Homework: Sections 13.1-13.2

Give complete, well-written solutions to the following exercises.

1. Figures (I)-(IV) contain level curves of functions $f(x, y)$. Figures (A)-(B) are their corresponding gradient fields $\nabla f(x, y)$. Match the level curves in (I)-(IV) with the gradient fields in (A)-(D). All figures have $-2 \leq x \leq 2$, $-2 \leq y \leq 2$. Provide a brief explanation.

2. Let \mathbf{F} be the constant force field \mathbf{j} in the figure to the right. On which of the paths C_1, C_2, C_3 is zero work done by \mathbf{F}?

3. Compute $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the oriented curve in the figure to the right, and \mathbf{F} is the vector field that is constant on each of the three straight segments of C:

$$\mathbf{F}(x, y) = \begin{cases} \mathbf{i} & \text{on } PQ \\ 2\mathbf{i} - \mathbf{j} & \text{on } QR \\ 3\mathbf{i} + \mathbf{j} & \text{on } RS. \end{cases}$$

4. Along a curve C, a vector field \mathbf{F} is everywhere tangent to C in the direction of orientation and has constant magnitude $|\mathbf{F}| = m$. Use the definition of the line integral to explain why

$$\int_C \mathbf{F} \cdot d\mathbf{r} = m \cdot \text{Length of } C.$$
Homework: Section 13.3

Give complete, well-written solutions to the following exercises.

1. **Evaluating a work integral two ways.** Let \(\mathbf{F} = \nabla (x^3y^2) \) and let \(C \) be the path in the \(xy \)-plane from \((-1, 1)\) to \((1, 1)\) that consists of the line segment from \((-1, 1)\) to \((0, 0)\) followed by the line segment from \((0, 0)\) to \((1, 1)\). Evaluate \(\int_C \mathbf{F} \cdot d\mathbf{r} \) in two ways:

 (a) Find parametrizations for the segments that make up \(C \), and evaluate \(\int_C \mathbf{F} \cdot d\mathbf{r} \).

 (b) Use \(f(x, y) = x^3y^2 \) as a potential function for \(\mathbf{F} \) to evaluate \(\int_C \mathbf{F} \cdot d\mathbf{r} \).

2. Show that the work done by a constant force field \(\mathbf{F} = ai + bj + ck \) in moving a particle along any path from \(A \) to \(B \) is

 \[W = \mathbf{F} \cdot \overrightarrow{AB}. \]

3. Consider the vector field \(\mathbf{F} \) shown in the figure below.

 (a) Is \(\int_C \mathbf{F} \cdot d\mathbf{r} \) positive, negative, or zero?

 (b) From your answer to part (A), can you determine whether or not \(\mathbf{F} = \nabla f \) for some function \(f \)?

 (c) Which of the following formulas best fits \(\mathbf{F} \)?

 \[
 \begin{align*}
 \mathbf{F}_1 &= \frac{x}{x^2 + y^2} \mathbf{i} + \frac{y}{x^2 + y^2} \mathbf{j} \\
 \mathbf{F}_2 &= -y \mathbf{i} + x \mathbf{j} \\
 \mathbf{F}_3 &= \frac{-y}{(x^2 + y^2)^2} \mathbf{i} + \frac{x}{(x^2 + y^2)^2} \mathbf{j}.
 \end{align*}
 \]