Extremal Sobolev Inequalities and Applications Valentino Tosatti

1 Sobolev Spaces

Definition 1.1 Let Ω be an open subset of \mathbb{R}^{n}, and fix a natural number k and a real $1 \leq p \leq \infty$. The Sobolev space $H_{k}^{p}(\Omega)$ is the space of all functions $u \in L^{p}(\Omega)$ such that all the weak derivatives of u of order $\leq k$ are in $L^{p}(\Omega)$.

If $u \in H_{k}^{p}(\Omega)$ we set

$$
\|u\|_{k, p}:=\sum_{0 \leq|\alpha| \leq k}\left(\int_{\Omega}\left|\nabla^{\alpha} u\right|^{p}\right)^{1 / p}
$$

then $H_{k}^{p}(\Omega)$ becomes a Banach space. If $p=2$ then it is also a Hilbert space, with the scalar product

$$
(u, v)_{k, 2}^{2}:=\sum_{0 \leq|\alpha| \leq k} \int_{\Omega} \nabla^{\alpha} u \nabla^{\alpha} v
$$

We will always write $\|u\|_{p}:=\|u\|_{0, p}$. It is also true that the Sobolev space $H_{k}^{p}(\Omega)$ is the completion of $\left\{u \in C^{\infty}(\Omega) \mid\|u\|_{k, p}<\infty\right\}$ with respect to the norm $\|\cdot\|_{k, p}$ (this was first proved by Meyers and Serrin [14]).

Proposition 1.2 The space $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ of smooth functions with compact support is dense in $H_{k}^{p}\left(\mathbb{R}^{n}\right)$.

Proof

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be any smooth function that is identically 1 for $t \leq 0$ and identically 0 for $t \geq 1$. Since $H_{k}^{p}\left(\mathbb{R}^{n}\right)$ is the completion of $C^{\infty}\left(\mathbb{R}^{n}\right)$, it is enough to show that every function $\varphi \in C^{\infty}\left(\mathbb{R}^{n}\right) \cap H_{k}^{p}\left(\mathbb{R}^{n}\right)$ can be approximated in $H_{k}^{p}\left(\mathbb{R}^{n}\right)$ by functions in $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$. Consider the sequence

$$
\varphi_{j}(x):=\varphi(x) f(|x|-j)
$$

We have that $\varphi_{j} \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$: in fact $|x|$ is not differentiable at $x=0$, but $f(t)$ is identically 1 for $t \leq 0$ so that φ_{j} is smooth for $j>0$. As $j \rightarrow \infty, \varphi_{j}(x) \rightarrow \varphi(x)$ for every $x \in \mathbb{R}^{n}$, and $\left|\varphi_{j}(x)\right| \leq|\varphi(x)|$ which belongs to $L^{p}\left(\mathbb{R}^{n}\right)$, so by Lebesgue dominated convergence theorem we have $\left\|\varphi_{j}-\varphi\right\|_{p} \rightarrow 0$.

For every fixed k and every multiindex α of length k we have $\nabla^{\alpha} \varphi_{j}(x) \rightarrow$ $\nabla^{\alpha} \varphi(x)$ as $j \rightarrow \infty$, and by induction

$$
\left|\nabla^{\alpha} \varphi_{j}(x)\right| \leq\left|\nabla^{\alpha} \varphi(x)\right|+C \sum_{0 \leq|l| \leq k-1}\left|\nabla^{l} \varphi(x)\right| \cdot\left|\nabla^{k-|l|} f_{j}(x)\right|
$$

for some constant C, where $f_{j}(x)=f(|x|-j)$. We note that $f^{(s)}(t)$ and $\left|\nabla^{s}\right| x|\mid$ are bounded for $s \geq 1$, so we get

$$
\left|\nabla^{\alpha} \varphi_{j}(x)\right| \leq\left|\nabla^{\alpha} \varphi(x)\right|+C^{\prime} \sum_{0 \leq|l| \leq k-1}\left|\nabla^{l} \varphi(x)\right| .
$$

But the right hand side above belongs to L^{p}, so again by Lebesgue dominated convergence, $\left\|\nabla^{\alpha}\left(\varphi_{j}-\varphi\right)\right\|_{p} \rightarrow 0$.

This is false for general domains $\Omega \subset \mathbb{R}^{n}$, and we denote by $H_{0}^{k, p}(\Omega)$ the closure of $C_{c}^{\infty}(\Omega)$ with respect to $\|\cdot\|_{k, p}$.

Now let (M, g) be a smooth Riemannian manifold of dimension n, connected and without boundary, and let $u: M \rightarrow \mathbb{R}$ be a smooth function. Then for k a natural number, we let $\nabla^{k} u$ be the k-th total covariant derivative of u and $\left|\nabla^{k} u\right|$ be its norm with respect to g. In a local chart this is

$$
\left|\nabla^{k} u\right|^{2}=g^{i_{1} j_{1}} \ldots g^{i_{k} j_{k}} \nabla_{i_{1}} \ldots \nabla_{i_{k}} u \nabla_{j_{1}} \ldots \nabla_{j_{k}} u .
$$

If $p \geq 1$ is a real number, we set

$$
\|u\|_{k, p}:=\sum_{j=0}^{k}\left(\int_{M}\left|\nabla^{j} u\right|^{p} d V\right)^{1 / p}
$$

Definition 1.3 The Sobolev space $H_{k}^{p}(M)$ is the completion of

$$
\left\{u \in C^{\infty}(M) \mid\|u\|_{k, p}<\infty\right\}
$$

with respect to the norm $\|\cdot\|_{k, p}$.
We have that $H_{k}^{p}(M)$ is Banach space and if $p=2$ then it is also a Hilbert space, with the scalar product

$$
(u, v)_{k, 2}^{2}:=\sum_{j=0}^{k} \int_{M}\left\langle\nabla^{j} u, \nabla^{j} v\right\rangle d V
$$

where $\langle\cdot, \cdot\rangle$ is the pairing induced by g. If M is compact and h is another Riemannian metric on M, then there is a constant $C>0$ such that

$$
\frac{1}{C} g \leq h \leq C g
$$

because this is true in every chart and we can cover M with finitely many charts. Also this is true for the covariant derivatives of g and h up to any finite order k. Then the Sobolev norms with respect to g and h are also equivalent, so they define the same Sobolev space. Hence we have proved the

Proposition 1.4 If M is compact then the Sobolev spaces $H_{k}^{p}(M)$ do not depend on the Riemannian metric.

By definition of Sobolev spaces we have that $C^{\infty}(M)$ is dense in $H_{k}^{p}(M)$, so we can ask when does this happen for $C_{c}^{\infty}(M)$. Of course if M is compact these two spaces coincide, but if M is just complete, in general $C_{c}^{\infty}(M)$ is NOT dense in $H_{k}^{p}(M)$. Nevertheless the following is true:

Proposition 1.5 If (M, g) is a complete Riemannian manifold, then $C_{c}^{\infty}(M)$ is dense in $H_{1}^{p}(M)$.

Proof

We notice that we cannot proceed like in Proposition 1.2 because in general the distance function $d(x, P)$ for a fixed $P \in M$ is only Lipschitz in x. So let's define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(t)=1$ for $t \leq 0, f(t)=1-t$ for $0 \leq t \leq 1$ and $f(t)=0$ for $t \geq 1$, so that f is Lipschitz and $\left|f^{\prime}\right| \leq 1$. It is enough to show that we can approximate any $\varphi \in C^{\infty}(M) \cap H_{1}^{p}(M)$ by smooth functions with compact support. Fix $P \in M$ and define

$$
\varphi_{j}(x):=\varphi(x) f(d(x, P)-j)
$$

Then each of the φ_{j} is Lipschitz, so by Rademacher's theorem is differentiable a.e., has compact support and so is bounded. But $\nabla \varphi_{j}$ is also bounded, because

$$
\left|\nabla \varphi_{j}(x)\right| \leq|\nabla \varphi(x)|+|\varphi(x)| \sup _{t \in[0,1]}\left|f^{\prime}(t)\right| \leq|\nabla \varphi(x)|+|\varphi(x)|
$$

where we have used that $|\nabla d|=1$ a.e. Hence all the φ_{j} belong to $H_{1}^{p}(M)$. Exactly like in the proof of Proposition 1.2 we can prove that $\varphi_{j} \rightarrow \varphi$ in $H_{1}^{p}(M)$. We now have to show that we can approximate each φ_{j}, but this is easy: by definition there are functions $\varphi_{j}^{k} \in C^{\infty}(M)$ that converge to φ_{j} in $H_{1}^{p}(M)$ as $k \rightarrow \infty$. Now pick $\alpha_{j} \in C_{c}^{\infty}(M)$ that is identically 1 on the support of φ_{j}; then we have that $\alpha_{j} \varphi_{j}^{k} \in C_{c}^{\infty}(M)$ converge to φ_{j} in $H_{1}^{p}(M)$, and we have finished.

2 The Sobolev Inequalities

2.1 The Euclidean case

We have the following fundamental
Theorem 2.1 (Sobolev Embedding) Assume $n \geq 2$, let k, l be two natural numbers, $k>l$, and p, q two real numbers $1 \leq q<p$ satisfying

$$
\frac{1}{p}=\frac{1}{q}-\frac{k-l}{n}
$$

Then

$$
H_{k}^{q}\left(\mathbb{R}^{n}\right) \subset H_{l}^{p}\left(\mathbb{R}^{n}\right)
$$

and the identity operator is continuous. If $n=1$ then for every natural numbers $k>l$ and p, q real numbers $1 \leq q \leq p \leq \infty$ we have a continuous embedding

$$
H_{k}^{q}(\mathbb{R}) \subset H_{l}^{p}(\mathbb{R}) .
$$

Proof

The proof consists of several steps. First assume $n \geq 2$.
Step 1 (Gagliardo-Nirenberg Inequality [10],[16]) We prove that every $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ we have

$$
\begin{equation*}
\|\varphi\|_{n /(n-1)} \leq \frac{1}{2} \prod_{i=1}^{n}\left\|\frac{\partial \varphi}{\partial x_{i}}\right\|_{1}^{1 / n} . \tag{2.1}
\end{equation*}
$$

Pick a point $P=\left(y_{1}, \ldots, y_{n}\right)$ in \mathbb{R}^{n}, call $D_{x_{i_{1}}, \ldots, x_{i_{j}}}$ the j-plane through P parallel to the one generated by the coordinated axes $x_{i_{1}}, \ldots, x_{i_{j}}$, so for example $D_{x_{1}, \ldots, x_{n}}=\mathbb{R}^{n}$. Since φ has compact support, we can apply the fundamental theorem of calculus to get

$$
\begin{gathered}
\varphi(P)=\int_{-\infty}^{y_{1}} \frac{\partial \varphi}{\partial x_{1}}\left(x_{1}, y_{2}, \ldots, y_{n}\right) d x_{1}=-\int_{y_{1}}^{+\infty} \frac{\partial \varphi}{\partial x_{1}}\left(x_{1}, y_{2}, \ldots, y_{n}\right) d x_{1} \\
|\varphi(P)| \leq \frac{1}{2} \int_{D_{x_{1}}}\left|\partial_{x_{1}} \varphi\right|\left(x_{1}, y_{2}, \ldots, y_{n}\right) d x_{1} .
\end{gathered}
$$

Doing the same for all the other coordinates, multiplying them all together and taking the $(n-1)$-th root we get

$$
|\varphi(P)|^{\frac{n}{n-1}} \leq \frac{1}{2^{n /(n-1)}}\left(\int_{D_{x_{1}}}\left|\partial_{x_{1}} \varphi\right| d x_{1} \cdots \int_{D_{x_{n}}}\left|\partial_{x_{n}} \varphi\right| d x_{n}\right)^{\frac{1}{n-1}}
$$

Now we integrate this inequality for $y_{1} \in \mathbb{R}$: the first integral does not depend on y_{1} so it can be taken out. Then we apply Hölder's inequality $n-2$ times to the remaining terms this way:

$$
\int_{\mathbb{R}} f_{1}^{\frac{1}{n-1}} \ldots f_{n-1}^{\frac{1}{n-1}} \leq\left(\int_{\mathbb{R}} f_{1}\right)^{\frac{1}{n-1}} \cdots\left(\int_{\mathbb{R}} f_{n-1}\right)^{\frac{1}{n-1}}
$$

We get

$$
\begin{aligned}
& \int_{D_{x_{1}}}\left|\varphi\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right|^{\frac{n}{n-1}} d y_{1} \leq \\
& \frac{1}{2^{n /(n-1)}}\left(\int_{D_{x_{1}}}\left|\partial_{x_{1}} \varphi\right|\left(x_{1}, y_{2}, \ldots, y_{n}\right) d x_{1} \int_{D_{x_{1}, x_{2}}}\left|\partial_{x_{2}} \varphi\right|\left(y_{1}, x_{2}, y_{3}, \ldots, y_{n}\right) d y_{1} d x_{2}\right. \\
& \left.\quad \ldots \int_{D_{x_{1}, x_{n}}}\left|\partial_{x_{n}} \varphi\right|\left(y_{1}, y_{2}, \ldots, x_{n}\right) d y_{1} d x_{n}\right)^{\frac{1}{n-1}} .
\end{aligned}
$$

