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FRICTIONAL CONTACT OF AN ANISOTROPIC PIEZOELECTRIC PLATE ∗

Isabel N. Figueiredo1 and Georg Stadler2

Abstract. The purpose of this paper is to derive and study a new asymptotic model for the equi-

librium state of a thin anisotropic piezoelectric plate in frictional contact with a rigid obstacle. In

the asymptotic process, the thickness of the piezoelectric plate is driven to zero and the convergence

of the unknowns is studied. This leads to two-dimensional Kirchhoff-Love plate equations, in which

mechanical displacement and electric potential are partly decoupled. Based on this model numerical

examples are presented that illustrate the mutual interaction between the mechanical displacement

and the electric potential. We observe that, compared to purely elastic materials, piezoelectric bodies

yield a significantly different contact behavior.
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1. Introduction

The generation of electric charges in certain crystals when subjected to mechanical force was discovered in
1880 by Pierre et Jacques Curie and is nowadays known as piezoelectric effect (or direct piezoelectric effect).
The inverse phenomenon, that is, the generation of mechanical stress and strain in crystals when subjected to
electric fields is called inverse piezoelectric effect and was predicted in 1881 by Lippmann (see [17]). Piezoelectric
materials are solids exhibiting this kind of interaction between mechanical and electric properties. This provides
them with sensor (direct effect) and actuator (inverse effect) capabilities making them extremely useful in a wide
range of practical applications in aerospace, mechanical, electrical, civil and biomedical engineering (see [29]).
In many of these applications, additionally contact phenomena can occur or may be used on purpose, e.g., for
measurement devices.

The aim of this paper is to derive, mathematically justify and numerically study a new bi-dimensional model
for the equilibrium state of an anisotropic piezoelectric thin plate that is possibly in frictional contact with
a rigid foundation. The derivation of the reduced (or lower-dimensional) model is done using an asymptotic
procedure. It will turn out that the resulting equations are defined in the middle plane of the plate.

Let us start with motivating our interest in this problem. It was observed that, if no contact and friction
conditions have to be taken into account, for certain problems the mechanical and the electric parts of the
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equations decouple in an asymptotic process [8, 11, 26, 28] (see [1, 7, 23, 25, 33] for related results where only
partial or no decoupling occurs). In the presence of contact and friction it is not at all obvious if similar results
hold true. We are also interested in numerically studying the behavior of piezoelectric materials, and by these
means gain a better understanding for their properties and features.

Asymptotic methods have been widely used to deduce reduced models for plates, shells or rods. For the main
ideas and bibliographic references see [3–5] for elastic plates, [6] for shells, and [32] for rods. For thin elastic
plates, asymptotic analysis applies to the thickness variable and can be briefly summarized as follows: Starting
with the variational three-dimensional equations for a plate with thickness h, these equations are scaled to a
domain that is independent of h. Then, assuming appropriate scalings for the data and unknowns, one lets
h → 0 and studies the convergence of the unknowns as well as the properties of the limit variables. Rescaling
to the original domain results in reduced model equations. For a general theory of asymptotic expansions for
variational problems that depend on a small parameter we refer to [21].

In this paper we consider an anisotropic piezoelectric plate whose mechanical displacements are restricted
due to possible contact with a rigid insulated foundation. The contact is unilateral (i.e., the contact region
is not known in advance) and is modelled by the classical Signorini conditions. For the frictional behavior of
the plate, the Tresca friction law is used. The variational formulation of this plate problem is a variational
inequality of the second kind, see [9, 18]. The unknowns are the mechanical displacement and the electric
potential. The original, three-dimensional plate is subject to contact and friction on a part of its surface. While
in the asymptotic procedure the system equations become two-dimensional, the contact and friction conditions
remain similar to contact conditions occurring in three-dimensional elasticity.

Note that for modeling friction in physical applications, often the Coulomb rather than the Tresca friction
law is used (see [9]). Since for the numerical realization of Coulomb friction usually a sequence of Tresca friction
problems is used, Tresca friction is not only of theoretical but also practical relevance. In our numerical study,
such a sequence of Tresca problems is used to solve a problem with Coulomb friction.

In the literature, several authors deal with asymptotic models for piezoelectric structures. We mention [26]
for piezoelectric plates including magnetic effects, [28] for piezoelectric thin plates with homogeneous isotropic
elasticity coefficients, [8, 11, 12, 23, 25, 33] for anisotropic piezoelectric plates and rods, [7] for geometrically
nonlinear thin piezoelectric shells, and [27] for the modelling of eigenvalue problems for thin piezoelectric
shells. However, these papers do not take into account the effects of possible contact or friction with a rigid
foundation; nevertheless for elastic rods and shells, one finds asymptotic frictionless contact models in [32]
and [20], respectively. On the other hand, there are papers dealing with contact and friction of piezoelectric
materials that do not use an asymptotic procedure to reduce the model; we refer to [22], where two different
variational formulations for the modelling of unilateral frictionless contact are established as well as [2] for
primal and dual formulations of frictional contact problems. In [30, 31], mathematical analysis of frictional
contact problems with piezoelectric materials can be found; for error estimates and numerical simulations we
refer to [15]. In all of the above references either none or only few numerical simulations can be found.

The main contributions of this paper are twofold: Firstly, the application of the asymptotic method to the
variational inequality of the second kind that describes the anisotropic piezoelectric plate. Due to the presence of
friction and contact conditions, the convergence proof in the asymptotic procedure is significantly more involved
than in the unconstrained case (see [11, 28]). Our second main contribution is the numerical study of the limit
problem taking into account contact and friction. These conditions are similar to three-dimensional elasticity
contact problems, where their numerical treatment is known to be a challenging task.

We finish this introduction with a sketch of the structure of this paper. In the next section, the three-
dimensional plate model is described. In Section 3, we apply the asymptotic analysis and prove strong conver-
gence of the unknowns. Finally, in Section 4 we report on numerical tests for the asymptotic equations.

