  1  0  1  1  1  1  0  2  1  1  1  0  2  1  0  0  0  0  2  1  1  1]
[ 1  1  1  0  0  1 -1  2  1  2  0  1  0  1  1  0  2  0  1  2  1  0  0  0  1  1  1  1  0  2  1  0  1  1  0  1]
[ 0  1  0  1  2  1  2 -1  1  0  2  1  1  1  0  2  0  1  0  0  1  1  2  1  1  0  1  1  1  0  1  1  0  0  1  0]
[ 2  0  1  2  0  0  1  1 -1  0  0  1  0  0  2  0  1  1  2  0  0  1  1  1  1  0  1  1  1  1  0  1  1  1  2  1]
[ 1  0  1  2  1  0  2  0  0 -1  1  1  1  0  1  1  0  1  1  0  1  1  2  2  1  0  1  1  1  0  0  1  1  0  2  0]
[ 1  0  2  1  0  1  0  2  0  1 -1  1  0  0  2  0  1  0  2  1  1  0  0  1  1  1  0  1  1  2  0  1  1  1  1  1]
[ 1  1  0  1  0  0  1  1  1  1  1 -1  2  2  1  1  0  1  0  1  0  2  0  1  1  1  1  0  1  0  0  0  2  2  0  1]
[ 1  1  1  1  1  1  0  1  0  1  0  2 -1  0  1  0  2  0  2  1  1  0  1  0  1  0  1  2  0  2  1  1  0  0  1  1]
[ 1  0  2  1  1  1  1  1  0  0  0  2  0 -1  1  0  1  1  2  0  1  0  1  1  0  1  0  1  1  1  1  2  0  0  2  1]
[ 0  2  0  0  2  1  1  0  2  1  2  1  1  1 -1  1  1  1  0  1  1  1  1  0  0  1  1  1  0  0  2  1  0  0  0  1]
[ 2  1  1  1  0  0  0  2  0  1  0  1  0  0  1 -1  2  1  2  1  0  1  0  0  0  1  1  1  0  1  1  1  1  1  1  2]
[ 0  0  1  1  1  1  2  0  1  0  1  0  2  1  1  2 -1  1  0  0  1  1  1  2  1  1  0  0  2  0  0  1  1  1  1  0]
[ 0  1  1  1  1  1  0  1  1  1  0  1  0  1  1  1  1 -1  1  2  2  0  1  1  2  0  1  2  0  2  0  0  1  0  0  0]
[ 0  1  0  0  1  1  1  0  2  1  2  0  2  2  0  2  0  1 -1  1  1  1  1  1  1  1  1  0  1  0  1  0  1  1  0  0]
[ 1  0  1  1  1  1  2  0  0  0  1  1  1  0  1  1  0  2  1 -1  0  1  1  1  0  1  0  0  2  0  1  2  0  1  2  1]
[ 2  1  0  1  0  0  1  1  0  1  1  0  1  1  1  0  1  2  1  0 -1  2  0  0  0  1  1  0  1  0  1  1  1  2  1  2]
[ 0  0  2  0  1  2  0  1  1  1  0  2  0  0  1  1  1  0  1  1  2 -1  1  1  1  1  0  1  1  2  1  1  0  0  1  0]
[ 1  1  1  0  0  1  0  2  1  2  0  0  1  1  1  0  1  1  1  1  0  1 -1  0  0  2  0  0  1  1  1  1  1  2  0  2]
[ 1  2  0  0  1  1  0  1  1  2  1  1  0  1  0  0  2  1  1  1  0  1  0 -1  0  1  1  1  0  1  2  1  0  1  0  2]
[ 1  1  1  0  1  1  1  1  1  1  1  1  1  0  0  0  1  2  1  0  0  1  0  0 -1  2  0  0  1  0  2  2  0  1  1  2]
[ 1  1  0  2  1  0  1  0  0  0  1  1  0  1  1  1  1  0  1  1  1  1  2  1  2 -1  2  2  0  1  0  0  1  0  1  0]
[ 0  0  2  0  1  2  1  1  1  1  0  1  1  0  1  1  0  1  1  0  1  0  0  1  0  2 -1  0  2  1  1  2  0  1  1  1]