Integration of y_{2}, \ldots, y_{n} over \mathbb{R} and the use of Hölder's inequality again, leads to

$$
\int_{\mathbb{R}^{n}}|\varphi|^{\frac{n}{n-1}} \leq \frac{1}{2^{n /(n-1)}}\left(\int_{\mathbb{R}^{n}}\left|\partial_{x_{1}} \varphi\right| \ldots \int_{\mathbb{R}^{n}}\left|\partial_{x_{n}} \varphi\right|\right)^{\frac{1}{n-1}}
$$

which is exactly (2.1).
Step 2 (Sobolev Inequality) We prove that there exists a constant $K(n, q)$ such that for every $\varphi \in H_{1}^{q}\left(\mathbb{R}^{n}\right)$ we have

$$
\begin{equation*}
\|\varphi\|_{p} \leq K(n, q)\|\nabla \varphi\|_{q}, \tag{2.2}
\end{equation*}
$$

where $\frac{1}{p}=\frac{1}{q}-\frac{1}{n}$, and $1 \leq q<n$.
By Proposition 1.2 it is enough to prove (2.2) for $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$. First of all for every i we have $\left|\partial \varphi / \partial x_{i}\right| \leq|\nabla \varphi|$ so by (2.1)

$$
\|\varphi\|_{n /(n-1)} \leq \frac{1}{2}\|\nabla \varphi\|_{1} .
$$

This gives us the Sobolev inequality for $q=1$. Now let $1<q<n$, $p=n q /(n-q)$, and set $u:=|\varphi|^{p(n-1) / n}$. Then, using (2.1) and Hölder's inequality we get

$$
\begin{aligned}
& \left(\int_{\mathbb{R}^{n}}|\varphi|^{p}\right)^{(n-1) / n}=\left(\int_{\mathbb{R}^{n}}|u|^{n /(n-1)}\right)^{(n-1) / n} \leq \frac{1}{2} \int_{\mathbb{R}^{n}}|\nabla u| \\
& \quad=p \frac{n-1}{2 n} \int_{\mathbb{R}^{n}}|\varphi|^{p^{\prime}}|\nabla \varphi| \leq p \frac{n-1}{2 n}\left(\int_{\mathbb{R}^{n}}|\varphi|^{p^{\prime} q^{\prime}}\right)^{1 / q^{\prime}}\left(\int_{\mathbb{R}^{n}}|\nabla \varphi|^{q}\right)^{1 / q},
\end{aligned}
$$

where $\frac{1}{q}+\frac{1}{q^{\prime}}=1, p^{\prime}=(p(n-1) / n)-1$. So

$$
\begin{gathered}
\frac{1}{q^{\prime}}=1-\frac{1}{q}=1-\frac{1}{p}-\frac{1}{n}=\frac{p n-n-p}{p n} \\
p^{\prime}=\frac{p n-n-p}{n}
\end{gathered}
$$

hence $p^{\prime} q^{\prime}=p$ and we get

$$
\|\varphi\|_{p}^{p(n-1) / n} \leq p \frac{n-1}{2 n}\|\varphi\|_{p}^{p / q^{\prime}}\|\nabla \varphi\|_{q}
$$

so dividing by $\|\varphi\|_{p}^{p / q^{\prime}}$ and computing

$$
\frac{p}{q^{\prime}}=\frac{p n-n-p}{n}=(p(n-1) / n)-1
$$

we get finally

$$
\|\varphi\|_{p} \leq p \frac{n-1}{2 n}\|\nabla \varphi\|_{q}
$$

which is (2.2).
Now (2.2) tells us that we have a continuous embedding

$$
H_{1}^{q}\left(\mathbb{R}^{n}\right) \subset L^{p}\left(\mathbb{R}^{n}\right)=H_{0}^{p}\left(\mathbb{R}^{n}\right)
$$

where $1 \leq q<n, \frac{1}{p}=\frac{1}{q}-\frac{1}{n}$. So we have proved the Sobolev embedding in the case $k=1$.

Step 3 We prove that if the Sobolev embedding holds for any $1 \leq$ $q<n$ and $k=1$ then it holds for any k, so that if $1 \leq q<p_{l}$ and $1 / p_{l}=1 / q-(k-l) / n$ then $H_{k}^{q}\left(\mathbb{R}^{n}\right)$ is continuously embedded in $H_{l}^{p_{l}}\left(\mathbb{R}^{n}\right)$.

By definition of Sobolev spaces it is enough to prove that there is a constant $C>0$ such that for every $\varphi \in C^{\infty}\left(\mathbb{R}^{n}\right) \cap H_{k}^{q}\left(\mathbb{R}^{n}\right)$ we have

$$
\|\varphi\|_{l, p_{l}} \leq C\|\varphi\|_{k, q} .
$$

Notice that here we don't need φ to have compact support, so this step will work also for complete Riemannian manifolds. The first step is Kato's inequality: for every smooth function ψ and every multiindex r we have

$$
|\nabla| \nabla^{r} \psi| | \leq\left|\nabla^{r+1} \psi\right|
$$

where $\left|\nabla^{r} \psi\right| \neq 0$. This is true in more generality: if $E \rightarrow M$ is a vector bundle over a Riemannian manifold M, with metric and compatible connection ∇, and if ξ is a section of E then

$$
|d| \xi||\leq|\nabla \xi|
$$

where $\xi \neq 0$. The proof is very simple:

$$
2|d| \xi\left|\left||\xi|=\left|d\left(|\xi|^{2}\right)\right|=2\right|\langle\nabla \xi, \xi\rangle\right| \leq 2|\nabla \xi||\xi| .
$$

Now that we have Kato's inequality, since $H_{1}^{q}\left(\mathbb{R}^{n}\right) \subset L^{p}\left(\mathbb{R}^{n}\right)$ there is a constant A such that for all $\psi \in H_{1}^{q}\left(\mathbb{R}^{n}\right)$ we have

$$
\|\psi\|_{p} \leq A\left(\|\nabla \psi\|_{q}+\|\psi\|_{q}\right)
$$

Apply this to $\psi=\left|\nabla^{r} \varphi\right|$ with $r=k-1, k-2, \ldots, 0$ which all belong to $H_{1}^{q}\left(\mathbb{R}^{n}\right)$, and get

$$
\left\|\nabla^{r} \varphi\right\|_{p} \leq A\left(\left\|\nabla\left|\nabla^{r} \varphi\right|\right\|_{q}+\left\|\nabla^{r} \varphi\right\|_{q}\right) \leq A\left(\left\|\nabla^{r+1} \varphi\right\|_{q}+\left\|\nabla^{r} \varphi\right\|_{q}\right),
$$

where we have also used Kato's inequality. Now add all these k inequalities and get

$$
\|\varphi\|_{k-1, p} \leq 2 A\|\varphi\|_{k, q} .
$$

By definition we have $p=p_{k-1}$. We have just shown that we have a continuous inclusion $H_{k}^{q}\left(\mathbb{R}^{n}\right) \subset H_{k-1}^{p_{k-1}}\left(\mathbb{R}^{n}\right)$. Now iterate the reasoning above to get a chain of continuous inclusions

$$
H_{k}^{q}\left(\mathbb{R}^{n}\right) \subset H_{k-1}^{p_{k-1}}\left(\mathbb{R}^{n}\right) \subset H_{k-2}^{p_{k-2}}\left(\mathbb{R}^{n}\right) \subset \cdots \subset H_{k-(k-l)}^{p_{k-(k-l)}}\left(\mathbb{R}^{n}\right)=H_{l}^{p_{l}}\left(\mathbb{R}^{n}\right)
$$

Step 4 Now assume $n=1$. Exactly as in step 1 , for every $\varphi \in C_{c}^{\infty}(\mathbb{R})$ and for every $x \in \mathbb{R}$ we have

$$
|\varphi(x)| \leq \frac{1}{2} \int_{\mathbb{R}}\left|\frac{\partial \varphi}{\partial y}\right| d y
$$

This immediately implies that

$$
H_{1}^{1}(\mathbb{R}) \subset L^{\infty}(\mathbb{R})
$$

Now assume that $\varphi \in C_{c}^{\infty}(\mathbb{R})$ and $p \geq 1$. By the Markov inequality

$$
\operatorname{Vol}(\{x \mid \varphi(x) \geq 1\}) \leq\|\varphi\|_{1}<\infty
$$

SO

$$
\begin{gathered}
\int_{\mathbb{R}}|\varphi|^{p}=\int_{\{\varphi \geq 1\}}|\varphi|^{p}+\int_{\{\varphi<1\}}|\varphi|^{p} \leq\left(\sup _{\mathbb{R}}|\varphi|\right)^{p}\|\varphi\|_{1}+\int_{\mathbb{R}}|\varphi|, \\
\|\varphi\|_{p} \leq \frac{1}{2}\|\nabla \varphi\|_{1}\|\varphi\|_{1}^{\frac{1}{p}}+\|\varphi\|_{1}^{\frac{1}{p}}
\end{gathered}
$$

hence

$$
H_{1}^{1}(\mathbb{R}) \subset L^{p}(\mathbb{R})
$$

Now let $q>1, \varphi \in C_{c}^{\infty}(\mathbb{R})$ and set $u=|\varphi|^{q}$. Then

$$
|\varphi|^{q}=u \leq \frac{1}{2} \int_{\mathbb{R}}|\nabla u|=\frac{q}{2} \int_{\mathbb{R}}|\varphi|^{q-1}|\nabla \varphi| \leq \frac{q}{2}\left(\int_{\mathbb{R}}|\varphi|^{(q-1) q^{\prime}}\right)^{\frac{1}{q^{\prime}}}\left(\int_{\mathbb{R}}|\nabla \varphi|^{q}\right)^{\frac{1}{q}}
$$

where $\frac{1}{q}+\frac{1}{q^{\prime}}=1$. Then $(q-1) q^{\prime}=q$, so

$$
|\varphi|^{q} \leq \frac{q}{2}\|\varphi\|_{q}^{q-1}\|\nabla \varphi\|_{q}
$$

hence

$$
H_{1}^{q}(\mathbb{R}) \subset L^{\infty}(\mathbb{R})
$$

and if $p \geq q$ we proceed as above using Markov inequality to get

$$
H_{1}^{q}(\mathbb{R}) \subset L^{p}(\mathbb{R})
$$

The last step when $k>l>0$ follows exactly as in step 3 .

2.2 The compact manifold case

Theorem 2.2 (Sobolev Embedding) Let M be a compact Riemannian manifold of dimension n. Let k, l be two natural numbers, $k>l$, and p, q two real numbers $1 \leq q<p$ satisfying

$$
\frac{1}{p}=\frac{1}{q}-\frac{k-l}{n} .
$$

Then

$$
H_{k}^{q}(M) \subset H_{l}^{p}(M)
$$

and the identity operator is continuous.

