1.D6
order := 12,
length := 40,
subgroup := MatrixGroup(9, Integer Ring) of order 2^2 * 3
Generators:
[ 2 1 0 1 0 1 0 0 0]
[-1 0 0 -1 0 -1 0 0 0]
[ 0 0 0 0 1 0 0 0 0]
[-1 -1 0 -1 0 0 0 0 0]
[ 0 0 1 0 0 0 0 0 0]
[-1 -1 0 0 0 -1 0 0 0]
[ 0 0 0 0 0 0 1 0 0]
[ 0 0 0 0 0 0 0 1 0]
[ 0 0 0 0 0 0 0 0 1]
[ 2 1 1 0 1 0 0 0 0]
[-1 0 -1 0 -1 0 0 0 0]
[-1 -1 0 0 -1 0 0 0 0]
[-1 -1 -1 0 0 0 0 0 0]
[ 0 0 0 1 0 0 0 0 0]
[ 0 0 0 0 0 1 0 0 0]
[ 0 0 0 0 0 0 1 0 0]
[ 0 0 0 0 0 0 0 1 0]
[ 0 0 0 0 0 0 0 0 1]
[ 2 0 0 1 1 1 0 0 0]
[ 0 0 1 0 0 0 0 0 0]
[ 0 1 0 0 0 0 0 0 0]
[-1 0 0 0 -1 -1 0 0 0]
[-1 0 0 -1 0 -1 0 0 0]
[-1 0 0 -1 -1 0 0 0 0]
[ 0 0 0 0 0 0 1 0 0]
[ 0 0 0 0 0 0 0 1 0]
[ 0 0 0 0 0 0 0 0 1]>
Orbit type:{4,12}
Orbit:
1
{@
Mod: ( 1 -1 0 0 0 -1 0 0 0),
Mod: ( 1 0 -1 0 0 -1 0 0 0),
Mod: (0 0 0 0 0 1 0 0 0),
Mod: ( 1 0 0 -1 -1 0 0 0 0)
@}
Intersection Matrix:
[-1 0 1 1]
[ 0 -1 1 1]
[ 1 1 -1 0]
[ 1 1 0 -1]
Stabilizer Group Name:
C3
MatrixGroup(9, Integer Ring)
Generators:
[ 2 1 1 0 1 0 0 0 0]
[-1 0 -1 0 -1 0 0 0 0]
[-1 -1 0 0 -1 0 0 0 0]
[-1 -1 -1 0 0 0 0 0 0]
[ 0 0 0 1 0 0 0 0 0]
[ 0 0 0 0 0 1 0 0 0]
[ 0 0 0 0 0 0 1 0 0]
[ 0 0 0 0 0 0 0 1 0]
[ 0 0 0 0 0 0 0 0 1]
2
{@
Mod: ( 1 0 0 0 -1 -1 0 0 0),
Mod: ( 1 -1 0 -1 0 0 0 0 0),
Mod: (0 0 1 0 0 0 0 0 0),
Mod: ( 1 -1 0 0 -1 0 0 0 0),
Mod: ( 1 0 -1 -1 0 0 0 0 0),
Mod: ( 2 -1 -1 -1 -1 -1 0 0 0),
Mod: (0 0 0 1 0 0 0 0 0),
Mod: ( 1 0 0 -1 0 -1 0 0 0),
Mod: ( 1 0 -1 0 -1 0 0 0 0),
Mod: (0 1 0 0 0 0 0 0 0),
Mod: ( 1 -1 -1 0 0 0 0 0 0),
Mod: (0 0 0 0 1 0 0 0 0)
@}
Intersection Matrix:
[-1 1 0 0 1 0 0 0 0 0 1 1]
[ 1 -1 0 0 0 0 1 0 1 1 0 0]
[ 0 0 -1 0 1 1 0 0 1 0 1 0]
[ 0 0 0 -1 1 0 0 1 0 1 0 1]
[ 1 0 1 1 -1 0 1 0 0 0 0 0]
[ 0 0 1 0 0 -1 1 0 0 1 0 1]
[ 0 1 0 0 1 1 -1 1 0 0 0 0]
[ 0 0 0 1 0 0 1 -1 1 0 1 0]
[ 0 1 1 0 0 0 0 1 -1 0 0 1]
[ 0 1 0 1 0 1 0 0 0 -1 1 0]
[ 1 0 1 0 0 0 0 1 0 1 -1 0]
[ 1 0 0 1 0 1 0 0 1 0 0 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1
2.C3⋊C4
order := 12,
length := 40,
subgroup := MatrixGroup(9, Integer Ring) of order 2^2 * 3
Generators:
[ 2 0 1 1 0 1 0 0 0]
[ 0 0 0 0 1 0 0 0 0]
[-1 0 -1 -1 0 0 0 0 0]