2. The 3D plate problem

Notations and geometry. Let ω ⊂ IR
2 be a bounded domain with Lipschitz continuous boundary ∂ω, γ0,

γe subsets of ∂ω with meas(γ0) > 0. We denote γ1 := ∂ω \ γ0, γs := ∂ω \ γe. For 0 < h ≪ 1, we consider
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Ω = ω × (−h, h) a thin plate with middle plane ω and thickness 2h and the boundary sets

Γ+ = ω × {+h}, Γ− = ω × {−h}, Γ± = Γ+ ∪ Γ−,

ΓD = γ0 × (−h, h), Γ1 = γ1 × (−h, h), ΓN = Γ1 ∪ Γ+,

Γs = γs × (−h, h), Γe = γe × (−h, h).
(1)

For a schematic visualization of Ω with the boundary sets (1) see Figure 1.
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Figure 1. Three-dimensional plate Ω with rectangular middle plane ω and thickness 2h (note
that Γs =

(

∂ω × (−h, h)
)

\ Γe and Γ1 =
(

∂ω × (−h, h)
)

\ ΓD).

We consider different disjoint partitions ΓeN ,ΓeD of the boundary ∂Ω. The splitting correspond to different
electric boundary conditions and are thus denoted by (ebci) for i = 1, 2, 3:

(ebc1) : ΓeN = Γs and ΓeD = Γ± ∪ Γe,

(ebc2) : ΓeN = Γs ∪ Γ+ and ΓeD = Γ− ∪ Γe,

(ebc3) : ΓeN = Γs ∪ Γ− and ΓeD = Γ+ ∪ Γe.

(2)

Note that in all partitions, the set ΓeD (where we will assume given Dirichlet data) contains Γ− or Γ+. The
case that neither on Γ− nor on Γ+ Dirichlet data for the electric potential are given requires a slightly different
treatment than the one chosen in this paper, see Remark 3.4 on page 16.

Points of Ω are denoted by x = (x1, x2, x3), where the first two components (x1, x2) ∈ ω are independent
of h and x3 ∈ (−h, h). We denote by n = (n1, n2, n3) the unit outward normal vector to ∂Ω. Throughout the
paper, the Latin indices i, j, k, l, . . . are taken from {1, 2, 3}, while the Greek indices α, β, . . . from {1, 2}. The

summation convention with respect to repeated indices is employed, that is, aibi =
∑3

i=1 aibi. Moreover we
denote by a · b = aibi the inner product of the vectors a = (ai) and b = (bi), by Ce = (Cijklekl) the contraction
of a fourth order tensor C = (Cijkl) with a second order tensor e = (ekl) and by Ce : d = Cijklekldij the inner

product of the tensors Ce and d = (dij). Given a function θ(x) defined in Ω we denote by ∂iθ = ∂θ
∂xi

its partial
derivative with respect to xi.

In the sequel, for an open subset Υ ⊂ IR
n, n = 2, 3, we define D(Υ) to be the space of infinitely often

differentiable functions with compact support on Υ. We denote by D′(Υ) the dual space of D(Υ), often called
the space of distributions on Υ. For m = 1, 2, the Sobolev spaces Hm(Υ) are defined by

H1(Υ) =
{

v ∈ L2(Υ) : ∂iv ∈ L2(Υ) for i = 1, . . . , n
}

,

H2(Υ) =
{

v ∈ L2(Υ) : ∂iv, ∂ijv ∈ L2(Υ) for i, j = 1, . . . , n
}

,

where L2(Υ) = {v : Υ → IR,
∫

Υ
|v|2dΥ < ∞} and the partial derivatives are interpreted as distributional

derivatives. Moreover, for v ∈ (H1(Ω))3 we denote by vn := v · n and vt := v − vnn the normal and tangential
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components of v on the boundary of Ω, respectively. Similarly, for a second order symmetric tensor field
τ = (τij) ∈ (L2(Ω))9 we denote its normal and tangential components on the boundary of Ω as τn := (τn) · n
and τt := (τn) − τnn, respectively. Using the summation convention, this becomes τn := τijninj and τt = (τti)

where τti := τijnj − τnni. In addition, we denote by | · | the Euclidean norm in IR
3.

3D plate in frictional contact – classical formulation. We consider a piezoelectric anisotropic plate
which in its reference configuration occupies the domain Ω. It is held fixed on ΓD and submitted to a mechanical
volume force of density f in Ω and a mechanical surface traction of density g on ΓN . On its lower face Γ− it
may be in frictional contact with the rigid foundation (which is assumed to be an insulator). We denote by
s : Γ− −→ IR

+ the initial gap between the rigid foundation and the boundary Γ− measured in the direction
of the outward unit normal vector n. To model the frictional contact we use the classical Signorini contact
conditions and the Tresca friction law (see [9]).

We assume that the plate is subject to an electric volume charge of density r. Moreover, we suppose given
an electric surface charge of density θ on ΓeN and an electric potential equal to ϕ0 applied to ΓeD, where the
pair ΓeN ,ΓeD is defined as in one of the cases (ebci), i = 1, 2, 3 above. Note that the lower subscripts eN and

eD in ΓeN and ΓeD refer to electric (e) Neumann (N) and Dirichlet (D) boundary conditions, respectively, while
the lower subscripts N and D in ΓN and ΓD refer to mechanical (Neumann and Dirichlet) boundary conditions.

We now give the classical (i.e., strong) equations defining the mechanical and electric equilibrium state of the
plate Ω. The equilibrium is described by the following five groups of equations and boundary conditions, whose
unknowns are the mechanical displacement vector u : Ω → IR

3 and the (scalar) electric potential ϕ : Ω → IR.

Mechanical equilibrium equations and boundary conditions







−divσ(u, ϕ) = f (i.e., − ∂jσij(u, ϕ) = fi) in Ω,

σ(u, ϕ)n = g (i.e., σij(u, ϕ)nj = gi) on ΓN ,

u = 0 on ΓD.

(3a)

Maxwell-Gauss equations and electric boundary conditions (ebci), i = 1, 2, 3









divD(u, ϕ) = r (i.e., ∂iDi(u, ϕ) = r) in Ω,

D(u, ϕ)n = θ (i.e., Di(u, ϕ)ni = θ) on ΓeN ,

ϕ = ϕ0 on ΓeD.

