Homework: Section 13.7

Give complete, well-written solutions to the following exercises.

1. Integrate \(g(x, y, z) = x\sqrt{y^2 + 4} \) over the surface \(S \) that is the portion of the surface \(y^2 + 4z = 16 \) that lies between the planes \(x = 0, \ x = 1, \) and \(z = 0. \)

2. Evaluate the surface integral \(\iint_S \mathbf{F} \cdot d\mathbf{S} \) for the vector field \(\mathbf{F}(x, y, z) = zi + yj + xk, \) where \(S \) is the helicoid \(\mathbf{r}(u, v) = \langle u \cos(v), u \sin(v), v \rangle, \) \(0 \leq u \leq 1, 0 \leq v \leq \pi, \) with upward orientation.

3. Find the outward flux of the field \(\mathbf{F} = xzi + yzj + k \) across the surface of the portion of the sphere \(x^2 + y^2 + z^2 \leq 25 \) above the plane \(z = 3. \)

4. Use the surface integral in Stokes’ Theorem to calculate \(\int_C \mathbf{F} \cdot d\mathbf{r} \), where \(\mathbf{F}(x, y, z) = x^2y^3i + j + zk \) and \(C \) is the intersection of the cylinder \(x^2 + y^2 = 4 \) and the hemisphere \(x^2 + y^2 + z^2 = 16, z \geq 0, \) counterclockwise when viewed from above.

5. Let \(\mathbf{n} \) be the outer unit normal of the surface \(S \) given by \(4x^2 + 9y^2 + 36z^2 = 26, z \geq 0, \) and let \(\mathbf{F}(x, y, z) = yi + x^2j + (x^2 + y^4)^{3/2} \sin(e^{\sqrt{xyz}})k. \)

Find the value of \(\iint_S \text{curl} \ \mathbf{F} \cdot d\mathbf{S}. \)

Hint: One parametrization of the ellipse at the base of the shell is of the form \(x = a \cos(t), y = b \cos(t), \) for some constants \(a, b. \)