[ 1  0  1  0  0  1  1  1  1  1  1  0  2  1  1  1  0  2  0  0  0  1  0  1  0  2  0 -1  2  0  1  1  1  2  1  1]
[ 1  2  0  1  1  0  0  1  1  1  1  1  0  1  0  0  2  0  1  2  1  1  1  0  1  0  2  2 -1  1  1  0  1  0  0  1]
[ 1  1  0  1  1  0  2  0  1  0  2  0  2  1  0  1  0  2  0  0  0  2  1  1  0  1  1  0  1 -1  1  1  1  1  1  1]
[ 1  0  1  2  0  0  1  1  0  0  0  0  1  1  2  1  0  0  1  1  1  1  1  2  2  0  1  1  1  1 -1  0  2  1  1  0]
[ 1  1  0  1  0  0  0  1  1  1  1  0  1  2  1  1  1  0  0  2  1  1  1  1  2  0  2  1  0  1  0 -1  2  1  0  0]
[ 0  1  1  0  2  2  1  0  1  1  1  2  0  0  0  1  1  1  1  0  1  0  1  0  0  1  0  1  1  1  2  2 -1  0  1  1]
[ 0  1  1  1  2  1  1  0  1  0  1  2  0  0  0  1  1  0  1  1  2  0  2  1  1  0  1  2  0  1  1  1  0 -1  1  0]
[ 0  2  0  0  1  1  0  1  2  2  1  0  1  2  0  1  1  0  0  2  1  1  0  0  1  1  1  1  0  1  1  0  1  1 -1  1]
[ 0  0  1  1  1  1  1  0  1  0  1  1  1  1  1  2  0  0  0  1  2  0  2  2  2  0  1  1  1  1  0  0  1  0  1 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [10  3  3  3  3  6  3  3  3]
    [-3 -1  0 -1 -1 -2 -1 -1 -1]
    [-3  0 -1 -1 -1 -2 -1 -1 -1]
    [-3 -1 -1  0 -1 -2 -1 -1 -1]
    [-3 -1 -1 -1 -1 -2 -1 -1  0]
    [-6 -2 -2 -2 -2 -3 -2 -2 -2]
    [-3 -1 -1 -1 -1 -2  0 -1 -1]
    [-3 -1 -1 -1 -1 -2 -1  0 -1]
    [-3 -1 -1 -1  0 -2 -1 -1 -1]

15
{@
    Mod: ( 3 -2 -1 -1 -1 -1 -1 -1  0),
    Mod: (0 0 0 0 1 0 0 0 0),
    Mod: ( 2 -1  0  0  0 -1 -1 -1 -1),
    Mod: ( 3 -1 -1 -1  0 -1 -1 -1 -2),
    Mod: ( 3 -1 -1 -1 -2 -1 -1 -1  0),
    Mod: ( 1  0  0 -1 -1  0  0  0  0),
    Mod: ( 3 -1  0 -1 -1 -2 -1 -1 -1),
    Mod: ( 1 -1  0 -1  0  0  0  0  0),
    Mod: ( 4 -1 -1 -2 -2 -1 -1 -1 -2),
    Mod: ( 2  0  0  0 -1 -1 -1 -1 -1),
    Mod: ( 2  0 -1  0 -1 -1 -1 -1  0),
    Mod: ( 5 -2 -2 -1 -2 -1 -2 -2 -2),
    Mod: ( 4 -1 -2 -2 -1 -2 -1 -1 -1),
    Mod: ( 4 -2 -1 -2 -1 -1 -1 -1 -2),
    Mod: ( 6 -2 -2 -2 -3 -2 -2 -2 -2),
    Mod: ( 3 -1 -1 -1 -1  0 -1 -1 -2),
    Mod: ( 3  0 -2 -1 -1 -1 -1 -1 -1),
    Mod: ( 6 -3 -2 -2 -2 -2 -2 -2 -2),
    Mod: ( 2 -1 -1  0  0 -1 -1 -1  0),
    Mod: ( 2 -1  0  0 -1  0 -1 -1 -1),
    Mod: ( 3 -1 -2 -1  0 -1 -1 -1 -1),
    Mod: (0 0 0 0 0 1 0 0 0),
    Mod: ( 3 -1 -1 -1 -1 -2 -1 -1  0),
    Mod: ( 3 -2  0 -1 -1 -1 -1 -1 -1),
    Mod: ( 5 -1 -2 -1 -2 -2 -2 -2 -2),
    Mod: (0 1 0 0 0 0 0 0 0),