(3b)

Constitutive equations
[

σij(u, ϕ) = Cijklekl(u) − PkijEk(ϕ) in Ω,

Dk(u, ϕ) = Pkijeij(u) + εklEl(ϕ) in Ω.
(3c)

Signorini’s contact conditions

un ≤ s, σn ≤ 0, σn(un − s) = 0 on Γ−. (3d)

Tresca’s law of friction







|σt| ≤ q, and

|σt| < q ⇒ ut = 0,

|σt| = q ⇒ ∃c ≥ 0 : ut = −cσt











on Γ−. (3e)
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The mechanical equilibrium equations (3a) express the balance of mechanical loads and internal stresses. The
electric displacement field D is governed by the Maxwell-Gauss equations (3b), and the constitutive equations
(3c) characterize piezoelectricity. They define the interaction between the stress tensor σ : Ω → IR

9, the electric

displacement vector D : Ω → IR
3, the linear strain tensor e(u) and the electric field vector E(ϕ), the latter two

tensors given by
e(u) = 1

2

(

∇u+ (∇u)⊤
)

(i.e., eij(u) = 1
2

(

∂iuj + ∂jui))

E(ϕ) = −∇ϕ (i.e., Ei(ϕ) = −∂iϕ).

In (3c), C = (Cijkl) is the elastic fourth order, P = (Pijk) the piezoelectric third order and ε = (εij) is the
dielectric second order tensor field. The Signorini law (3d) describes the contact behavior of the plate with
a rigid foundation. If the plate is not in contact with the rigid foundation (i.e., un < s), the normal stress
vanishes, i.e., σn = 0. For un = s, that is, the plate is in contact with the obstacle, the normal stress component
σn is nonpositive. These conditions are the complementarity conditions for contact. Finally, the conditions
(3e) model the frictional behavior of the plate, where q ≥ 0 is a function representing the prescribed friction
bound. Briefly, (3e) expresses the fact that on the contact boundary Γ− the Euclidean norm of the tangential
stress component cannot exceed the given friction bound q, that slip occurs if this norm equals q, and stick if
it is smaller than q. Moreover, slip can only occur in the negative direction of σt. Note that the regions where
contact and slip or stick occur are not known a priori. This makes contact problems with friction free boundary
problems, which are theoretically and practically challenging.

We assume the following hypotheses on the data

f ∈
(

L2(Ω)
)3
, g ∈

(

L2(ΓN )
)3
, r ∈ L2(Ω), θ ∈ L2(ΓeN ),

ϕ0 ∈ H1/2(ΓeD), s ∈ H1/2(Γ−), q ∈ L2(Γ−),

where θ = 0 on Γ− for (ebc3). Moreover, the tensor fields C = (Cijkl), P = (Pijk) and ε = (εij) are defined
on ω̄ × [−1, 1] for x = (x1, x2,

x3

h ). Defining them on the reference plate ω̄ × [−1, 1] makes them independent
of h in the transformed variables also used in the next section. The tensors Cijkl , Pijk, εij are assumed to be
sufficiently smooth functions that satisfy the following symmetries Cijkl = Cjikl = Cklij , Pijk = Pikj , εij = εji.
Moreover, C and ε are assumed to be coercive, that is there exist c1, c2 > 0 such that

Cijkl(x)MklMij ≥ c1

3
∑

i,j=1

(Mij)
2 and εij(x)θiθj ≥ c2

3
∑

i=1

θ2i (4)

for every symmetric 3 × 3 real valued matrix M , every vector θ ∈ IR
3 and every x ∈ ω̄ × [−1, 1].

3D-plate in frictional contact – weak formulation. We now give the weak or variational formulation
of (3a)-(3e). We define the space of admissible mechanical displacements

V :=
{

v ∈
(

H1(Ω)
)3

: v|ΓD
= 0

}

that we endow with the norm ‖v‖V = ‖∇v‖(L2(Ω))9 , which, due to the Poincaré inequality is equivalent to the

usual H1-norm. Moreover, we introduce the convex cone

K :=
{

v ∈ V : vn ≤ s on Γ−

}

, where vn = −v3,

as well as the space of admissible electric potentials

Ψ :=
{

ψ ∈ H1(Ω) : ψ|ΓeD
= 0

}

,

in which we use the norm ‖ψ‖Ψ = ‖∇ψ‖(L2(Ω))3 (which is also equivalent to the usual H1-norm).
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Next, we briefly sketch how the variational formulation of (3a)-(3e) is obtained. Using the Green formula in
(3a), we obtain for any v ∈ K

∫

Ω

σij eij(v − u) dx−
∫

∂Ω

σij nj (vi − ui) dΓN =

∫

Ω

fi(vi − ui) dx. (5)

Since v = u = 0 on ΓD, σij nj = gi on ΓN , ∂Ω = ΓD ∪ ΓN ∪ Γ− and due to

σij nj (vi − ui) = σt (vt − ut) + σn (vn − un)

= σt (vt − ut) + σn (vn − s) − σn (un − s),

(5) becomes, using σn(vn − s) ≥ 0 and σn(un − s) = 0 on Γ−,

∫

Ω

σij eij(v − u) dx−
∫

Ω

fi(vi − ui) dx−
∫

ΓN

gi(vi − ui) dΓN ≥
∫

Γ−

σt (vt − ut) dx. (6)

Adding j(v) − j(u) to both sides of (6), where

j(v) :=

∫

Γ−

q |vt| dΓ−, with vt = v − vnn = (v1, v2, 0),

and using
∫

Ω

(

σt (vt − ut) + q|vt| − q|ut|
)

dx ≥ 0,

we obtain
∫

Ω

σij eij(v − u) dx+ j(v) − j(u) −
∫

Ω

fi(vi − ui) dx −
∫

ΓN

gi(vi − ui) dΓN ≥ 0. (7)

Next, from (3b) we have for any ψ ∈ Ψ

−
∫

Ω

Di ∂iψ dx+

∫

ΓeN

θ ψ dΓeN =

∫

Ω

r ψ dx, (8)

where Di ni = θ on ΓeN and ψ = 0 on ΓeD have been used. Summing (7) and (8), using the constitutive
equations (3c) and the transformation ϕ = ϕ̄ + ϕ0, we obtain as weak formulation of (3a)-(3e) the following
elliptic variational inequality of the second kind [9, 13, 14, 18]







Find (u, ϕ̄) ∈ K × Ψ such that:

b
(

(u, ϕ̄), (v − u, ψ)
)

+ j(v) − j(u) ≥ l
(

(v − u, ψ)
)

∀(v, ψ) ∈ K × Ψ,
(9)

where

b
(

(u, ϕ̄), (v, ψ)
)

:=
∫

ΩCe(u) : e(v) dx +
∫

Ω εij ∂iϕ̄ ∂jψ dx

+
∫

Ω
Pijk

(

∂iϕ̄ejk(v) − ∂iψejk(u)
)

dx,

and
l
(

(v, ψ)
)

:=
∫

Ω f · v dx+
∫

ΓN
g · v dΓN +

∫

Ω r ψ dx−
∫

ΓeN
θ ψ dΓeN

−
∫

Ω εij ∂iϕ0 ∂jψ dx−
∫

Ω Pijk ∂iϕ0 ejk(v) dx.
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Remark 2.1. Note that

b
(

(v, ψ), (v, ψ)
)

=

∫

Ω

Ce(v) : e(v) dx +

∫

Ω

εij ∂iψ ∂jψ dx.