Proof

Since the proof of the Step 3 of the Sobolev embedding on \mathbb{R}^{n} carries on word by word to this context, it is enough to prove that we have a continuous embedding

$$
H_{1}^{q}(M) \subset L^{p}(M)=H_{0}^{p}(M)
$$

where $1 \leq q<n, \frac{1}{p}=\frac{1}{q}-\frac{1}{n}$, and so it is enough to prove an inequality of the form

$$
\begin{equation*}
\|\varphi\|_{p} \leq C\left(\|\nabla \varphi\|_{q}+\|\varphi\|_{q}\right) \tag{2.3}
\end{equation*}
$$

for every $\varphi \in C^{\infty}(M)$. Let $\left(\Omega_{i}, \eta_{i}\right)_{1 \leq i \leq N}$ be a finite cover of M with coordinate charts such that for all $1 \leq m \leq N$

$$
\frac{1}{2} \delta_{i j} \leq g_{i j}^{m} \leq 2 \delta_{i j},
$$

where $g_{i j}^{m}$ are the components of g in the chart Ω_{m}. Let $\left\{\alpha_{i}\right\}$ be a partition of unity subordinate to this covering. If we prove that there is a constant C such that

$$
\begin{equation*}
\left\|\alpha_{i} \varphi\right\|_{p} \leq C\left(\left\|\nabla\left(\alpha_{i} \varphi\right)\right\|_{q}+\left\|\alpha_{i} \varphi\right\|_{q}\right) \tag{2.4}
\end{equation*}
$$

then since $\left|\nabla\left(\alpha_{i} \varphi\right)\right| \leq|\nabla \varphi|+|\varphi| \cdot\left|\nabla \alpha_{i}\right|$, we'd get
$\|\varphi\|_{p}=\left\|\sum_{i=1}^{N} \alpha_{i} \varphi\right\|_{p} \leq \sum_{i=1}^{N}\left\|\alpha_{i} \varphi\right\|_{p} \leq C N\left(\|\nabla \varphi\|_{q}+\left(1+\max _{i} \sup _{M}\left|\nabla \alpha_{i}\right|\right)\|\varphi\|_{q}\right)$,
which is of the form (2.3). So we have to prove (2.4). On the compact set $K_{i}=\operatorname{supp} \alpha_{i} \subset \Omega_{i}$ the metric tensor and all its derivatives of all orders are bounded, in the coordinates η_{i}. So we get

$$
\varphi \in H_{1}^{q}(M) \Longleftrightarrow\left(\alpha_{i} \varphi \in H_{1}^{q}(M), \forall i\right) \Longleftrightarrow\left(\alpha_{i} \varphi \circ \eta_{i}^{-1} \in H_{1}^{q}\left(\mathbb{R}^{n}\right), \forall i\right),
$$

where we defined $\alpha_{i} \varphi \circ \eta_{i}^{-1}$ to be zero outside $\eta_{i}\left(K_{i}\right)$. Then we have

$$
\left(\int_{M}\left|\alpha_{i} \varphi\right|^{p} d V\right)^{1 / p} \leq 2^{n / 2}\left(\int_{\mathbb{R}^{n}}\left|\alpha_{i} \varphi \circ \eta_{i}^{-1}(x)\right|^{p} d x\right)^{1 / p}
$$

$$
\left(\int_{M}\left|\nabla\left(\alpha_{i} \varphi\right)\right|^{q} d V\right)^{1 / q} \geq 2^{-(n+1) / 2}\left(\int_{\mathbb{R}^{n}}\left|\nabla\left(\alpha_{i} \varphi \circ \eta_{i}^{-1}\right)(x)\right|^{q} d x\right)^{1 / q}
$$

Now Theorem 2.1 tells us that there is a constant $C>0$ such that

$$
\left(\int_{\mathbb{R}^{n}}\left|\alpha_{i} \varphi \circ \eta_{i}^{-1}(x)\right|^{p} d x\right)^{1 / p} \leq C\left(\int_{\mathbb{R}^{n}}\left|\nabla\left(\alpha_{i} \varphi \circ \eta_{i}^{-1}\right)(x)\right|^{q} d x\right)^{1 / q}
$$

and putting together these 3 inequalities we get (2.4). This finishes the proof.

2.3 The best constants

Theorem 2.3 (Aubin, Talenti [2],[20]) The best constant in the Sobolev inequality (2.2) on \mathbb{R}^{n} is

$$
K(n, q)=\frac{1}{n}\left(\frac{n(q-1)}{n-q}\right)^{1-\frac{1}{q}}\left(\frac{\Gamma(n+1)}{\Gamma(n / q) \Gamma(n+1-n / q) \omega_{n-1}}\right)^{\frac{1}{n}}
$$

for $q>1$, and

$$
K(n, 1)=\frac{1}{n}\left(\frac{n}{\omega_{n-1}}\right)^{\frac{1}{n}}
$$

Recall that $\Gamma(1)=1, \Gamma(1 / 2)=\sqrt{\pi}, \Gamma(x+1)=x \Gamma(x), \Gamma(n)=(n-1)$! and

$$
\omega_{n-1}=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)} .
$$

In particular we get

$$
\begin{gathered}
\omega_{2 n}=\frac{(4 \pi)^{n}(n-1)!}{(2 n-1)!} \\
\omega_{2 n+1}=\frac{2 \pi^{n+1}}{n!} .
\end{gathered}
$$

3 The Logarithmic Sobolev Inequalities

Theorem 3.1 ([6]) If $f \in H_{1}^{2}\left(\mathbb{R}^{n}\right)$ with $\|f\|_{2}=1,|f|>0$ a.e., then

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|f|^{2} \log |f| \leq \frac{n}{4} \log \left(\frac{2}{\pi e n} \int_{\mathbb{R}^{n}}|\nabla f|^{2}\right) . \tag{3.1}
\end{equation*}
$$

Proof
We set $p=\frac{2 n}{n-2}$ and apply the Sobolev inequality to get

$$
\left(\int_{\mathbb{R}^{n}}|f|^{p}\right)^{2 / p} \leq K(n, 2)^{2} \int_{\mathbb{R}^{n}}|\nabla f|^{2} .
$$

Using Jensen's inequality we get

$$
\log \int_{\mathbb{R}^{n}}|f|^{p} \geq(p-2) \int_{\mathbb{R}^{n}}|f|^{2} \log |f|
$$

and putting together these two inequalities we get

$$
(p-2) \int_{\mathbb{R}^{n}}|f|^{2} \log |f| \leq \frac{p}{2} \log \left(K(n, 2)^{2} \int_{\mathbb{R}^{n}}|\nabla f|^{2}\right)
$$

Since $\frac{p}{2(p-2)}=\frac{n}{4}$ we get

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|f|^{2} \log |f| \leq \frac{n}{4} \log \left(K(n, 2)^{2} \int_{\mathbb{R}^{n}}|\nabla f|^{2}\right) \tag{3.2}
\end{equation*}
$$

This is almost what we want to prove, but we want a better constant. To achieve this we have to let n go to infinity. First we compute the asymptotic behaviour of $K(n, 2)^{2}$ for n big. By Theorem 2.3 we have that

$$
\begin{aligned}
K(n, 2)^{2}=\frac{1}{n^{2}} & \left(\frac{n}{n-2}\right)\left(\frac{\Gamma(n+1)}{\Gamma(n / 2) \Gamma(n / 2+1) \omega_{n-1}}\right)^{\frac{2}{n}} \\
& =\frac{1}{n(n-2)}\left(\frac{2 \Gamma(n)}{\Gamma(n / 2)^{2} \omega_{n-1}}\right)^{\frac{2}{n}}=\frac{1}{\pi n(n-2)}\left(\frac{\Gamma(n)}{\Gamma(n / 2)}\right)^{\frac{2}{n}}
\end{aligned}
$$

and by Stirling's formula we have

$$
\left(\frac{\Gamma(n)}{\Gamma(n / 2)}\right)^{\frac{2}{n}} \sim 2 n e^{-1}
$$

so

$$
K(n, 2)^{2} \sim \frac{2}{\pi e n}
$$

Now we use this asymptotic behaviour in the following way: set $m=n l$ with $l \geq 0$, and for $x \in \mathbb{R}^{m}$ set $F(x)=\prod_{k=1}^{l} f\left(x_{k}\right)$ where each x_{k} is in \mathbb{R}^{n}. Since $\|f\|_{2}=1$ we have $\|F\|_{2}=1$ so we can apply inequality (3.2) to F and get

$$
l \int_{\mathbb{R}^{n}}|f|^{2} \log |f| \leq \frac{n l}{4} \log \left(l K(n l, 2)^{2} \int_{\mathbb{R}^{n}}|\nabla f|^{2}\right)
$$

Now we let $l \rightarrow \infty$, and we have $l K(n l, 2)^{2} \rightarrow \frac{2}{\pi e n}$, so we have proved (3.1).

Define the Gaussian measure on \mathbb{R}^{n} by $d \mu=(2 \pi)^{-\frac{n}{2}} e^{-\frac{|x|^{2}}{2}} d x$. Then we have the following

Theorem 3.2 (Gross [11]) If $g \in H_{1}^{2}\left(\mathbb{R}^{n}, d \mu\right), \int_{\mathbb{R}^{n}}|g|^{2} d \mu=1,|g|>0$ a.e. then

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|g|^{2} \log |g| d \mu \leq \int_{\mathbb{R}^{n}}|\nabla g|^{2} d \mu \tag{3.3}
\end{equation*}
$$

Proof

We will show that (3.3) is actually equivalent to (3.1). First of all set $f(x)=(2 \pi)^{-\frac{n}{4}} e^{-\frac{|x|^{2}}{4}} g(x)$, so that $\|f\|_{2}=\int_{\mathbb{R}^{n}}|g|^{2} d \mu=1$. Now compute

$$
\begin{gathered}
\nabla g=(2 \pi)^{\frac{n}{4}} e^{\frac{|x|^{2}}{4}}\left(\nabla f+\frac{f \cdot x}{2}\right) \\
|\nabla g|^{2}=(2 \pi)^{\frac{n}{2}} e^{\frac{|x|^{2}}{2}}\left(|\nabla f|^{2}+\frac{|f|^{2}|x|^{2}}{4}+f \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} x^{i}\right),
\end{gathered}
$$

and using integration by parts

$$
\sum_{i=1}^{n} \int_{\mathbb{R}^{n}} f \frac{\partial f}{\partial x^{i}} x^{i}=-\sum_{i=1}^{n} \int_{\mathbb{R}^{n}} f \frac{\partial f}{\partial x^{i}} x^{i}-\sum_{i=1}^{n} \int_{\mathbb{R}^{n}}|f|^{2}
$$

so $\sum_{i=1}^{n} \int_{\mathbb{R}^{n}} f \frac{\partial f}{\partial x^{i}} x^{i}=-\frac{n}{2}$. Substituting into (3.3) we get

$$
\int_{\mathbb{R}^{n}}|f|^{2}\left(\log |f|+\frac{n}{4} \log (2 \pi)+\log \left(e^{\frac{|x|^{2}}{4}}\right)\right) \leq-\frac{n}{2}+\int_{\mathbb{R}^{n}}\left(|\nabla f|^{2}+\frac{|f|^{2}|x|^{2}}{4}\right)
$$

which simplifies to

$$
\int_{\mathbb{R}^{n}}|f|^{2} \log |f|+\frac{n}{4} \log \left(2 \pi e^{2}\right) \leq \int_{\mathbb{R}^{n}}|\nabla f|^{2}
$$

Now fix $\delta>0$ and change $f(x)$ with $\delta^{\frac{n}{2}} f(\delta x)$ in this last inequality, to get

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|f|^{2} \log |f|+\frac{n}{4} \log \left(2 \pi e^{2}\right) \leq \delta^{2} \int_{\mathbb{R}^{n}}|\nabla f|^{2}-\frac{n}{2} \log \delta \tag{3.4}
\end{equation*}
$$

We have just shown that (3.3) is equivalent to (3.4) for all $\delta>0$. But the right hand side of (3.4) achieves its minimum for

$$
\delta_{\min }=\sqrt{\frac{n}{4 \int_{\mathbb{R}^{n}}|\nabla f|^{2}}},
$$

so having (3.4) for all $\delta>0$ is equivalent to having (3.4) for $\delta_{\min }$, which is

$$
\int_{\mathbb{R}^{n}}|f|^{2} \log |f|+\frac{n}{4} \log \left(2 \pi e^{2}\right) \leq \frac{n}{4}-\frac{n}{4} \log \left(\frac{n}{4 \int_{\mathbb{R}^{n}}|\nabla f|^{2}}\right)
$$

and this is precisely (3.1).
Notice that the constant of the Gross logarithmic Sobolev inequality does not depend on n.