    Mod: ( 3 -1  0 -1 -2 -1 -1 -1 -1),
    Mod: ( 4 -1 -1 -2 -1 -2 -1 -1 -2),
    Mod: ( 3 -1 -2 -1 -1  0 -1 -1 -1),
    Mod: ( 5 -2 -2 -1 -1 -2 -2 -2 -2),
    Mod: ( 1  0  0 -1  0 -1  0  0  0),
    Mod: ( 3  0 -1 -1 -1 -1 -1 -1 -2),
    Mod: ( 4 -1 -2 -2 -2 -1 -1 -1 -1),
    Mod: ( 2 -1 -1  0 -1  0 -1 -1  0),
    Mod: ( 6 -2 -2 -2 -2 -3 -2 -2 -2),
    Mod: ( 4 -2 -2 -2 -1 -1 -1 -1 -1)
@}
Intersection Matrix:
[-1  1  1  2  0  1  1  0  2  2  1  1  1  1  1  2  2  0  0  1  1  1  0  0  2  2  1  2  1  1  1  3  1  0  1  0]
[ 1 -1  0  0  2  1  1  0  2  1  1  2  1  1  3  1  1  2  0  1  0  0  1  1  2  0  2  1  1  1  0  1  2  1  2  1]
[ 1  0 -1  0  2  2  0  1  2  0  1  1  2  1  2  1  2  1  0  0  1  1  1  0  1  1  1  1  2  0  1  1  3  1  1  2]
[ 2  0  0 -1  3  2  1  1  1  1  2  1  1  0  2  0  1  1  1  1  0  1  2  1  1  1  2  0  1  0  1  0  2  2  1  1]
[ 0  2  2  3 -1  0  1  1  1  1  0  1  1  2  0  2  1  1  1  1  2  1  0  1  1  1  0  2  1  2  1  2  0  0  1  1]
[ 1  1  2  2  0 -1  1  0  0  1  1  2  1  1  1  1  1  2  2  1  2  0  1  1  2  0  0  1  1  3  0  1  0  1  2  1]
[ 1  1  0  1  1  1 -1  1  1  0  1  2  1  1  1  2  2  1  1  1  2  2  0  0  1  1  0  0  3  1  0  1  2  2  0  2]
[ 0  0  1  1  1  0  1 -1  1  2  2  2  1  0  2  1  2  1  1  1  1  0  1  0  3  1  1  1  1  2  0  2  1  1  2  0]
[ 2  2  2  1  1  0  1  1 -1  1  2  1  1  0  0  0  1  1  3  1  2  1  2  1  1  1  0  0  1  2  1  0  0  2  1  1]
[ 2  1  0  1  1  1  0  2  1 -1  0  1  2  2  1  1  1  2  1  0  2  1  1  1  0  0  0  1  2  1  1  0  2  1  1  3]
[ 1  1  1  2  0  1  1  2  2  0 -1  1  1  3  1  2  0  2  0  1  1  1  0  2  0  0  1  2  1  1  1  1  1  0  1  2]
[ 1  2  1  1  1  2  2  2  1  1  1 -1  2  1  0  0  1  0  1  0  1  1  2  1  0  2  1  2  0  0  3  1  1  0  1  1]
[ 1  1  2  1  1  1  1  1  1  2  1  2 -1  1  1  2  0  1  1  3  0  2  0  2  1  1  2  0  1  1  0  1  0  2  0  0]
[ 1  1  1  0  2  1  1  0  0  2  3  1  1 -1  1  0  2  0  2  1  1  1  2  0  2  2  1  0  1  1  1  1  1  2  1  0]
[ 1  3  2  2  0  1  1  2  0  1  1  0  1  1 -1  1  1  0  2  1  2  2  1  1  0  2  0  1  1  1  2  1  0  1  0  1]
[ 2  1  1  0  2  1  2  1  0  1  2  0  2  0  1 -1  1  1  2  0  1  0  3  1  1  1  1  1  0  1  2  0  1  1  2  1]
[ 2  1  2  1  1  1  2  2  1  1  0  1  0  2  1  1 -1  2  1  2  0  1  1  3  0  0  2  1  0  1  1  0  0  1  1  1]
[ 0  2  1  1  1  2  1  1  1  2  2  0  1  0  0  1  2 -1  1  1  1  2  1  0  1  3  1  1  1  0  2  2  1  1  0  0]