Thus, due to (4), the bilinear form b((· , ·), (· , ·)) is V × Ψ- coercive. Since additionally b((· , ·), · , ·)) and the
linear form l((· , ·)) are V × Ψ-continuous, the set K is a nonempty, closed and convex subset of V and the
functional j(·) is proper, convex and continuous on V , there exists a unique solution (u, ϕ̄) of (9) (see for
instance [9, 13, 14, 18]).

3. Asymptotic analysis

In this section, we use an asymptotic method, which is mainly due to [3–5], to derive two-dimensional plate
equations from the three-dimensional system of equations (3a)-(3e). The principal idea is letting the plate’s
thickness h tend to zero, after rescaling the 3D variational inequality (9) to a fixed reference domain that does
not depend on h. We investigate the convergence of the unknowns as h → 0 and analyze the resulting system
of equations.

3.1. Scaling of the 3D-equations to a fixed domain

Here, we redefine the 3D variational problem (9) in the h-independent domain Ω̂ = ω× (−1, 1). To each x =

(x1, x2, x3) ∈ Ω̂ we associate the element x = (x1, x2, hx3) ∈ Ω, through the isomorphism π(x) = (x1, x2, hx3) ∈
Ω . We consider the subsets defined in (1) for the choice h = 1, that is

Γ̂± = ω × {±1}, Γ̂D = γ0 × (−1, 1),

Γ̂1 = γ1 × (−1, 1), Γ̂N = Γ̂1 ∪ Γ̂+,

Γ̂s = γs × (−1, 1), Γ̂e = γe × (−1, 1),

and the disjoint partitions Γ̂eN , Γ̂eD of ∂Ω̂ defined by consequently replacing Γ by Γ̂ in (2).
We denote by n = (n1, n2) = (nα) the unit outer normal vector along ∂ω, by t = (t1, t2) = (tα), with

t1 = −n2 and t2 = n1, the unit tangent vector along ∂ω, by ∂θ
∂ν = να∂αθ the outer normal derivative of the

scalar function θ along ∂ω. For the asymptotic process we need the data to satisfy the following hypotheses

fα ◦ π = h2f̂α, f3 ◦ π = h3f̂3 in Ω̂,

gα ◦ π = h2ĝα, g3 ◦ π = h3ĝ3 in Γ̂1,

gα ◦ π = h3gα, g3 ◦ π = h4ĝ3 in Γ̂+,

ϕ0 ◦ π = h3ϕ̂0, r ◦ π = h r̂ in Ω̂,

s ◦ π = h ŝ, q ◦ π = h3q̂ in Γ̂−,

θ ◦ π = h θ̂ in Γ̂s ∪ Γ̂e, θ ◦ π = h2θ̂ in Γ̂±.

(10)

Above, we assume that f̂α ∈ H1(Ω), f̂3 ∈ L2(Ω), ĝα ∈ H1(Γ̂N ), ĝ3 ∈ L2(Γ̂N ), r̂ ∈ L2(Ω), θ̂ ∈ L2(Γ̂eN ),

ϕ̂0 ∈ H1(Ω), q̂ ∈ L2(Γ̂−) and ŝ ∈ L2(Γ̂−) with ŝ ≥ 0. In addition, we denote by ĝ+
3 = ĝ3|

Γ̂+

, ϕ̂+
0 = ϕ̂0|

Γ̂+

,

ϕ̂−
0 = ϕ̂0|

Γ̂−
and we assume that ϕ̂+

0 − ϕ̂−
0 ∈ H1(ω). The unknowns are rescaled as follows

uα ◦ π = h2uh
α, u3 ◦ π = huh

3 and ϕ ◦ π = h3ϕh in Ω̂, (11)

and analogous scalings to (11) hold for the test functions v and ψ in (9).
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At this point, we briefly comment on the choice (10)-(11) for the scalings of data, unknowns and test functions.
For the mechanical forces and displacements we assume the scalings also used in [5] for linearly elastic plates.
In [24] it is shown that these are (up to a multiplicative power of h) “the only possible scalings” that lead to a
linear Kirchhoff-Love theory in the asymptotic analysis. Regarding the scalings for the electric variables ϕ0, r,
θ, ϕ and ψ our scalings are chosen such that we are able to compute the limit as h→ 0 of the model (15) given
below. We also refer to [11, 25, 28], where scalings as given by (10)-(11) are used as well. However, different
electric scalings have to be used if other electric boundary conditions are chosen, see the remark on page 16.

The scaled spaces for the admissible mechanical and electric potential displacements are given by

V̂ :=
{

v ∈
(

H1(Ω̂)
)3

: v|Γ̂D
= 0

}

,

Ψ̂ :=
{

ψ ∈ H1(Ω̂) : ψ|Γ̂eD
= 0

}

.

As before, the spaces are endowed with the norms ‖v‖V̂ = ‖∇v‖(L2(Ω̂))9 and ‖ψ‖Ψ̂ = ‖∇ψ‖(L2(Ω̂))3 , respectively.

The scaled convex cone needed for the Signorini contact conditions is given by

K̂ :=
{

v ∈ V̂ : vn = −v3 ≤ s on Γ̂−

}

.

For any v ∈ V̂ we define the second order symmetric tensor field κh(v) = (κh
ij(v)) by

κh
αβ(v) := eαβ(v) = 1

2 (∂βvα + ∂αvβ),

κh
α3(v) := 1

heα3(v) = 1
2h (∂3vα + ∂αv3),

κh
33(v) := 1

h2 e33(v) = 1
h2 ∂3v3.

(12)

As a consequence of the scalings (11) we have for the strain tensors e(u), e(v) with v ∈ V

e(u) = h2κh(uh) and e(v) = h2κh(v ◦ π) with v ◦ π ∈ V̂ .