4 The Moser-Trudinger Inequality

Let D be a bounded domain in \mathbb{R}^{n}. Then, using Hölder's inequality, for every $q \in[1, n)$ we have a continuous embedding

$$
H_{1}^{n}(D) \subset H_{1}^{q}(D)
$$

and now by Sobolev embedding, we have

$$
H_{1}^{q}(D) \subset L^{p}(D)
$$

where $\frac{1}{p}=\frac{1}{q}-\frac{1}{n}$. Since q is arbitrarily close to n we get continuous embeddings

$$
H_{1}^{n}(D) \subset L^{p}(D)
$$

for all $p \in[1, \infty)$. The point is that we don't get an embedding into $L^{\infty}(D)$ as the following example shows. Let $D=\left\{x \in \mathbb{R}^{2}|0<|x|<1 / e\}\right.$ and define $f: D \rightarrow \mathbb{R}$ by $f(x)=\log |\log | x| |$. Then $|f|^{2}$ is integrable and

$$
\|\nabla f\|_{2}^{2}=2 \pi \int_{0}^{1 / e} \frac{d r}{r|\log r|^{2}}=2 \pi
$$

so that $f \in H_{1}^{2}(D)$, but f is not bounded on D. On the other hand

$$
\left\|e^{f}\right\|_{1}=2 \pi \int_{0}^{1 / e} r|\log r| d r<\infty
$$

This is a general phenomenon as we will soon see.
Theorem 4.1 (Trudinger [22]) Let D be a bounded domain in \mathbb{R}^{n}. Then there exist constants $C, \alpha>0$, with C depending only on n, such that every $\varphi \in H_{0}^{1, n}(D)$ with $\|\nabla \varphi\|_{n} \leq 1$ satisfies

$$
\begin{equation*}
\int_{D} e^{\alpha|\varphi|^{n /(n-1)}} \leq C \operatorname{Vol}(D) \tag{4.1}
\end{equation*}
$$

Proof

First assume that $\varphi \in C_{c}^{\infty}(D)$. Fix $x \in D$ and use polar coordinates (r, θ) centered at x. Let $y \in \mathbb{R}^{n}, r=|x-y|$, and write

$$
\begin{gathered}
\varphi(x)=-\int_{0}^{\infty} \frac{\partial \varphi(r, \theta)}{\partial r} d r=-\int_{0}^{\infty}|x-y|^{1-n} \frac{\partial \varphi}{\partial r} r^{n-1} d r \\
|\varphi(x)| \leq \int_{0}^{\infty}|x-y|^{1-n}|\nabla \varphi| r^{n-1} d r
\end{gathered}
$$

and integrate over S^{n-1} to get

$$
|\varphi(x)| \leq \frac{1}{\omega_{n-1}} \int_{D}|x-y|^{1-n}|\nabla \varphi(y)| d y
$$

By density this holds for every $\varphi \in H_{0}^{1, n}(D)$ and a.e. $x \in D$. Now fix $p \geq n$ and set $1 / k=1 / p-1 / n+1$, so that $k \geq 1, f(x, y):=|x-y|^{1-n}$, $g(y):=|\nabla \varphi(y)|$ and write

$$
f g=\left(f^{k} g^{n}\right)^{\frac{1}{p}}\left(f^{k}\right)^{\frac{1}{k}-\frac{1}{p}}\left(g^{n}\right)^{\frac{1}{n}-\frac{1}{p}}
$$

Since $1 / p+(1 / k-1 / p)+(1 / n-1 / p)=1$ we can apply Hölder's inequality to get
$\int_{D} f(x, y) g(y) d y \leq\left(\int_{D} f^{k}(x, y) g^{n}(y) d y\right)^{\frac{1}{p}}\left(\int_{D} f^{k}(x, y) d y\right)^{\frac{1}{k}-\frac{1}{p}}\left(\int_{D} g^{n}(y) d y\right)^{\frac{1}{n}-\frac{1}{p}}$.
From this we get

$$
\begin{aligned}
& \|\varphi\|_{p}=\left(\int_{D}|\varphi(x)|^{p} d x\right)^{\frac{1}{p}} \leq \frac{1}{\omega_{n-1}}\left(\int_{D}\left(\int_{D} f(x, y) g(y) d y\right)^{p} d x\right)^{\frac{1}{p}} \\
\leq & \frac{1}{\omega_{n-1}}\left(\int_{D}\left(\int_{D} f^{k}(x, y) g^{n}(y) d y\right)\left(\int_{D} f^{k}(x, y) d y\right)^{\frac{p}{k}-1} d x\right)^{\frac{1}{p}}\left(\int_{D} g^{n}(y) d y\right)^{\frac{1}{n}-\frac{1}{p}} \\
\leq & \frac{1}{\omega_{n-1}} \sup _{x \in D}\left(\int_{D} f^{k}(x, y) d y\right)^{\frac{1}{k}-\frac{1}{p}}\left(\int_{D} \int_{D} f^{k}(x, y) g^{n}(y) d y d x\right)^{\frac{1}{p}}\left(\int_{D} g^{n}(y) d y\right)^{\frac{1}{n}-\frac{1}{p}} \\
& \leq \frac{1}{\omega_{n-1}} \sup _{x \in D}\left(\int_{D} f^{k}(x, y) d y\right)^{\frac{1}{k}}\left(\int_{D} g^{n}(y) d y\right)^{\frac{1}{p}}\left(\int_{D} g^{n}(y) d y\right)^{\frac{1}{n}-\frac{1}{p}} \\
= & \frac{1}{\omega_{n-1}} \sup _{x \in D}\left(\int_{D} f^{k}(x, y) d y\right)^{\frac{1}{k}}\|\nabla \varphi\|_{n}=\frac{1}{\omega_{n-1}} \sup _{x \in D}\left(\int_{D}|x-y|^{k(1-n)} d y\right)^{\frac{1}{k}}\|\nabla \varphi\|_{n} .
\end{aligned}
$$

Let B be the ball with center x and the same volume as D, say that its radius is R. Then by spherical symmetrization we have that

$$
\left(\int_{D}|x-y|^{k(1-n)} d y\right)^{\frac{1}{k}} \leq\left(\int_{B}|x-y|^{k(1-n)} d y\right)^{\frac{1}{k}}
$$

and the last term is independent of x, so that we have

$$
\begin{aligned}
\sup _{x \in D}\left(\int_{D}|x-y|^{k(1-n)} d y\right)^{\frac{1}{k}} & \leq \omega_{n-1}^{1 / k}\left(\int_{0}^{R} r^{(k-1)(1-n)} d r\right)^{\frac{1}{k}}=\omega_{n-1}^{1 / k}\left(\frac{R^{k+n-k n}}{k+n-k n}\right)^{\frac{1}{k}} \\
& =\omega_{n-1}^{1 / k} R^{\frac{k+n-k n}{k}} \frac{1}{(k+n-k n)^{1 / k}}
\end{aligned}
$$

Now

$$
\frac{1}{(k+n-k n)^{1 / k}}=\left(\frac{p+1-p / n}{n}\right)^{\frac{n-1}{n}+\frac{1}{p}} \leq C p^{\frac{n-1}{n}}
$$

where $C>0$ only depends on n, so putting all together

$$
\|\varphi\|_{p} \leq C\|\nabla \varphi\|_{n} p^{\frac{n-1}{n}} R^{\frac{k+n-k n}{k}}
$$

Notice that

$$
\|\varphi\|_{p}^{p} \leq C^{p}\|\nabla \varphi\|_{n}^{p} p^{\frac{p(n-1)}{n}} R^{n} \leq C^{p}\|\nabla \varphi\|_{n}^{p} p^{\frac{p(n-1)}{n}} \operatorname{Vol}(D)
$$

for $p \geq n$. By changing the constant we may assume that we have such an inequality also for $p=\frac{k n}{n-1}, 1 \leq k \leq n-1$. Then

$$
\begin{gathered}
\int_{D} e^{\alpha|\varphi|^{n /(n-1)}}=\sum_{p=0}^{\infty} \frac{\alpha^{p}}{p!} \int_{D}|\varphi|^{\frac{p n}{n-1}} \leq \operatorname{Vol}(D) \sum_{p=0}^{\infty} \frac{\alpha^{p}}{p!}\left(C\|\nabla \varphi\|_{n}\right)^{\frac{p n}{n-1}}\left(\frac{p n}{n-1}\right)^{p} \\
=\operatorname{Vol}(D) \sum_{p=0}^{\infty} \frac{\left(\alpha\left(e C\|\nabla \varphi\|_{n}\right)^{\frac{n}{n-1}} \frac{n}{n-1}\right)^{p}\left(p e^{-\frac{n}{n-1}}\right)^{p}}{p!}
\end{gathered}
$$

Since $e^{\frac{n}{n-1}}>e$ we have, using Stirling's formula, that the sum

$$
\sum_{p=0}^{\infty} \frac{\left(p e^{-\frac{n}{n-1}}\right)^{p}}{p!}
$$

converges, so if we choose α small enough so that

$$
\alpha\left(e C\|\nabla \varphi\|_{n}\right)^{\frac{n}{n-1}} \frac{n}{n-1}<1
$$

we have finished. This is possible since by hypothesis we have

$$
\|\nabla \varphi\|_{n} \leq 1
$$

Corollary 4.2 Let D be a bounded domain in \mathbb{R}^{n}. Then there exist constant $\mu, C>0$ with C depending only on n, such that every $\varphi \in H_{0}^{1, n}(D)$ satisfies

$$
\begin{equation*}
\int_{D} e^{\varphi} \leq C \operatorname{Vol}(D) \exp \left(\mu\|\nabla \varphi\|_{n}^{n}\right) \tag{4.2}
\end{equation*}
$$

Proof

Start with Young's inequality: if u, v are two real numbers and $\frac{1}{p}+\frac{1}{q}=1$, then

$$
u v \leq \frac{|u|^{p}}{p}+\frac{|v|^{q}}{q}
$$

Also for every $\varepsilon>0$ we have

$$
u v=(u \varepsilon)(v / \varepsilon) \leq \varepsilon^{p} \frac{|u|^{p}}{p}+\varepsilon^{-q} \frac{|v|^{q}}{q} .
$$

Apply this with $u=\varphi /\|\nabla \varphi\|_{n}, v=\|\nabla \varphi\|_{n}, p=\frac{n}{n-1}, q=n, \varepsilon^{p} / p=\alpha$ and get

$$
\varphi \leq \frac{\alpha|\varphi|^{\frac{n}{n-1}}}{\|\nabla \varphi\|_{n}^{\frac{n}{n-1}}}+\frac{\varepsilon^{-n}}{n}\|\nabla \varphi\|_{n}^{n} .
$$

Take this inequality, exponentiate it and integrate it over D. Since $\|\nabla u\|_{n}=$ 1 we can apply (4.1) to the first term and get

$$
\int_{D} e^{\varphi} \leq C \operatorname{Vol}(D) \exp \left(\mu\|\nabla \varphi\|_{n}^{n}\right)
$$

The best constants in these inequalities were calculated by J.Moser Theorem 4.3 (Moser [15]) The best constant for the inequality (4.1) is

$$
\alpha_{n}=n \omega_{n-1}^{\frac{1}{n-1}} .
$$

This means that (4.1) holds for $\alpha=\alpha_{n}$ and if $\alpha>\alpha_{n}$ the left hand side is finite but can be made arbitrarily large. The best constant for the inequality (4.2) is

$$
\mu_{n}=(n-1)^{n-1} n^{1-2 n} \omega_{n-1}^{-1}
$$

Let's examine the case of compact Riemannian manifolds.
Theorem 4.4 (Aubin [4]) Let M be a compact Riemannian manifold of dimension n. Then there exist constants

$$
C, \alpha, \mu, \nu>0
$$

such that for all $\varphi \in H_{1}^{n}(M)$ we have

$$
\begin{equation*}
\int_{M} e^{\varphi} d V \leq C \exp \left(\mu\|\nabla \varphi\|_{n}^{n}+\nu\|\varphi\|_{n}^{n}\right) \tag{4.3}
\end{equation*}
$$

and for all $\varphi \in H_{1}^{n}(M)$ with $\|\nabla \varphi\|_{n} \leq 1$ we have

$$
\begin{equation*}
\int_{M} e^{\alpha|\varphi|^{n /(n-1)}} d V \leq C . \tag{4.4}
\end{equation*}
$$

Theorem 4.5 (Cherrier [7]) For a compact Riemannian manifold of dimension n the best constants in the inequalities (4.4) and (4.3) are the same α_{n} and μ_{n} as before.

Theorem 4.6 (Moser [15]) Consider S^{2} with the canonical metric. Every $\varphi \in H_{1}^{2}\left(S^{2}\right)$ with $\int_{S^{2}} \varphi d V=0$ satisfies

$$
\int_{S^{2}} e^{\varphi} d V \leq C \exp \left(\mu_{2}\|\nabla \varphi\|_{2}^{2}\right),
$$

where $\mu_{2}=\frac{1}{16 \pi}$.

As a corollary we can easily see that every $\varphi \in H_{1}^{2}\left(S^{2}\right)$ satisfies

$$
\begin{equation*}
\log \int_{S^{2}} e^{\varphi} d V \leq \frac{1}{16 \pi} \int_{S^{2}}|\nabla \varphi|^{2} d V+\frac{1}{4 \pi} \int_{S^{2}} \varphi d V+C \tag{4.5}
\end{equation*}
$$

We have the following generalization to higher derivatives: If u is a real function defined in \mathbb{R}^{n} define

$$
D^{m} u= \begin{cases}\triangle^{m / 2} u & \text { if } m \text { even } \tag{4.6}\\ \nabla \triangle^{(m-1) / 2} u & \text { if } m \text { odd }\end{cases}
$$

Theorem 4.7 (Adams [1]) If m is a positive integer, $m<n$ then there is a constant $C(m, n)$ such that for all $u \in C^{m}\left(\mathbb{R}^{n}\right)$ supported in D a bounded domain, with $\left\|D^{m} u\right\|_{p} \leq 1, p=n / m$, we have

$$
\begin{equation*}
\int_{D} e^{\beta|u|^{q}} \leq C \operatorname{Vol}(D) \tag{4.7}
\end{equation*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$, for all $\beta \leq \beta_{0}(n, m)$

$$
\beta_{0}(n, m)= \begin{cases}\frac{n}{\omega_{n-1}}\left(\frac{\pi^{n / 2} 2^{m} \Gamma\left(\frac{m+1}{2}\right)}{\Gamma\left(\frac{n-m+1}{2}\right)}\right)^{q} & \text { if } m \text { odd } \tag{4.8}\\ \frac{n}{\omega_{n-1}}\left(\frac{\pi^{n / 2} 2^{m} \Gamma\left(\frac{m}{2}\right)}{\Gamma\left(\frac{n-m}{2}\right)}\right)^{q} & \text { if } m \text { even }\end{cases}
$$

Moreover if $\beta>\beta_{0}(n, m)$ then there is no such inequality.
Finally we have the
Theorem 4.8 (Fontana [9]) Let M be a compact Riemannian manifold of dimension n, and let m be a positive integer, $m<n$. Then there is a constant $C(m, M)$ such that for all $u \in C^{m}(M)$ with $\left\|D^{m} u\right\|_{p} \leq 1, p=n / m$, and $\int_{M} u d V=0$ we have

$$
\begin{equation*}
\int_{D} e^{\beta|u|^{q}} \leq C \tag{4.9}
\end{equation*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$, for all $\beta \leq \beta_{0}(n, m)$ give in the previous theorem. Moreover if $\beta>\beta_{0}(n, m)$ then there is no such inequality.