[ 0 1 0 0 0 0 0 0 0]
[-1 0 -1 0 0 -1 0 0 0]
[-1 0 0 -1 0 -1 0 0 0]
[ 0 0 0 0 0 0 1 0 0]
[ 0 0 0 0 0 0 0 1 0]
[ 0 0 0 0 0 0 0 0 1]
[ 2 1 0 1 1 0 0 0 0]
[ 0 0 1 0 0 0 0 0 0]
[-1 0 0 -1 -1 0 0 0 0]
[-1 -1 0 0 -1 0 0 0 0]
[-1 -1 0 -1 0 0 0 0 0]
[ 0 0 0 0 0 1 0 0 0]
[ 0 0 0 0 0 0 1 0 0]
[ 0 0 0 0 0 0 0 1 0]
[ 0 0 0 0 0 0 0 0 1]
[ 2 1 1 0 0 1 0 0 0]
[-1 0 -1 0 0 -1 0 0 0]
[-1 -1 0 0 0 -1 0 0 0]
[ 0 0 0 0 1 0 0 0 0]
[ 0 0 0 1 0 0 0 0 0]
[-1 -1 -1 0 0 0 0 0 0]
[ 0 0 0 0 0 0 1 0 0]
[ 0 0 0 0 0 0 0 1 0]
[ 0 0 0 0 0 0 0 0 1]>
Orbit type:{4,12}
Orbit:
1
{@
Mod: ( 1 -1 -1 0 0 0 0 0 0),
Mod: (0 0 0 0 0 1 0 0 0),
Mod: ( 1 0 0 0 -1 -1 0 0 0),
Mod: ( 1 0 0 -1 0 -1 0 0 0)
@}
Intersection Matrix:
[-1 0 1 1]
[ 0 -1 1 1]
[ 1 1 -1 0]
[ 1 1 0 -1]
Stabilizer Group Name:
C3
MatrixGroup(9, Integer Ring)
Generators:
[ 2 1 0 1 1 0 0 0 0]
[ 0 0 1 0 0 0 0 0 0]
[-1 0 0 -1 -1 0 0 0 0]
[-1 -1 0 0 -1 0 0 0 0]
[-1 -1 0 -1 0 0 0 0 0]
[ 0 0 0 0 0 1 0 0 0]
[ 0 0 0 0 0 0 1 0 0]
[ 0 0 0 0 0 0 0 1 0]
[ 0 0 0 0 0 0 0 0 1]
2
{@
Mod: ( 1 -1 0 0 0 -1 0 0 0),
Mod: ( 1 -1 0 -1 0 0 0 0 0),
Mod: (0 0 1 0 0 0 0 0 0),
Mod: ( 1 -1 0 0 -1 0 0 0 0),
Mod: ( 1 0 -1 -1 0 0 0 0 0),
Mod: ( 2 -1 -1 -1 -1 -1 0 0 0),
Mod: (0 0 0 1 0 0 0 0 0),
Mod: ( 1 0 0 -1 -1 0 0 0 0),
Mod: ( 1 0 -1 0 0 -1 0 0 0),
Mod: ( 1 0 -1 0 -1 0 0 0 0),
Mod: (0 1 0 0 0 0 0 0 0),
Mod: (0 0 0 0 1 0 0 0 0)
@}
Intersection Matrix:
[-1 0 0 0 1 0 0 1 0 1 1 0]
[ 0 -1 0 0 0 0 1 0 1 1 1 0]
[ 0 0 -1 0 1 1 0 0 1 1 0 0]
[ 0 0 0 -1 1 0 0 0 1 0 1 1]
[ 1 0 1 1 -1 0 1 0 0 0 0 0]
[ 0 0 1 0 0 -1 1 0 0 0 1 1]
[ 0 1 0 0 1 1 -1 1 0 0 0 0]
[ 1 0 0 0 0 0 1 -1 1 0 0 1]
[ 0 1 1 1 0 0 0 1 -1 0 0 0]
[ 1 1 1 0 0 0 0 0 0 -1 0 1]
[ 1 1 0 1 0 1 0 0 0 0 -1 0]
[ 0 0 0 1 0 1 0 1 0 1 0 -1]
Stabilizer Group Name:
C1
MatrixGroup(9, Integer Ring) of order 1
3.C3⋊D4
order := 24,
length := 40,
subgroup := MatrixGroup(9, Integer Ring) of order 2^3 * 3
Generators:
[ 3 1 1 2 1 1 0 0 0]
[-1 -1 0 -1 0 0 0 0 0]
[-1 0 0 -1 -1 0 0 0 0]
[-2 -1 -1 -1 -1 -1 0 0 0]
[-1 0 -1 -1 0 0 0 0 0]
[-1 0 0 -1 0 -1 0 0 0]
[ 0 0 0 0 0 0 1 0 0]
[ 0 0 0 0 0 0 0 1 0]
[ 0 0 0 0 0 0 0 0 1]