[ 0  0  0  1  1  2  1  1  3  1  0  1  1  2  2  2  1  1 -1  1  0  1  0  1  1  1  2  2  1  0  1  2  2  0  1  1]
[ 1  1  0  1  1  1  1  1  1  0  1  0  3  1  1  0  2  1  1 -1  2  0  2  0  1  1  0  2  1  1  2  1  2  0  2  2]
[ 1  0  1  0  2  2  2  1  2  2  1  1  0  1  2  1  0  1  0  2 -1  1  1  2  1  1  3  1  0  0  1  1  1  1  1  0]
[ 1  0  1  1  1  0  2  0  1  1  1  1  2  1  2  0  1  2  1  0  1 -1  2  1  2  0  1  2  0  2  1  1  1  0  3  1]
[ 0  1  1  2  0  1  0  1  2  1  0  2  0  2  1  3  1  1  0  2  1  2 -1  1  1  1  1  1  2  1  0  2  1  1  0  1]
[ 0  1  0  1  1  1  0  0  1  1  2  1  2  0  1  1  3  0  1  0  2  1  1 -1  2  2  0  1  2  1  1  2  2  1  1  1]
[ 2  2  1  1  1  2  1  3  1  0  0  0  1  2  0  1  0  1  1  1  1  2  1  2 -1  1  1  1  1  0  2  0  1  1  0  2]
[ 2  0  1  1  1  0  1  1  1  0  0  2  1  2  2  1  0  3  1  1  1  0  1  2  1 -1  1  1  1  2  0  0  1  1  2  2]
[ 1  2  1  2  0  0  0  1  0  0  1  1  2  1  0  1  2  1  2  0  3  1  1  0  1  1 -1  1  2  2  1  1  1  1  1  2]
[ 2  1  1  0  2  1  0  1  0  1  2  2  0  0  1  1  1  1  2  2  1  2  1  1  1  1  1 -1  2  1  0  0  1  3  0  1]
[ 1  1  2  1  1  1  3  1  1  2  1  0  1  1  1  0  0  1  1  1  0  0  2  2  1  1  2  2 -1  1  2  1  0  0  2  0]
[ 1  1  0  0  2  3  1  2  2  1  1  0  1  1  1  1  1  0  0  1  0  2  1  1  0  2  2  1  1 -1  2  1  2  1  0  1]
[ 1  0  1  1  1  0  0  0  1  1  1  3  0  1  2  2  1  2  1  2  1  1  0  1  2  0  1  0  2  2 -1  1  1  2  1  1]
[ 3  1  1  0  2  1  1  2  0  0  1  1  1  1  1  0  0  2  2  1  1  1  2  2  0  0  1  0  1  1  1 -1  1  2  1  2]
[ 1  2  3  2  0  0  2  1  0  2  1  1  0  1  0  1  0  1  2  2  1  1  1  2  1  1  1  1  0  2  1  1 -1  1  1  0]
[ 0  1  1  2  0  1  2  1  2  1  0  0  2  2  1  1  1  1  0  0  1  0  1  1  1  1  1  3  0  1  2  2  1 -1  2  1]
[ 1  2  1  1  1  2  0  2  1  1  1  1  0  1  0  2  1  0  1  2  1  3  0  1  0  2  1  0  2  0  1  1  1  2 -1  1]
[ 0  1  2  1  1  1  2  0  1  3  2  1  0  0  1  1  1  0  1  2  0  1  1  1  2  2  2  1  0  1  1  2  0  1  1 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
    [ 7  3  3  2  3  0  2  2  3]
    [-3 -1 -1 -1 -1  0 -1 -1 -2]
    [-3 -1 -1 -1 -2  0 -1 -1 -1]
    [-2 -1 -1 -1 -1  0  0  0 -1]
    [-3 -1 -2 -1 -1  0 -1 -1 -1]
    [ 0  0  0  0  0  1  0  0  0]
    [-2 -1 -1  0 -1  0  0 -1 -1]
    [-2 -1 -1  0 -1  0 -1  0 -1]
    [-3 -2 -1 -1 -1  0 -1 -1 -1]