5 Applications

5.1 The Ricci Flow

The first application we will give of the previous material is due to G.Perelman. He used the logarithmic Sobolev inequality to prove a technical result about
the Ricci flow.
Let (M, g) be a compact Riemannian manifold of dimension n, define

$$
\mathcal{W}(g, f, \tau)=\int_{M}\left[\tau\left(|\nabla f|^{2}+R\right)+f-n\right](4 \pi \tau)^{-\frac{n}{2}} e^{-f} d V
$$

where $f \in C^{\infty}(M), \tau \in \mathbb{R}, \tau>0$, that satisfy

$$
\begin{equation*}
\int_{M}(4 \pi \tau)^{-\frac{n}{2}} e^{-f} d V=1 \tag{5.1}
\end{equation*}
$$

We immediately see that for every $\alpha>0$ we have

$$
\mathcal{W}(g, f, \tau)=\mathcal{W}(\alpha g, f, \alpha \tau) .
$$

Suppose now that g, f, τ depend also smoothly on time $t \in[0, T)$ and satisfy

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} g_{i j}=-2 R_{i j} \tag{5.2}\\
\frac{\partial}{\partial t} f=-\triangle f+|\nabla f|^{2}-R+\frac{n}{2 \tau} \\
\frac{\partial}{\partial t} \tau=-1
\end{array}\right.
$$

We say that g moves along the Ricci flow. Then we can compute (see [13])

$$
\begin{equation*}
\frac{\partial}{\partial t} \mathcal{W}=\int_{M} 2 \tau\left|R_{i j}+\nabla_{i} \nabla_{j} f-\frac{1}{2 \tau} g_{i j}\right|^{2}(4 \pi \tau)^{-\frac{n}{2}} e^{-f} d V \geq 0 \tag{5.3}
\end{equation*}
$$

We now let

$$
\mu(g, \tau)=\inf \mathcal{W}(g, f, \tau)
$$

where the inf is taken over all f satisfying (5.1), and

$$
\nu(g)=\inf \mu(g, \tau)
$$

where the inf is taken over all $\tau>0$. We want to show that there always exists a smooth minimizer \bar{f} of $\mu(g, \tau)$. Set

$$
\Phi=e^{-\frac{f}{2}}(4 \pi \tau)^{-\frac{n}{4}}
$$

so that we can write

$$
\begin{gathered}
\mathcal{W}(g, f, \tau)=\int_{M}\left[4 \tau|\nabla \Phi|^{2}-\Phi^{2} \log \Phi^{2}+\Phi^{2}\left(\tau R-n-\frac{n}{4} \log 4 \pi \tau\right)\right] d V \\
\int_{M} \Phi^{2}=1
\end{gathered}
$$

Then a theorem of O.S.Rothaus [18] assures us that there is a smooth minimizer \bar{f} for $\mathcal{W}(g, f, \tau)$, and that the corresponding Φ satisfies

$$
\begin{equation*}
-4 \tau \triangle \Phi-\Phi \log \Phi^{2}=\Phi\left(\mu(g, \tau)-\tau R+n+\frac{n}{4} \log 4 \pi \tau\right) \tag{5.4}
\end{equation*}
$$

This implies that $\nu(g)$ is nondecreasing along the Ricci flow: consider a time interval $\left[t_{0}, t_{1}\right]$ and the minimizer $\bar{f}\left(t_{1}\right)$, so that

$$
\mu\left(g\left(t_{1}\right), \tau\left(t_{1}\right)\right)=\mathcal{W}\left(g\left(t_{1}\right), \bar{f}\left(t_{1}\right), \tau\left(t_{1}\right)\right)
$$

Solve the backward heat equation for f on $\left[t_{0}, t_{1}\right]$ to obtain a solution $f(t)$ satisfying $f\left(t_{1}\right)=\bar{f}\left(t_{1}\right)$. Then since \mathcal{W} is nondecreasing we get

$$
\mathcal{W}\left(g\left(t_{0}\right), f\left(t_{0}\right), \tau\left(t_{0}\right)\right) \leq \mathcal{W}\left(g\left(t_{1}\right), f\left(t_{1}\right), \tau\left(t_{1}\right)\right)
$$

But if $\bar{f}\left(t_{0}\right)$ is the minimizer of μ at time t_{0} we have

$$
\mu\left(g\left(t_{0}\right), \tau\left(t_{0}\right)\right)=\mathcal{W}\left(g\left(t_{0}\right), \bar{f}\left(t_{0}\right), \tau\left(t_{0}\right)\right) \leq \mathcal{W}\left(g\left(t_{0}\right), f\left(t_{0}\right), \tau\left(t_{0}\right)\right)
$$

so that $\mu\left(g\left(t_{0}\right), \tau\left(t_{0}\right)\right) \leq \mu\left(g\left(t_{1}\right), \tau\left(t_{1}\right)\right)$. It follows that also $\nu(g)$ is nondecreasing along the flow.

Let's compute \mathcal{W} in one explicit example. On \mathbb{R}^{n} with the canonical metric, constant in time, fix $t_{0}>0$, set $\tau=t_{0}-t$ and

$$
f(t, x)=\frac{|x|^{2}}{4 \tau}
$$

so that $(4 \pi \tau)^{-\frac{n}{2}} e^{-f}$ is the fundamental solution of the backward heat equation, that starts at $t=t_{0}$ as a δ-function at 0 . Then it is readily verified that $\left(g_{c a n}, f, \tau\right)$ satisfy (5.2). We can compute that

$$
\tau\left(|\nabla f|^{2}+R\right)+f-n=\tau \frac{|x|^{2}}{4 \tau^{2}}+\frac{|x|^{2}}{4 \tau}-n=\frac{|x|^{2}}{2 \tau}-n
$$

Now we have the well-known Gaussian integral

$$
\int_{\mathbb{R}^{n}} e^{-\frac{|x|^{2}}{4 \tau}} d x=(4 \pi \tau)^{\frac{n}{2}}
$$

and differentiating this with respect to τ we get

$$
\int_{\mathbb{R}^{n}} \frac{|x|^{2}}{4 \tau^{2}} e^{-\frac{|x|^{2}}{4 \tau}} d x=(4 \pi \tau)^{\frac{n}{2}} \frac{n}{2 \tau}
$$

Hence

$$
\mathcal{W}\left(g_{c a n}, f, \tau\right)=\int_{\mathbb{R}^{n}}(4 \pi \tau)^{-\frac{n}{2}}\left(\frac{|x|^{2}}{2 \tau}-n\right) e^{-\frac{|x|^{2}}{4 \tau}} d x=n-n=0
$$

for all $t \in\left[0, t_{0}\right)$.

Theorem 5.1 Start with an arbitrary metric $g_{i j}$. Then the function $\mu(g, \tau)$ is negative for small $\tau>0$ and tends to zero as τ tends to zero.

Proof

Assume $\bar{\tau}>0$ is small so that the Ricci flow starting from $g_{i j}$ exists on $[0, \bar{\tau}]$. Set $u=(4 \pi \tau)^{-\frac{n}{2}} e^{-f}$ and compute its evolution

$$
\frac{\partial}{\partial t} u=-\triangle u+R u
$$

This is the conjugate heat equation in the following sense: if $\square=\frac{\partial}{\partial t}-\triangle$ is the heat operator, with respect to the metric moving along the Ricci flow, and $\square^{*}=-\frac{\partial}{\partial t}-\triangle+R$ then for any two functions $u, v \in C^{\infty}(M \times[0, T))$ we have

$$
\frac{\partial}{\partial t} \int_{M} u v d V=\int_{M}\left(v \square u-u \square^{*} v\right) d V
$$

This can be easily proved remembering that $\frac{\partial}{\partial t} d V=-R d V$ and $\int_{M}(u \triangle v-$ $v \triangle u) d V=0$. Now solve the conjugate heat equation for u starting at $t=\bar{\tau}$ with a δ-function concentrated around some point, with total integral 1. Since the conjugate heat equation for u is now linear and R exists on $[0, \bar{\tau}]$, the solution we get is defined on all $[0, \bar{\tau}]$. Set $\tau(t)=\bar{\tau}-t$ and get an $f(t)$ from the $u(t)$ (this way we've got a global solution for f, which satisfies a nonlinear evolution equation). Then as $t \rightarrow \bar{\tau}$ the situation approaches the Euclidean one, for which we computed above that $\mathcal{W}=0$. So $\mathcal{W}(g(t), f(t), \tau(t))$ tends to zero as $t \rightarrow \bar{\tau}$, and we have by monotonicity

$$
\mu(g, \tau) \leq \mathcal{W}(g(0), f(0), \tau(0)) \leq \lim _{t \rightarrow \bar{\tau}} \mathcal{W}(g(t), f(t), \tau(t))=0
$$

To show that $\lim _{\tau \rightarrow 0} \mu(g, \tau)=0$ we won't use the Ricci flow anymore, but we'll employ the Gross logarithmic Sobolev inequality. Assume that there is a sequence $\tau_{k} \rightarrow 0$ such that $\mu\left(g, \tau_{k}\right) \leq c<0$ for all k and cover M with finitely many charts U_{1}, \ldots, U_{N} such that each U_{j} is a geodesic ball $B\left(p_{j}, \delta\right)$, for some $\delta>0$. Let $g_{i j}^{\tau}=(2 \tau)^{-1} g_{i j}$ and $g_{k}=g^{\tau_{k}}$. Then each $\left(U_{j}, g_{k}, p_{j}\right)$ converges as $k \rightarrow \infty$ to $\left(\mathbb{R}^{n}, g_{\text {can }}, 0\right)$ in the C^{∞} topology. Then we can easily compute that

$$
\begin{gathered}
\mathcal{W}(g, f, \tau)=\int_{M}\left[2|\nabla \Phi|_{\tau}^{2}-\Phi^{2} \log \Phi^{2}+\Phi^{2}\left(\frac{R_{\tau}}{2}-n-\frac{n}{2} \log 2 \pi\right)\right] d V_{\tau} \\
\Phi=e^{-\frac{f}{2}}(2 \pi)^{-\frac{n}{4}} \\
\int_{M} \Phi^{2} d V_{\tau}=1
\end{gathered}
$$

where $d V_{\tau}=(2 \tau)^{-\frac{n}{2}} d V,|\nabla \Phi|_{\tau}^{2}=2 \tau|\nabla \Phi|^{2}, R_{\tau}=2 \tau R$. Let φ_{k} be the minimizer realizing $\mu\left(g, \tau_{k}\right)$, which satisfies

$$
\left\{\begin{array}{l}
-2 \triangle_{k} \varphi_{k}-2 \varphi_{k} \log \varphi_{k}=\left(\mu\left(g, \tau_{k}\right)-\frac{R_{k}}{2}+n+\frac{n}{2} \log 2 \pi\right) \varphi_{k} \tag{5.5}\\
\int_{M} \varphi_{k}^{2} d V_{k}=1
\end{array}\right.
$$

Write

$$
F_{k}(\Phi)=2|\nabla \Phi|_{\tau_{k}}^{2}-\Phi^{2} \log \Phi^{2}+\Phi^{2}\left(\frac{R_{\tau_{k}}}{2}-n-\frac{n}{2} \log 2 \pi\right)
$$

so that

$$
\frac{\int F_{k}(\lambda \Phi) d V_{k}}{\int(\lambda \Phi)^{2} d V_{k}}=\frac{\int F_{k}(\Phi) d V_{k}}{\int \Phi^{2} d V_{k}}-\log \lambda^{2}
$$