For the stress tensor and the electric displacement vector we obtain the scalings

σh
ij(u

h, ϕh) = h−2σij(u, ϕ), Dh
i (uh, ϕh) = h−2Dh

i (u, ϕ), (13)

where

σh
ij(u

h, ϕh) = Cijlm κh
lm(uh) + hPαij ∂αϕ

h + P3ij ∂3ϕ
h,

Dh
i (uh, ϕh) = Pilm κh

lm(uh) − h εiα ∂αϕ
h − εi3 ∂3ϕ

h.
(14)

Weak formulation of the 3D scaled plate problem. Using the above scalings and assumptions (10) on

the data, we obtain for each h > 0 a problem on the fixed domain Ω̂ that is equivalent to (9):







Find (uh, ϕ̄h) ∈ K̂ × Ψ̂ such that:

bh
(

(κh(uh), ϕ̄h), (κh(v) − κh(uh), ψ)
)

+ j(v) − j(uh) ≥ lh
(

(v − uh, ψ)
)

, ∀(v, ψ) ∈ K̂ × Ψ̂,
(15)
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where ϕ̄h = ϕh − ϕ̂0, and for κ, ϑ in (L2(Ω̂))9 and ϕ, ψ in Ψ,

bh
(

(κ, ϕ), (ϑ, ψ)
)

:=















∫

Ω̂
Cκ : ϑ dx+

∫

Ω̂
ε33 ∂3ϕ∂3ψ dx+

∫

Ω̂
P3jk

(

∂3ϕϑjk − ∂3ψ κjk

)

dx

+h
∫

Ω̂
ε3α

(

∂αϕ∂3ψ + ∂3ϕ∂αψ
)

dx+ h
∫

Ω̂
Pαjk

(

∂αϕϑjk − ∂αψ κjk

)

dx

+h2
∫

Ω̂
εαβ ∂αϕ∂βψ dx,

j(v) :=

∫

Γ̂−

q̂ |vt| dΓ̂− with vt := v − vnn = (v1, v2, 0),

lh
(

(v, ψ)
)

:=















∫

Ω̂
f̂ · v dx+

∫

Γ̂N
ĝ · v dΓ̂N +

∫

Ω̂
r̂ ψ dx−

∫

Γ̂eN
θ̂ ψ dΓ̂eN −

∫

Ω̂
ε33 ∂3ϕ̂0 ∂3ψ dx

−h
∫

Ω̂
εα3

(

∂αϕ̂0 ∂3ψ + ∂3ϕ0 ∂αψ
)

dx− h2
∫

Ω̂
εαβ ∂αϕ̂0 ∂βψ dx

−
∫

Ω̂
P3ij ∂3ϕ̂0 κ

h
ij(v) dx − h

∫

Ω̂
Pαij ∂αϕ̂0 κ

h
ij(v) dx.

Using the relation (12) between κh(v) and v, in the sequel (mainly in the proof of Theorem 3.1), we abbreviate

bh
(

(κh(uh), ϕ), (κh(v), ψ)
)

by bh
(

(uh, ϕ), (v, ψ)
)

.

In contrast to (9), where the dependence on the parameter h is implicit (by means of the domain Ω), problem
(15) now depends explicitly on h, but is defined on a domain independent of h.

3.2. Convergence as h→ 0+

The aim of this section is to study the limit behavior of the sequences (uh) and (ϕh) as h→ 0+. We are able
to prove strong convergence of these sequences and give a limit problem that characterizes these limits. It will
turn out that the limit displacement is an element of V̂KL, the Kirchhoff-Love mechanical displacement space
defined by (see also [5])

V̂KL :=
{

v = (v1, v2, v3) ∈
(

H1(Ω̂)
)3

: v|
Γ̂D

= 0, ei3(v) = 0
}

=
{

v = (v1, v2, v3) ∈
(

H1(Ω̂)
)3

: ∃η = (η1, η2, η3) ∈
(

H1(ω)
)2 ×H2(ω), ∂νη3|γ0

= 0,

η1|γ0
= η2|γ0

= η3|γ0
= 0, vα(x) = ηα(x1, x2) − x3∂αη3(x1, x2), v3(x) = η3(x1, x2)

}

.

(16)

Moreover, Ψ̂l and Ψ̂l0 are the spaces for the admissible electric potentials defined by

Ψ̂l :=
{

ψ ∈ L2(Ω̂) : ∂3ψ ∈ L2(Ω̂)
}

and Ψ̂l0 :=
{

ψ ∈ L2(Ω̂) : ∂3ψ ∈ L2(Ω̂), ψ|S = 0
}

, (17a)

where S =







Γ̂± for (ebc1),

Γ̂− for (ebc2),

Γ̂+ for (ebc3).

(17b)

As usual, V̂KL is endowed with the norm ‖v‖V̂KL
:= ‖eαβ(v)‖(L2(Ω̂))4 , which is equivalent to the

(

H1(Ω̂)
)3

-norm

for elements in V̂KL, see [5]. For the space Ψ̂l we use the norm ‖ψ‖Ψ̂l
:=

(

‖ψ‖2
L2(Ω̂)

+ ‖∂3ψ‖2
L2(Ω̂)

)1/2
. Finally,

Ψ̂l0 is endowed with the norm ‖ψ‖Ψ̂l0
:= ‖∂3ψ‖L2(Ω̂), which is equivalent to the norm defined in Ψ̂l for elements

in Ψ̂l0.
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Theorem 3.1. As h → 0+, the sequence {(uh, ϕh)}h converges strongly to (u⋆, ϕ⋆) ∈ V̂KL × Ψ̂l. This limit
pair is characterized as the unique solution of the variational problem















Find (u⋆, ϕ⋆) ∈ V̂KL ∩ K̂ × Ψ̂l such that:

a
(

(u⋆, ϕ⋆), (v − u⋆, ψ)
)

+ j(v) − j(u⋆) ≥ l
(

(v − u⋆, ψ)
)

∀(v, ψ) ∈ V̂KL ∩ K̂ × Ψ̂l0,

ϕ⋆ = ϕ̂0, on S,

(18)

where S ⊂ ∂Ω is defined in (17b) and a
(

· , ·
)

and l(·) are given by

a
(

(u⋆, ϕ⋆), (v, ψ)
)

:=
∫

Ω̂
Aαβγρeαβ(u⋆)eγρ(v) dx+

∫

Ω̂
p33 ∂3ϕ

⋆ ∂3ψ dx

−
∫

Ω̂
p3αβ

(

eαβ(u⋆)∂3ψ − eαβ(v)∂3ϕ
⋆
)

dx,

l
(

(v, ψ)
)

:=

∫

Ω̂

f̂ · v dx+

∫

Γ̂N

ĝ · v dΓ̂N +

∫

Ω̂

r̂ ψ dx−
∫

Γ̂eN

θ̂ ψ dΓ̂N , (19)

where Aαβγρ, p3αβ and p33 are modified material parameters (see part A of the appendix for details).