[1 0 0 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0]
[0 0 0 1 0 0 0 0 0]
[0 1 0 0 0 0 0 0 0]
[0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 1]
[ 2 1 1 0 1 0 0 0 0]
[-1 0 -1 0 -1 0 0 0 0]
[-1 -1 0 0 -1 0 0 0 0]
[ 0 0 0 1 0 0 0 0 0]
[-1 -1 -1 0 0 0 0 0 0]
[ 0 0 0 0 0 1 0 0 0]
[ 0 0 0 0 0 0 1 0 0]
[ 0 0 0 0 0 0 0 1 0]
[ 0 0 0 0 0 0 0 0 1]
[ 2 1 1 0 1 0 0 0 0]
[-1 0 -1 0 -1 0 0 0 0]
[-1 -1 0 0 -1 0 0 0 0]
[ 0 0 0 0 0 1 0 0 0]
[-1 -1 -1 0 0 0 0 0 0]
[ 0 0 0 1 0 0 0 0 0]
[ 0 0 0 0 0 0 1 0 0]
[ 0 0 0 0 0 0 0 1 0]
[ 0 0 0 0 0 0 0 0 1]>
Orbit type:{4,12}
Orbit:
1
{@
Mod: ( 2 -1 -1 -1 -1 -1 0 0 0),
Mod: (0 0 0 0 0 1 0 0 0),
Mod: ( 1 0 0 -1 0 -1 0 0 0),
Mod: (0 0 0 1 0 0 0 0 0)
@}
Intersection Matrix:
[-1 1 0 1]
[ 1 -1 1 0]
[ 0 1 -1 1]
[ 1 0 1 -1]
Stabilizer Group Name:
C6
MatrixGroup(9, Integer Ring)
Generators:
[1 0 0 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0]
[0 0 0 1 0 0 0 0 0]
[0 1 0 0 0 0 0 0 0]
[0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 1]
[1 0 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0 0]
[0 0 0 0 0 1 0 0 0]
[0 0 0 0 1 0 0 0 0]
[0 0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 0 1]
2
{@
Mod: ( 1 0 0 0 -1 -1 0 0 0),
Mod: ( 1 -1 0 0 0 -1 0 0 0),
Mod: ( 1 -1 0 -1 0 0 0 0 0),
Mod: (0 0 1 0 0 0 0 0 0),
Mod: ( 1 0 -1 -1 0 0 0 0 0),
Mod: ( 1 -1 0 0 -1 0 0 0 0),
Mod: ( 1 0 0 -1 -1 0 0 0 0),
Mod: ( 1 0 -1 0 0 -1 0 0 0),
Mod: ( 1 0 -1 0 -1 0 0 0 0),
Mod: (0 1 0 0 0 0 0 0 0),
Mod: (0 0 0 0 1 0 0 0 0),
Mod: ( 1 -1 -1 0 0 0 0 0 0)
@}
Intersection Matrix:
[-1 0 1 0 1 0 0 0 0 0 1 1]
[ 0 -1 0 0 1 0 1 0 1 1 0 0]
[ 1 0 -1 0 0 0 0 1 1 1 0 0]
[ 0 0 0 -1 1 0 0 1 1 0 0 1]
[ 1 1 0 1 -1 1 0 0 0 0 0 0]
[ 0 0 0 0 1 -1 0 1 0 1 1 0]
[ 0 1 0 0 0 0 -1 1 0 0 1 1]
[ 0 0 1 1 0 1 1 -1 0 0 0 0]
[ 0 1 1 1 0 0 0 0 -1 0 1 0]
[ 0 1 1 0 0 1 0 0 0 -1 0 1]
[ 1 0 0 0 0 1 1 0 1 0 -1 0]
[ 1 0 0 1 0 0 1 0 0 1 0 -1]
Stabilizer Group Name:
C2
MatrixGroup(9, Integer Ring)
Generators:
[ 2 1 1 0 1 0 0 0 0]
[-1 0 -1 0 -1 0 0 0 0]
[-1 -1 0 0 -1 0 0 0 0]
[ 0 0 0 1 0 0 0 0 0]
[-1 -1 -1 0 0 0 0 0 0]
[ 0 0 0 0 0 1 0 0 0]
[ 0 0 0 0 0 0 1 0 0]
[ 0 0 0 0 0 0 0 1 0]
[ 0 0 0 0 0 0 0 0 1]