Since by hypothesis $\mu\left(g, \tau_{k}\right) \leq c<0$, we know that

$$
\int_{M} F_{k}\left(\varphi_{k}\right) d V_{k} \leq c<0
$$

so that up to a subsequence

$$
\int_{U_{1}} F_{k}\left(\varphi_{k}\right) d V_{k} \leq \frac{c}{N}<0
$$

Clearly we also have $\int_{U_{1}} \varphi_{k}^{2} d V_{k} \leq 1$. Let's fix the attention on U_{1}. Since g_{k} converges to $g_{c a n}$ uniformly on compact sets of \mathbb{R}^{n}, elliptic PDE theory tells us that there is a subsequence of φ_{k}, still denoted φ_{k} that converges uniformly on compact sets of \mathbb{R}^{n} to a limit φ_{∞}. The functions F_{k} on the other hand converge to the function

$$
F(\Phi)=2|\nabla \Phi|^{2}-\Phi^{2} \log \Phi^{2}-\Phi^{2}\left(n+\frac{n}{2} \log 2 \pi\right)
$$

and φ_{∞} can't be identically zero because

$$
\int_{\mathbb{R}^{n}} F\left(\varphi_{\infty}\right) d x=\lim _{k \rightarrow \infty} \int_{U_{1}} F_{k}\left(\varphi_{k}\right) d V_{k} \leq \frac{c}{N}<0
$$

Set

$$
\begin{equation*}
\varepsilon^{2}=\int_{\mathbb{R}^{n}} \varphi_{\infty}^{2} d x \tag{5.6}
\end{equation*}
$$

so that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} F\left(\frac{\varphi_{\infty}}{\varepsilon}\right) d x \leq \frac{c}{N}+2 \log \varepsilon<\frac{c}{N} \tag{5.7}
\end{equation*}
$$

Let

$$
\left(\frac{\varphi_{\infty}}{\varepsilon}\right)^{2}=(2 \pi)^{-\frac{n}{2}} e^{-f_{\infty}}
$$

Then by (5.6) we get

$$
\int_{\mathbb{R}^{n}} e^{-f_{\infty}}(2 \pi)^{-\frac{n}{2}} d x=1
$$

and by (5.7)

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left(\frac{1}{2}\left|\nabla f_{\infty}\right|^{2}+f_{\infty}-n\right)(2 \pi)^{-\frac{n}{2}} e^{-f_{\infty}} d x \leq \frac{c}{N}<0 . \tag{5.8}
\end{equation*}
$$

This last inequality is precisely the opposite of the Gross logarithmic Sobolev inequality (3.3). We verify this by setting

$$
f_{\infty}=\frac{|x|^{2}}{2}-2 \log \phi
$$

Then

$$
\begin{gathered}
\nabla f_{\infty}=x-2 \frac{\nabla \phi}{\phi} \\
\frac{\left|\nabla f_{\infty}\right|^{2}}{2}=\frac{|x|^{2}}{2}+2 \frac{|\nabla \phi|^{2}}{\phi^{2}}-2 \frac{\langle\nabla \phi, x\rangle}{\phi}, \\
\int_{\mathbb{R}^{n}} \phi^{2}(2 \pi)^{-\frac{n}{2}} e^{-\frac{|x|^{2}}{2}} d x=1 .
\end{gathered}
$$

The left hand side of inequality (5.8) becomes

$$
\int_{\mathbb{R}^{n}}\left(\frac{|x|^{2}}{2}+2 \frac{|\nabla \phi|^{2}}{\phi^{2}}-2 \frac{\langle\nabla \phi, x\rangle}{\phi}+\frac{|x|^{2}}{2}-2 \log \phi-n\right) \phi^{2}(2 \pi)^{-\frac{n}{2}} e^{-\frac{|x|^{2}}{2}} d x .
$$

We can integrate by parts the third term to get

$$
\begin{aligned}
& (2 \pi)^{-\frac{n}{2}} \sum_{i=1}^{n} \int_{\mathbb{R}^{n}} \phi \frac{\partial \phi}{\partial x^{i}} x^{i} e^{-\frac{|x|^{2}}{2}}=-(2 \pi)^{-\frac{n}{2}} \sum_{i=1}^{n} \int_{\mathbb{R}^{n}} \phi \frac{\partial \phi}{\partial x^{i}} x^{i} e^{-\frac{|x|^{2}}{2}} \\
& \quad-(2 \pi)^{-\frac{n}{2}} \sum_{i=1}^{n} \int_{\mathbb{R}^{n}} \phi^{2} e^{-\frac{|x|^{2}}{2}}+(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} \phi^{2}|x|^{2} e^{-\frac{|x|^{2}}{2}}= \\
& \quad-(2 \pi)^{-\frac{n}{2}} \sum_{i=1}^{n} \int_{\mathbb{R}^{n}} \phi \frac{\partial \phi}{\partial x^{i}} x^{i} e^{-\frac{|x|^{2}}{2}}-n+(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} \phi^{2}|x|^{2} e^{-\frac{|x|^{2}}{2}},
\end{aligned}
$$

so

$$
(2 \pi)^{-\frac{n}{2}} \sum_{i=1}^{n} \int_{\mathbb{R}^{n}} \phi \frac{\partial \phi}{\partial x^{i}} x^{i} e^{-\frac{|x|^{2}}{2}}=-\frac{n}{2}+(2 \pi)^{-\frac{n}{2}} \int_{\mathbb{R}^{n}} \phi^{2} \frac{|x|^{2}}{2} e^{-\frac{|x|^{2}}{2}} .
$$

Substituting this into the left hand side of (5.8) we get

$$
\int_{\mathbb{R}^{n}}\left(2|\nabla \phi|^{2}-2 \phi^{2} \log \phi\right)(2 \pi)^{-\frac{n}{2}} e^{-\frac{|x|^{2}}{2}} d x \leq \frac{c}{N}<0
$$

which contradicts (3.3). So we must have that $\lim _{\tau \rightarrow 0} \mu(g, \tau)=0$.
We have the following application of the previous theorem. If $g(t)$, $t \in[0, T)$, is a metric evolving along the Ricci flow, we say that is a shrinking breather if there exist an $0<\alpha<1$, two times $t_{1}<t_{2}$ and a diffeomorphism $h: M \rightarrow M$ such that

$$
\alpha g\left(t_{1}\right)=h^{*} g\left(t_{2}\right)
$$

If this holds for every t_{1}, t_{2} we say that $g(t)$ is a shrinking Ricci soliton. This is equivalent to the existence of a one-form b and a number $\lambda<0$ such that

$$
2 R_{i j}(0)+2 \lambda g_{i j}(0)+\nabla_{i} b_{j}+\nabla_{j} b_{i}=0
$$

If $b=\nabla f$ for some smooth function f we say that $g(t)$ is a gradient shrinking Ricci soliton. This means

$$
R_{i j}(0)+\lambda g_{i j}(0)+\nabla_{i} \nabla_{j} f=0
$$

We want to prove the
Theorem 5.2 (Perelman [17]) Every shrinking breather is a gradient shrinking Ricci soliton.

Sketch of proof

Assume that $g(t)$ is a Ricci breather defined on $[0, T]$, so that there are $0<\alpha<1, t_{1}<t_{2}$ and h as above. Since

$$
\mathcal{W}\left(g\left(t_{2}\right), f, \tau\right)=\mathcal{W}\left(\alpha g\left(t_{1}\right), f, \tau\right)=\mathcal{W}\left(g\left(t_{1}\right), f, \frac{\tau}{\alpha}\right)
$$

we get $\nu\left(g\left(t_{2}\right)\right)=\nu\left(g\left(t_{1}\right)\right)$. Define $\lambda\left(g_{i j}\right)$ to be the lowest nonzero eigenvalue of the operator $-4 \triangle+R$, and

$$
\bar{\lambda}\left(g_{i j}\right)=\operatorname{Vol}\left(g_{i j}\right)^{\frac{2}{n}} \lambda\left(g_{i j}\right)
$$

Since we are on a shrinking breather we have that $\bar{\lambda}\left(g\left(t_{1}\right)\right)=\bar{\lambda}\left(g\left(t_{2}\right)\right)$. In [17] it is shown that if $g(t)$ moves along the Ricci flow, then $\bar{\lambda}(g(t))$ is nondecreasing whenever it is nonpositive, and that monotonicity is strict unless $g(t)$ is a Ricci soliton. Hence we are left with the case when $\bar{\lambda}(g(t))>0$ for all $t \in\left[t_{1}, t_{2}\right]$. It is not hard to see using (5.4) that $\bar{\lambda}\left(g_{i j}\right)>0$ implies that

$$
\lim _{\tau \rightarrow \infty} \mu(g, \tau)=+\infty
$$

because when τ is big, $\mu(g, \tau)$ is approximately $\tau \lambda\left(g_{i j}\right)$. In particular this is true for $g_{i j}=g\left(t_{2}\right)$. Now apply theorem 5.1 to get that $\mu\left(g\left(t_{2}\right), \tau\right)<0$ for τ sufficiently small, and

$$
\lim _{\tau \rightarrow 0} \mu\left(g\left(t_{2}\right), \tau\right)=0
$$

These things together imply that there is a $\tilde{\tau}>0$ that realizes the infimum

$$
\nu\left(g\left(t_{2}\right)\right)=\mu\left(g\left(t_{2}\right), \tilde{\tau}\right)<0
$$

Now by the theorem of Rothaus, there is a function \tilde{f} that realizes the infimum

$$
\nu\left(g\left(t_{2}\right)\right)=\mu\left(g\left(t_{2}\right), \tilde{\tau}\right)=\mathcal{W}\left(g\left(t_{2}\right), \tilde{f}, \tilde{\tau}\right)<0 .
$$

Now we flow \tilde{f} by the backward heat flow to get a family $f(t), t \in\left[t_{1}, t_{2}\right]$ and set $\tau(t)=\tilde{\tau}+t_{2}-t$, so that (5.2) are satisfied. By monotonicity we get

$$
\nu\left(g\left(t_{2}\right)\right)=\mathcal{W}\left(g\left(t_{2}\right), \tilde{f}, \tilde{\tau}\right) \geq \mathcal{W}\left(g\left(t_{1}\right), f\left(t_{1}\right), \tilde{\tau}+t_{2}-t_{1}\right) \geq \nu\left(g\left(t_{1}\right)\right)
$$

Since $\nu\left(g\left(t_{2}\right)\right)=\nu\left(g\left(t_{1}\right)\right)$ these inequalities must be equalities, so that \mathcal{W} is constant on $\left[t_{1}, t_{2}\right]$. But then formula (5.3) tells us that $g(t)$ is a gradient shrinking Ricci soliton on this interval.

5.2 Kähler Geometry

Now we turn to the Moser-Trudinger inequality. Let us try to generalize (4.5) to higher dimensional varieties. Consider S^{2} as the complex manifold $\mathbb{C P}^{1}$ with its canonical Kähler metric ω. Then ω is Kähler-Einstein, because

$$
R_{i \bar{\jmath}}=2 g_{i \bar{\jmath}}
$$

We can generalize the Moser-Trudinger inequality in the following way. If (M, ω) is a compact Kähler manifold of complex dimension n, and

$$
P(M, \omega)=\left\{\phi \in C^{\infty}(M, \mathbb{R}) \mid \omega_{\phi}=\omega+\sqrt{-1} \partial \bar{\partial} \phi>0\right\}
$$

is the space of Kähler potentials, we can define

$$
J_{\omega}(\phi)=\frac{\sqrt{-1}}{V} \sum_{i=0}^{n-1} \frac{i+1}{n+1} \int_{M} \partial \phi \wedge \bar{\partial} \phi \wedge \omega^{i} \wedge \omega_{\phi}^{n-i-1},
$$

where $V=\int_{M} \omega^{n}$. If $n=1$ we get

$$
J_{\omega}(\phi)=\frac{\sqrt{-1}}{2 V} \int_{M} \partial \phi \wedge \bar{\partial} \phi=\frac{1}{2 V} \int_{M}|\partial \phi|^{2} \omega=\frac{1}{4 V} \int_{M}|\nabla \phi|^{2} \omega .
$$

Now assume that $c_{1}(M)>0$ and pick ω representing the first Chern class. By $\partial \bar{\partial}$-lemma there is a unique smooth real-valued function h_{ω} such that

$$
\left\{\begin{array}{l}
\operatorname{Ric}(\omega)=\omega+\sqrt{-1} \partial \bar{\partial} h_{\omega} \tag{5.9}\\
\int_{M}\left(e^{h_{\omega}}-1\right) \omega^{n}=0
\end{array}\right.
$$

Define

$$
F_{\omega}(\phi)=J_{\omega}(\phi)-\frac{1}{V} \int_{M} \phi \omega^{n}-\log \left(\frac{1}{V} \int_{M} e^{h_{\omega}-\phi} \omega^{n}\right)
$$

It satisfies the following cocycle relation (see [21])

$$
\begin{equation*}
F_{\omega}(\phi)=F_{\omega}(\psi)+F_{\omega+\sqrt{-1} \partial \bar{\partial} \psi}(\phi-\psi) \tag{5.10}
\end{equation*}
$$

We say that F_{ω} is bounded below on $P(M, \omega)$ if there is $C>0$ such that $F_{\omega}(\phi) \geq-C$ for all $\phi \in P(M, \omega)$. Then if M is Kähler-Einstein (i.e. $h_{\omega}=0$), the statement that F_{ω} is bounded below means

$$
\log \left(\frac{1}{V} \int_{M} e^{-\phi} \omega^{n}\right) \leq J_{\omega}(\phi)-\frac{1}{V} \int_{M} \phi \omega^{n}+C
$$

For S^{2} this means that for every $\phi \in P\left(S^{2}, \omega\right)$

$$
\log \left(\int_{M} e^{-\phi} \omega\right) \leq \frac{1}{16 \pi} \int_{M}|\nabla \phi|^{2} \omega+\frac{1}{4 \pi} \int_{M}(-\phi) \omega+C
$$

which is precisely (4.5) with $\phi=-\varphi$. Notice that this is still weaker than the result of Moser, because we are requiring that $\phi \in P\left(S^{2}, \omega\right)$.