Proof. For convenience of the reader, we split the proof into five steps.

Step 1 - Existence of weak limits u⋆, κ⋆ and ϕ⋆ of subsequences of (uh), (κh(uh)) and (ϕh), respectively. We

first choose (v, ϕ) ∈ K̂ × Ψ̂ in (15) such that vα = uh
α, v3 = 0 and ψ = −ϕ̄h. This results in j(v) − j(uh) = 0

and thus (15) becomes

bh
(

(uh, ϕ̄h), ((0, 0, uh
3), ϕ̄h)

)

≤ lh
(

((0, 0, uh
3), ϕ̄h)

)

. (20)

Next, choosing (v, ϕ) ∈ K̂ × Ψ̂ as vα = −uh
α, v3 = uh

3 and ψ = −2ϕ̄h, again j(v) − j(uh) = 0 and from (15)

bh
(

(uh, ϕ̄h), ((−2uh
1 ,−2uh

2 , 0),−2ϕ̄h)
)

≥ lh
(

((−2uh
1 ,−2uh

2 , 0),−2ϕ̄h)
)

,

which is equivalent to

bh
(

(uh, ϕ̄h), ((uh
1 , u

h
2 , 0), ϕ̄h)

)

≤ lh
(

((uh
1 , u

h
2 , 0), ϕ̄h)

)

. (21)

Adding (20) and (21) results in

bh
(

(uh, ϕ̄h), (uh, ϕ̄h)
)

≤ lh
(

(uh, ϕ̄h)
)

,

from which we can deduce

‖uh‖2
V̂

+

∫

Ω̂

κh(uh) : κh(uh)dx+ ‖h ∂1ϕ̄
h‖2

L2(Ω̂)
+ ‖h ∂2ϕ̄

h‖2
L2(Ω̂)

+ ‖∂3ϕ̄
h‖2

L2(Ω̂)
< c, (22)

where c > 0 is a constant independent of h (see also [28]). Consequently, there are weakly convergent subse-
quences of (uh), (κh(uh)) and (ϕh) with

uh ⇀ u⋆ in
(

H1(Ω̂)
)3
,

κh(uh) ⇀ κ⋆ in
(

L2(Ω̂)
)9
,

ϕ̄h ⇀ ϕ̄⋆ = ϕ⋆ − ϕ̂0 in L2(Ω̂),

ϕh ⇀ ϕ⋆ in L2(Ω̂),

(h∂1ϕ
h, h∂2ϕ

h, ∂3ϕ
h) ⇀ (0, 0, ∂3ϕ

⋆) in
(

L2(Ω̂)
)3
.

(23)
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The first two weak convergences follow directly from (22). The existence of the third and fourth weak limit in
(23) follows from (22) using the fact that

ϕ̄h(x1, x2, x3) =

{ ∫ x3

−1 ∂3ϕ̄
h(x1, x2, y3)dy3 for S = Γ̂± or S = Γ̂−

−
∫ +1

x3
∂3ϕ̄

h(x1, x2, y3)dy3 for S = Γ̂+,
(24)

which results in

‖ϕ̄h‖L2(Ω̂) ≤
√

2 ‖∂3ϕ̄
h(x1, x2, x3)‖L2(Ω̂) ≤ c (25)

with c > 0 independent of h. This implies the L2(Ω̂)-boundedness of ϕ̄h and ϕh = ϕ̄h + ϕ̂0. In particular,

ϕ⋆ = ϕ̂0 on S because ϕ̄h = 0 on Γ̂eD ⊇ S. Finally, the last convergence in (23) is a consequence of (22), which
implies that

(h∂1ϕ
h, h∂2ϕ

h, ∂3ϕ
h) ⇀ (ϑ1, ϑ2, ϑ3) in

(

L2(Ω̂)
)3
.

The weak convergence of ϕh to ϕ⋆ yields ∂iϕ
h ⇀ ∂iϕ

⋆ in L2(Ω̂), and thus ϑα = 0 for α = 1, 2, and ϑ3 = ∂3ϕ
⋆.

Moreover, from (23) we can also deduce that u⋆ ∈ V̂KL. In fact, from (22) we obtain boundedness of the

sequence κh
i3(u

h) in L2(Ω̂). Consequently, eα3(u
h) = hκh

α3(u
h) and e33(u

h) = h2κh
33(u

h) → 0 strongly in L2(Ω̂).

Thus, ei3(u
⋆) := 1

2 (∂iu
⋆
3 + ∂3u

⋆
i ) = 0, which implies u⋆ ∈ V̂KL. We also remark that, appropriate choice of

subsequences guarantees that

κ⋆
αβ = eαβ(u⋆) =

1

2
(∂αu

⋆
β + ∂βu

⋆
α) (26)

yielding that the weak limit κ⋆ depends explicitly on u⋆.

Step 2 - Auxiliary results. As a consequence of the weak convergences (23) we obtain for arbitrary (v, ψ) ∈
V̂KL × Ψ̂ that

lim
h→0+

bh
(

(uh, ϕh), (v, ψ)
)

:= b⋆
(

(u⋆, ϕ⋆), (v, ψ)
)

,

lim
h→0+

lh
(

(v, ψ
)

) := l⋆
(

(v, ψ
)

),

where for (v, ψ) in V̂KL × Ψ̂

b⋆
(

(u⋆, ϕ⋆), (v, ψ)
)

:=
∫

Ω̂
Cαβijκ

⋆
ijeαβ(v) dx+

∫

Ω̂
ε33 ∂3ϕ

⋆ ∂3ψ dx+

+
∫

Ω̂
P3αβ ∂3ϕ

⋆ eαβ(v) dx −
∫

Ω̂
P3lm ∂3ψ κ

⋆
lm dx,

(27)

and

l⋆
(

(v, ψ
)

) :=
∫

Ω̂
f̂ · v dx+

∫

Γ̂N
ĝ · v dΓ̂N +

∫

Ω̂
r̂ ψ dx−

∫

Γ̂eN
θ̂ ψ dΓ̂N

−
∫

Ω̂
ε33 ∂3ϕ̂0 ∂3ψ dx−

∫

Ω̂
P3αβ ∂3ϕ̂0 eαβ(v) dx.