Let (M, ω) be a Kähler-Einstein manifold with $c_{1}(M)>0$, and let Λ_{1} be the space of eigenfunctions of \triangle with eigenvalue 1 . Then it is easy to see that there is a bijection between elements of Λ_{1} (up to constants) and holomorphic vector fields: if $\triangle_{1} u+u=0$ then $X=g^{i \bar{\jmath}} \frac{\partial u}{\partial \bar{z}^{j}} \partial_{i}$ is holomorphic, and if X is holomorphic then $i_{X} \omega=\bar{\partial} u$ with $\triangle_{1} u+u=0$. (see [19] for the details).

Theorem 5.3 (Bando-Mabuchi [5], Ding-Tian [8]) If (M, ω) is a KählerEinstein manifold with $c_{1}(M)>0$, so that $\operatorname{Ric}(\omega)=\omega$, then F_{ω} is bounded below on $P(M, \omega) \cap \Lambda_{1}^{\perp}$ where the orthogonal complement is with respect to the L^{2} scalar product. In particular if M has no nonzero holomorphic vector fields then F_{ω} is bounded below on the whole $P(M, \omega)$.

Proof

Fix any $\phi \in P(M, \omega)$, and set $\omega^{\prime}=\omega_{\phi}$. It is easy to prove that the solvability of the following complex Monge-Ampère equation

$$
\left(\omega^{\prime}+\sqrt{-1} \partial \bar{\partial} \psi\right)^{n}=e^{h_{\omega^{\prime}}-\psi} \omega^{\prime n}
$$

is equivalent to $\omega^{\prime}+\sqrt{-1} \partial \bar{\partial} \psi$ being Kähler-Einstein. Let's introduce a time parameter t in the above equation:

$$
\begin{equation*}
\left(\omega^{\prime}+\sqrt{-1} \partial \bar{\partial} \psi\right)^{n}=e^{h_{\omega^{\prime}}-t \psi} \omega^{\prime n} \tag{t}
\end{equation*}
$$

Since ω is Kähler-Einstein there is a solution of $\left(*_{1}\right)$, namely $\psi=-\phi$. Suppose that we could get a whole family $\left\{\psi_{t}\right\}$ of solutions of $\left(*_{t}\right)$ for $t \in$ $[0,1]$, that varies smoothly in t. Let's introduce a new functional

$$
I_{\omega}(\phi)=\frac{1}{V} \int_{M} \phi\left(\omega^{n}-\omega_{\phi}^{n}\right)=\frac{\sqrt{-1}}{V} \sum_{i=0}^{n-1} \int_{M} \partial \phi \wedge \bar{\partial} \phi \wedge \omega^{i} \wedge \omega_{\phi}^{n-i-1}
$$

We now calculate the first variation of I_{ω} and J_{ω} along a smooth family $\left\{\phi_{t}\right\} \subset P(M, \omega)$. Set $\omega_{t}=\omega_{\phi_{t}}, \dot{\phi}=\frac{d}{d t} \phi_{t}$, and compute (see [21])

$$
\begin{gathered}
\frac{d}{d t} J_{\omega}\left(\phi_{t}\right)=\frac{1}{V} \int_{M} \dot{\phi}\left(\omega^{n}-\omega_{t}^{n}\right) \\
\frac{d}{d t} I_{\omega}\left(\phi_{t}\right)=\frac{1}{V} \int_{M} \dot{\phi}\left(\omega^{n}-\omega_{t}^{n}\right)-\frac{1}{V} \int_{M} \phi_{t} \triangle_{t} \dot{\phi} \omega_{t}^{n},
\end{gathered}
$$

where \triangle_{t} is the laplacian of the metric ω_{t}. Now pick ψ_{t} as path, and differentiating $\left(*_{t}\right)$ with respect to t we get
$n \sqrt{-1} \partial \bar{\partial} \dot{\psi} \wedge\left(\omega^{\prime}+\sqrt{-1} \partial \bar{\partial} \psi_{t}\right)^{n-1}=\left(-\psi_{t}-t \dot{\psi}\right) e^{h_{\omega^{\prime}}-t \psi_{t}} \omega^{\prime n}=\left(-\psi_{t}-t \dot{\psi}\right) \omega_{t}^{\prime n}$
which means

$$
\begin{equation*}
\triangle_{t} \dot{\psi} \omega_{t}^{\prime n}=\left(-\psi_{t}-t \dot{\psi}\right) \omega_{t}^{\prime n} \tag{5.11}
\end{equation*}
$$

Substituting this we get

$$
\begin{aligned}
\frac{d}{d t}\left(I_{\omega^{\prime}}\left(\psi_{t}\right)-J_{\omega^{\prime}}\left(\psi_{t}\right)\right) & =\frac{1}{V} \int_{M} \psi_{t}\left(\psi_{t}+t \dot{\psi}\right) \omega_{t}^{\prime n} \\
& =-\frac{d}{d t}\left(\int_{M} \psi_{t} e^{h_{\omega^{\prime}}-t \psi_{t}} \omega^{\prime n}\right)+\frac{1}{V} \int_{M} \dot{\psi} e^{h_{\omega^{\prime}}-t \psi_{t}} \omega^{\prime n}
\end{aligned}
$$

Since for every t we have

$$
\int_{M} e^{h_{\omega^{\prime}}-t \psi_{t}} \omega^{\prime n}=V
$$

differentiating this we get

$$
\int_{M}\left(\psi_{t}+t \dot{\psi}\right) e^{h_{\omega^{\prime}}-t \psi_{t}} \omega^{\prime n}=0
$$

which simplifies the above to

$$
\frac{d}{d t}\left(I_{\omega^{\prime}}\left(\psi_{t}\right)-J_{\omega^{\prime}}\left(\psi_{t}\right)\right)=-\frac{d}{d t}\left(\int_{M} \psi_{t} \omega_{t}^{\prime n}\right)-\frac{1}{t V} \int_{M} \psi_{t} e^{h_{\omega^{\prime}}-t \psi_{t}} \omega^{\prime n}
$$

Multiplying this by t we get

$$
\frac{d}{d e}\left(t\left(I_{\omega^{\prime}}\left(\psi_{t}\right)-J_{\omega^{\prime}}\left(\psi_{t}\right)\right)\right)-\left(I_{\omega^{\prime}}\left(\psi_{t}\right)-J_{\omega^{\prime}}\left(\psi_{t}\right)\right)=-\frac{d}{d t}\left(\frac{t}{V} \int_{M} \psi_{t} \omega_{t}^{\prime n}\right)
$$

Integrating this from 0 to t we get

$$
t\left(I_{\omega^{\prime}}\left(\psi_{t}\right)-J_{\omega^{\prime}}\left(\psi_{t}\right)\right)-\int_{0}^{t}\left(I_{\omega^{\prime}}\left(\psi_{s}\right)-J_{\omega^{\prime}}\left(\psi_{s}\right)\right) d s=-\frac{t}{V} \int_{M} \psi_{t} \omega_{t}^{\prime n}
$$

which is equivalent to

$$
\begin{equation*}
\int_{0}^{t}\left(I_{\omega^{\prime}}\left(\psi_{s}\right)-J_{\omega^{\prime}}\left(\psi_{s}\right)\right) d s=t\left(-J_{\omega^{\prime}}\left(\psi_{t}\right)+\frac{1}{V} \int_{M} \psi_{t} \omega^{\prime n}\right) \tag{5.12}
\end{equation*}
$$

Now from the cocycle relation (5.10) we get

$$
\begin{align*}
F_{\omega}(\phi)=- & F_{\omega^{\prime}}(-\phi)=-F_{\omega^{\prime}}\left(\psi_{1}\right) \\
& =-J_{\omega^{\prime}}\left(\psi_{1}\right)+\frac{1}{V} \int_{M} \psi_{1} \omega^{\prime n}+\log \left(\frac{1}{V} \int_{M} e^{h_{\omega^{\prime}}-\psi_{1}} \omega^{\prime n}\right) \tag{5.13}
\end{align*}
$$

Integrating $\left(*_{1}\right)$ over M we see that the last term is zero. Using (5.12) we get

$$
F_{\omega}(\phi)=-J_{\omega^{\prime}}\left(\psi_{1}\right)+\frac{1}{V} \int_{M} \psi_{1} \omega^{\prime n}=\int_{0}^{1}\left(I_{\omega^{\prime}}\left(\psi_{s}\right)-J_{\omega^{\prime}}\left(\psi_{s}\right)\right) d s
$$

But the integrand is

$$
I_{\omega^{\prime}}\left(\psi_{s}\right)-J_{\omega^{\prime}}\left(\psi_{s}\right)=\frac{\sqrt{-1}}{V} \sum_{i=0}^{n-1} \frac{n-i}{n+1} \int_{M} \partial \psi_{s} \wedge \bar{\partial} \psi_{s} \wedge \omega^{\prime i} \wedge \omega_{s}^{\prime n-i-1}
$$

and each of the terms of the sum is nonnegative. Hence we have proved that

$$
F_{\omega}(\phi) \geq 0
$$

Getting the family of solutions ψ_{t} is rather technical. We will assume that M has no nonzero holomorphic vector fields (so that $\Lambda_{1}=0$) and just give an idea of the general case. The family ψ_{t} is constructed using the continuity method. Define $E=\left\{t \in[0,1] \mid\left(*_{s}\right)\right.$ is solvable for all $\left.s \in[t, 1]\right\}$. Then E is nonempty because $1 \in E$. If we can prove that E is open and closed in $[0,1]$, we'd have finished. To prove that E is open we have to prove that if $s \in E$ then we can solve $\left(*_{t}\right)$ for t close to s. Let ψ_{s} be a solution of $\left(*_{s}\right)$, so that

$$
\omega_{s}^{\prime n}=e^{h_{\omega^{\prime}}-s \psi_{s}} \omega^{\prime n}
$$

Then setting $\rho=\psi_{t}-\psi_{s}$ we can rewrite $\left(*_{t}\right)$ as

$$
\begin{gathered}
\left(\omega_{s}^{\prime}+\sqrt{-1} \partial \bar{\partial}\left(\psi_{t}-\psi_{s}\right)\right)^{n}=e^{h_{\omega^{\prime}}-t \psi_{t}} \omega^{\prime n}=e^{h_{\omega^{\prime}}-s \psi_{s}} e^{-s\left(\psi_{t}-\psi_{s}\right)} e^{-(t-s) \psi_{t}} \omega^{\prime n} \\
\left(\omega_{s}^{\prime}+\sqrt{-1} \partial \bar{\partial} \rho\right)^{n}=e^{-s \rho} e^{-(t-s)\left(\rho+\psi_{s}\right)} \omega_{s}^{\prime n} \\
\log \frac{\left(\omega_{s}^{\prime}+\sqrt{-1} \partial \bar{\partial} \rho\right)^{n}}{\omega_{s}^{\prime n}}+s \rho=-(t-s)\left(\rho+\psi_{s}\right)
\end{gathered}
$$

So define operators

$$
\Phi_{s}: C^{2, \frac{1}{2}}(M) \rightarrow C^{0, \frac{1}{2}}(M)
$$

by

$$
\Phi_{s}(\rho)=\log \frac{\left(\omega_{s}^{\prime}+\sqrt{-1} \partial \bar{\partial} \rho\right)^{n}}{\omega_{s}^{/ n}}+s \rho
$$