Moreover

lim
h→0+

(

j(v) − j(uh)
)

= j(v) − j(u⋆).

Step 3 - The weak limits u⋆, κ⋆ and ϕ⋆ are also strong limits. Here, it suffices to prove that χh strongly
converges to χ⋆ in (L2(Ω̂))12, with

χh = (κh(uh), h∂1ϕ
h, h∂2ϕ

h, ∂3ϕ
h) ∈

(

L2(Ω̂)
)12

χ⋆ = (κ⋆, 0, 0, ∂3ϕ
⋆) ∈

(

L2(Ω̂)
)12

.
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By the ellipticity and linearity of bh(. , .), we have

c‖χh − χ⋆‖2
(L2(Ω̂))12

≤ bh
(

(κh(uh) − κ⋆, ϕh − ϕ⋆), (κh(uh) − κ⋆, ϕh − ϕ⋆)
)

= bh
(

(κh(uh), ϕh), (κh(uh), ϕh)
)

+ bh
(

(κ⋆, ϕ⋆), (κ⋆, ϕ⋆)
)

−bh
(

(κh(uh), ϕh), (κ⋆, ϕ⋆)
)

− bh
(

(κ⋆, ϕ⋆), (κh(uh), ϕh)
)

,

(28)

where c > 0 is independent of h. Replacing ψ by ψ − ϕh in (15), we obtain

bh
(

(κh(uh), ϕ̄h), (κh(v) − κh(uh), ψ − ϕh)
)

+ j(v) − j(uh) ≥ lh
(

v − uh, ψ − ϕh
)

,

which is, recalling that ϕ̄h = ϕh − ϕ̂0 and noticing that (κh(v) − κh(uh), ψ − ϕh) = (κh(v), ψ) − (κh(uh), ϕh),
equivalent to

bh
(

(κh(uh), ϕh), (κh(uh), ϕh)
)

≤ bh
(

(κh(uh), ϕh), (κh(v), ψ)
)

+ j(v) − j(uh)

−
∫

Ω̂
f · (v − uh) dx−

∫

Γ̂N
g · (v − uh) dΓ̂N

−
∫

Ω̂
r (ψ − ϕh) dx +

∫

Γ̂eN
θ (ψ − ϕh) dΓ̂eN ,

(29)

for any v ∈ K̂. Thus, considering v ∈ V̂KL ∩ K̂ in (15), using the weak convergences (23) and the limits of step
2, we derive from (28) and (29) the estimate

c lim sup ‖χh − χ⋆‖2
(L2(Ω̂))12

≤ b⋆
(

(u⋆, ϕ⋆), (v, ψ)
)

+ j(v) − j(u) − l(v − u⋆, ψ − ϕ⋆) − b⋆
(

(u⋆, ϕ⋆), (u⋆, ϕ⋆)
)

= b⋆
(

(u⋆, ϕ⋆), (v − u⋆, ψ − ϕ⋆)
)

+ j(v) − j(u⋆) − l(v − u⋆, ψ − ϕ⋆),

with l(.) as defined in (19). Choosing v = u⋆ and ψ = ϕ⋆ in the above estimate yields

c lim sup ‖χh − χ⋆‖(L2(Ω̂))12 ≤ 0,

which implies the strong convergence of χh to χ⋆ in (L2(Ω̂))12. Due to ∂3(ϕ
h − ϕ⋆) → 0 strongly in L2(Ω̂)

and ϕh − ϕ⋆ ∈ Ψ̂l0, we obtain ϕh − ϕ⋆ → 0 strongly in L2(Ω̂) using the equivalence of the norms ‖.‖Ψl
and

‖.‖Ψl0
in Ψl0. Moreover, ei3(u

⋆) = 0, eαβ(u⋆) = κ⋆
αβ and κh(uh) → κ⋆ strongly in (L2(Ω̂))9. Thus, we have

eαβ(uh) → eαβ(u⋆) strongly in (L2(Ω̂))9, which proves that uh → u⋆ strongly in (H1(Ω̂))3.

Step 4 - Formulas for κ⋆ = (κ⋆
ij). In (26) we already observed that κ⋆

αβ = eαβ(u⋆). To obtain formulas for κ⋆
α3

and κ⋆
33, we first multiply (15) by h2 and consider ψ = 0. Next, we multiply (15) by h and consider v3 = uh

3 and
ψ = 0. Due to the strong convergences proved in step 3, as h → 0+ the limit in the two resulting variational
inequalities exists and we obtain

∫

Ω̂

(

Cij33 κ
⋆
ij + P333 ∂3ϕ

⋆
)

∂3(v3 − u⋆
3) dx ≥ 0 ∀v3 ∈ H1(Ω̂), v3|Γ̂−

≥ −s, v3|Γ̂D
= 0, (30a)

∫

Ω̂

(

Cijα3 κ
⋆
ij + P3α3 ∂3ϕ

⋆
)

∂3(vα − u⋆
α) dx ≥ 0 ∀vα ∈ H1(Ω̂), vα|Γ̂D

= 0. (30b)



TITLE WILL BE SET BY THE PUBLISHER 13

Since u⋆
3 is independent of x3, we obtain ∂3u

⋆
3 = 0 in (30a). In (30b), we choose vα := zα +u⋆

α with zα ∈ H1(Ω̂)
arbitrary with zα|Γ̂D

= 0. Hence, the inequalities (30) become

∫

Ω̂

(

Cij33 κ
⋆
ij + P333 ∂3ϕ

⋆
)

∂3v3 dx ≥ 0 ∀v3 ∈ H1(Ω̂), v3|Γ̂−
≥ −s, v3|Γ̂D

= 0, (31a)

∫

Ω̂

(

Cijα3 κ
⋆
ij + P3α3 ∂3ϕ

⋆
)

∂3vα dx = 0 ∀vα ∈ H1(Ω̂), vα|Γ̂D
= 0. (31b)

For arbitrary θ ∈ D(Ω̂) we consider v3 in (31a) as

v3(x1, x2, x3) =
∫ x3

−1
θ(x1, x2, t) dt+ z3(x1, x2),

with z3 ∈ H1(ω) such that z3(x1, x2) ≥ −s(x1, x2,−1) for all (x1, x2) ∈ ω. Moreover, we choose vα in (31b) as

vα(x1, x2, x3) =

∫ x3

−1

θ(x1, x2, t) dt.