We want to solve the equation

$$
\Phi_{s}(\rho)=-(t-s)\left(\rho+\psi_{s}\right)
$$

for $|t-s|$ small. Notice that $\Phi_{s}(0)=0$, so that by the implicit function theorem it is enough to prove that the differential of Φ_{s} at 0 is invertible (this gives us also that the family ψ_{t} is smooth in t). But this differential is

$$
D \Phi_{s}(v)=\left.\frac{\partial}{\partial t}\right|_{t=0} \Phi_{s}(t v)=\triangle_{s} v+s v
$$

so that we need to show that $\lambda_{1}(s)$, the first nonzero eigenvalue of \triangle_{s}, satisfies $\lambda_{1}(s)>s$. Compute

$$
\begin{aligned}
& R_{i \bar{\jmath}}^{\prime}(s)=-\partial_{i} \partial_{\bar{\jmath}} \log \omega_{s}^{\prime n}=-\partial_{i} \partial_{\bar{\jmath}} \log \frac{\omega_{s}^{\prime n}}{\omega^{\prime n}}+R_{i \bar{\jmath}}^{\prime}=-\partial_{i} \partial_{\bar{\jmath}}\left(h_{\omega^{\prime}}-s \psi_{s}\right)+g_{i \bar{\jmath}}^{\prime}+\partial_{i} \partial_{\bar{\jmath}} h_{\omega^{\prime}} \\
& \quad=g_{i \bar{\jmath}}^{\prime}+s \partial_{i} \partial_{\bar{\jmath}} \psi_{s}=g_{i \bar{\jmath}}^{\prime}+s\left(g_{i \bar{\jmath}}^{\prime}(s)-g_{i \bar{\jmath}}^{\prime}\right)=(1-s) g_{i \bar{\jmath}}^{\prime}+s g_{i \bar{\jmath}}^{\prime}(s) \geq s g_{i \bar{\jmath}}^{\prime}(s)
\end{aligned}
$$

so by standard Bochner technique ([21]) we get $\lambda_{1}(s) \geq s$, and that the inequality is strict if $s<1$. If $s=1$ then recall that $\omega_{1}^{\prime}=\omega$ is Kähler-Einstein, so that $\operatorname{Ric}(\omega)=\omega$. Since we assume that there are no nonzero holomorphic vector fields, we have that $\lambda_{1}(1)>1$, so that Φ_{s} is locally invertible around 0 . Now standard elliptic regularity theory (Schauder estimates) tells us that the solution ρ we have found is in fact smooth, so E is open. To show that E is closed it is enough to establish an a priori bound $\|\psi\|_{C^{3}} \leq C$ for a solution of $\left(*_{t}\right)$. In fact if we have such a bound we can show that E is compact (hence closed): if $t_{i} \rightarrow \tau \in[0,1]$ and ψ_{i} is a sequence of solutions of $\left(*_{t_{i}}\right)$ then $\left\|\psi_{i}\right\|_{C^{3}} \leq C$ implies that $\left\|\psi_{i}\right\|_{C^{2, \frac{3}{4}}} \leq C$ and by Ascoli-Arzelà's theorem we have a compact embedding $C^{2, \frac{3}{4}}(M) \subset C^{2, \frac{1}{2}}(M)$. So a subsequence of the ψ_{i} converges in $C^{2, \frac{1}{2}}(M)$ to a solution of $\left(*_{\tau}\right)$, which is smooth by Schauder estimates. Thanks to Yau's estimates [23], we can get a uniform bound $\|\psi\|_{C^{3}} \leq C$ if we have a uniform bound $\|\psi\|_{\infty} \leq C$.

Assume that ψ_{t} solves $\left(*_{t}\right)$, and let $G(x, y)$ be the Green function of $\left(M, \omega^{\prime}\right)$, which has the following properties:

$$
\left\{\begin{array}{l}
\psi(x)=\frac{1}{V} \int_{M} \psi(y) \omega^{\prime n}(y)-\int_{M} \Delta \psi(y) G(x, y) \omega^{\prime n}(y) \tag{5.14}\\
\int_{M} G(x, y) \omega^{\prime n}(x)=0 \forall y \in M \\
G(x, y) \geq-\gamma \frac{D^{2}}{V}=-A
\end{array}\right.
$$

if Ric $\geq K>0, D=\operatorname{diam}_{\omega^{\prime}}(M)$, and $\gamma=\gamma\left(n, K D^{2}\right)>0$ is a constant. For a proof of the existence of G see [3],[19]. Since $\psi_{t} \in P\left(M, \omega^{\prime}\right)$ we get $n+\Delta \psi_{t}>0$ so that

$$
\left\{\begin{array}{l}
\psi_{t}(x)=\frac{1}{V} \int_{M} \psi_{t} \omega^{\prime n}+\int_{M}\left(-\Delta \psi_{t}\right)(G+A) \omega^{\prime n} \leq \frac{1}{V} \int_{M} \psi_{t} \omega^{\prime n}+n A \\
\sup _{M} \psi_{t} \leq \int_{M} \psi_{t} \omega^{\prime n}+C
\end{array}\right.
$$

where C is a uniform constant. We also have $R_{i \bar{\jmath}}^{\prime}(t)=(1-t) g_{i \bar{\jmath}}^{\prime}+t g_{i \bar{\jmath}}^{\prime}(t) \geq$ $t g_{i \bar{\jmath}}^{\prime}(t)$, and since $\omega^{\prime}=\omega_{t}^{\prime}-\sqrt{-1} \partial \bar{\partial} \psi_{t}>0$ we have $n-\triangle_{t} \psi_{t}>0$ so that the Green formula for $\left(M, \omega_{t}^{\prime}\right)$ gives us

$$
\left\{\begin{array}{l}
\psi_{t}(x)=\frac{1}{V} \int_{M} \psi_{t} \omega_{t}^{\prime n}+\int_{M}\left(-\triangle_{t} \psi_{t}\right)\left(G_{t}+A^{\prime}\right) \omega_{t}^{\prime n} \geq \frac{1}{V} \int_{M} \psi_{t} \omega_{t}^{\prime n}-n A^{\prime} \\
\sup _{M}\left(-\psi_{t}\right) \leq-\frac{1}{V} \int_{M} \psi_{t} \omega_{t}^{\prime n}+n A^{\prime}
\end{array}\right.
$$

but now A^{\prime} is NOT uniform anymore. In fact by Bonnet-Myers theorem $\operatorname{diam}_{\omega_{t}^{\prime}}(M)$ is bounded above by a constant times $\frac{1}{\sqrt{t}}$, so that A^{\prime} is bounded above by $\frac{C}{t}$. It follows that for $t \geq t_{0}>0$ we have a uniform bound

$$
\sup _{M} \psi_{t}-\inf _{M} \psi_{t} \leq C+\frac{1}{V} \int_{M} \psi_{t}\left(\omega^{\prime n}-\omega_{t}^{\prime n}\right)=C+I_{\omega^{\prime}}\left(\psi_{t}\right)
$$

From the definitions of $I_{\omega^{\prime}}$ and $J_{\omega^{\prime}}$ it is immediate to get

$$
\begin{gathered}
\frac{n+1}{n} J_{\omega^{\prime}} \leq I_{\omega^{\prime}} \leq(n+1) J_{\omega^{\prime}} \\
\frac{1}{n+1} I_{\omega^{\prime}} \leq I_{\omega^{\prime}}-J_{\omega^{\prime}} \leq \frac{n}{n+1} I_{\omega^{\prime}}
\end{gathered}
$$

so the oscillation of ψ_{t} is controlled by $I_{\omega^{\prime}}-J_{\omega^{\prime}}$. But now we show that this is increasing in t so that it is uniformly bounded above by its value at time $t=1$. Going back to (5.11) we get

$$
\begin{equation*}
\frac{d}{d t}\left(I_{\omega^{\prime}}\left(\psi_{t}\right)-J_{\omega^{\prime}}\left(\psi_{t}\right)\right)=\frac{1}{V} \int_{M}\left(\triangle_{t} \dot{\psi}+t \dot{\psi}\right) \triangle_{t} \dot{\psi} \omega_{t}^{\prime n} \tag{5.15}
\end{equation*}
$$

Recall that $\lambda_{1}(t)$, the first nonzero eigenvalue of \triangle_{t}, satisfies $\lambda_{1}(t) \geq t$. Now let $f_{i}(t)$ be an L^{2}-orthonormal basis of eigenfunctions of \triangle_{t} where $f_{0}(t)=1$ for all t,

$$
\triangle_{t} f_{i}(t)+\lambda_{i}(t) f_{i}(t)=0
$$

Express $\dot{\psi}=\sum_{i=0}^{\infty} c_{i}(t) f_{i}(t)$, with $c_{i}(t) \in \mathbb{R}$ and compute

$$
\frac{d}{d t}\left(I_{\omega^{\prime}}\left(\psi_{t}\right)-J_{\omega^{\prime}}\left(\psi_{t}\right)\right)=\sum_{i=1}^{\infty} c_{i}(t)^{2}\left(\lambda_{i}(t)-t\right) \lambda_{i}(t) \geq 0
$$

because $\lambda_{i}(t) \geq \lambda_{1}(t) \geq t$. So we have a bound on the oscillation of ψ_{t} if t is away from zero. In fact this gives us a bound on $\left\|\psi_{t}\right\|_{\infty}$ simply because we have, integrating $\left(*_{t}\right)$

$$
\int_{M} e^{h_{\omega^{\prime}}-t \psi_{t}} \omega^{\prime n}=V
$$

but also

$$
\int_{M} e^{h_{\omega^{\prime}}} \omega^{\prime n}=V
$$

Supposing that ψ_{t} is never 0 we get a contradiction between these two last equations. Hence ψ_{t} attains the value 0 somewhere, so

$$
\left\|\psi_{t}\right\|_{\infty} \leq \sup _{M} \psi_{t}-\inf _{M} \psi_{t}
$$

Finally we deal with the case $t=0$. Since $\left\|\psi_{t}\right\|_{\infty} \leq \frac{C}{t}$ for some uniform $C>0$, we get

$$
\left\|t \psi_{t}\right\|_{\infty} \leq C
$$

so using $\left(*_{t}\right)$ we get a uniform bound

$$
\left\|\omega^{\prime}+\sqrt{-1} \partial \bar{\partial} \psi_{t}\right\|_{\infty} \leq C
$$

and by Yau's estimates on the Calabi Conjecture [23],[19], we have a uniform bound

$$
\left\|\psi_{t}\right\|_{\infty} \leq C
$$

Hence E is closed.
In the general case when M has nontrivial holomorphic vector fields, Bando and Mabuchi can still construct the family of solutions ψ_{t}, if the starting ϕ belongs to $P(M, \omega) \cap \Lambda_{1}^{\perp}$ (see [5], [19]). For such ϕ we then get that $F_{\omega}(\phi) \geq 0$ exactly as above.

References

[1] D.R. Adams A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. (2) 128 (1988), 385-398.
[2] T. Aubin Problèmes isopérimétriques et espaces de Sobolev, J. Diff. Geom. 11 (1976), 573-598.
[3] T. Aubin Some nonlinear problems in Riemannian geometry, Springer 1998.
[4] T. Aubin Sur la fonction exponentielle, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A1514-A1516.
[5] S. Bando, T. Mabuchi Uniqueness of Einstein Kähler metrics modulo connected group actions, in Algebraic geometry Sendai 1985, 11-40, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987.
[6] W. Beckner, M. Pearson On sharp Sobolev embedding and the logarithmic Sobolev inequality, Bull. London Math. Soc. 30 (1998) 80-84.
[7] P. Cherrier Une inégalité de Sobolev sur les variétés Riemanniennes, Bull. Sc. Math. 103 (1979), 353-374.
[8] W.Y. Ding, G. Tian The Generalized Moser-Trudinger Inequality, Nonlinear Analysis and Microlocal Analysis, Proceedings of the International Conference at the Nankai Institute of Mathematics, World Scientific 1992.
[9] L. Fontana Sharp borderline Sobolev inequalities on compact Riemannian manifolds, Comment. Math. Helv. 68 (1993), 415-454.
[10] E. Gagliardo Proprietà di alcune classi di funzioni in più variabili, Ricerche Mat. 7 (1958), 102-137.
[11] L. Gross Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), 1061-1083.
[12] E. Hebey Nonlinear analysis on manifolds: Sobolev spaces and inequalities, AMS 2000.
[13] B. Kleiner, J. Lott Notes on Perelman's papers, preprint 2005.
[14] N.G. Meyers, J. Serrin $H=W$, Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 1055-1056.
[15] J. Moser A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/71), 1077-1092.
[16] L. Nirenberg On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa 13 (1959), 115-162.
[17] G. Perelman The entropy formula for the Ricci flow and its geometric applications, preprint 2002.
[18] O.S. Rothaus Logarithmic Sobolev inequalities and the spectum of Schrödinger operators, J. Funct. Anal. 42 (1981), 110-120.
[19] Y.T. Siu Lectures on Hermitian-Einstein metrics for stable bundles and Kähler-Einstein metrics, Birkhäuser 1987.
[20] G. Talenti Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353-372.
[21] G. Tian Canonical metrics in Kähler geometry, Birkhäuser 2000.
[22] N.S. Trudinger On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483.
[23] S.T. Yau On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math. 31 (1978), 339-411.