Then, from (31) we obtain

Cij33 κ
⋆
ij + P333 ∂3ϕ

⋆ = 0 in L2(Ω̂),

Cijα3 κ
⋆
ij + P3α3 ∂3ϕ

⋆ = 0 in L2(Ω̂).
(32)

Since κ⋆
αβ = eαβ(u⋆), this leads to the formulas

κ⋆
α3 = − 1

2bνα

(

aνρβeρβ(u⋆) + cν∂3ϕ
⋆
)

κ⋆
33 = − 1

C3333

(

P333∂3ϕ
⋆ + C33αβeαβ(u⋆)

)

+ C33α3

C3333
bνα

(

aνρβeρβ(u⋆) + cν∂3ϕ
⋆
) (33)

where the coefficients bνα, aνρβ and cν are modified material parameters defined in part A of the appendix.

Step 5 - The limit variational inequality. From the previous steps 3-4 and (14) we directly obtain the following

strong L2(Ω̂)-convergences, for the scaled stress tensor and the electric displacement vector

σh
ij(u

h, ϕh) → σ⋆
ij and Dh

i (uh, ϕh) → D⋆
i

where
σ⋆

αβ = Cαβlmκ
⋆
lm + P3αβ∂3ϕ

⋆

σ⋆
i3 = Ci3lmκ

⋆
lm + P3i3∂3ϕ

⋆ = 0 (because of (32))

D⋆
i = Pilmκ

⋆
lm − εi3∂3ϕ

⋆.

(34)

With (33) for κ⋆ we get
σ⋆

αβ = Aαβγρeαβ(u⋆) + p3αβ∂3ϕ
⋆

D⋆
i = piαβeαβ(u⋆) − pi3∂3ϕ

⋆,
(35)

where the coefficients Aαβγρ, piαβ and pi3 are defined in the appendix, part A.
Using again the strong convergences obtained in step 3 and ϕ⋆ = ϕ̄⋆ + ϕ̂0 we can take the limit in (15) and

obtain the limit variational inequality:















Find (u⋆, ϕ⋆) ∈ V̂KL ∩ K̂ × Ψ̂l such that:

b⋆
(

(u⋆, ϕ⋆), (v − u⋆, ψ)
)

+ j(v) − j(u⋆) ≥ l
(

(v − u⋆, ψ)
)

∀(v, ψ) ∈ V̂KL ∩ K̂ × Ψ̂l0,

ϕ⋆ = ϕ̂0 on S.

(36)
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Here the linear form l(·) is defined by (19) and the bilinear form b⋆(· , ·) by (27). From (34) one obtains

b⋆
(

(u⋆, ϕ⋆), (v, ψ)
)

=

∫

Ω̂

σ⋆
αβ eαβ(v) dx −

∫

Ω̂

D⋆
3 ∂3ψ dx. (37)

Using now the equivalent definitions of σ⋆
αβ and D⋆

3 given in (35), the right-hand side of (37) turns out to be

precisely a
(

(u⋆, ϕ⋆), (v, ψ)
)

. Hence (36) coincides with the limit problem (18) and the proof of the theorem is

finished. We remark that, the solution of this limit problem is unique if the bilinear form a
(

· , ·
)

in (18) is elliptic

in the set VKL ∩ K̂ × Ψ̂l0 (cf. [14]). This is, for instance, the case if the material is mechanically monoclinic,
that is, Cαβγ3 = 0 = Cα333 (see Theorem 3.3 in [11]). One easily verifies that this ellipticity result also holds
true for a laminated plate with mechanically monoclinic piezoelectric layers. �

Remark 3.2. Note that the proof of the previous theorem is technically more involved than in the case without
contact (see [8, 11, 28]). In particular, to identify the asymptotic model (18) the derivation of explicit formulas
for κ⋆ = (κ⋆

ij) is crucial: in the case without contact weak convergences of the sequences (uh), (ϕh) and (κh(uh))
is sufficient, while for the contact case it is necessary to prove the strong convergences (see step 3). Moreover,
in order to derive formulas for κ⋆ = (κ⋆

ij) one needs to choose appropriate test functions (see step 4).

3.3. Rescaling to the original domain

The limit variational inequality (18) can be rescaled to the original plate Ω = ω× (−h, h). In order to do so,
let x3 ∈ (−1,+1) and u⋆

α = ζ⋆
α − x3∂αζ

⋆
3 , u⋆

3 = ζ⋆
3 be the components of the Kirchhoff-Love limit displacement

u⋆. The corresponding descaled function ζ = (ζ1, ζ2, ζ3) is given by

ζα := h2ζ⋆
α, ζ3 := h ζ⋆

3 in ω̄,

which leads to the descaled variables

uα(x) := h2u⋆
α = ζα(x1, x2) − x3∂αζ3(x1, x2),

u3(x) := hu⋆
3(x1, x2) = ζ3(x1, x2),

ϕ(x) := h3ϕ⋆(x),

for x = (x1, x2, x3) ∈ Ω = ω × (−h, h). Above, ζα and ζ3 are in-plane and transverse Kirchhoff-Love displace-
ments, ui is the limit mechanical displacements and ϕ the electric potential inside the plate Ω. The spaces VKL,

Ψl and Ψl0 correspond to the descaled variables defined over Ω and are given by (16)–(17) with Ω̂ replaced by

Ω and Γ̂ by Γ in the definition of S.
Plugging the rescaled variables in the limit problem found in Theorem 3.1, we obtain the following rescaled

limit problem:















Find (u, ϕ) ∈ VKL ∩K × Ψl such that:

a
(

(u, ϕ), (v − u, ψ)
)

+ j(v) − j(u) ≥ l
(

(v − u, ψ)
)

, ∀(v, ψ) ∈ VKL ∩K × Ψl0,

ϕ = ϕ0, on S,

(38)

where for u, v in VKL and ϕ, ψ in Ψ

a
(

(u, ϕ), (v, ψ)
)

:=
∫

Ω
Aαβγρeαβ(u)eγρ(v) dx +

∫

Ω
p33 ∂3ϕ∂3ψ dx

−
∫

Ω p3αβ

(

eαβ(u) ∂3ψ − eαβ(v) ∂3ϕ
)

dx,
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and

l
(

(v, ψ)
)

:=

∫

Ω

f · v dx+

∫

ΓN

g · v dΓN +

∫

Ω

r ψ dx−
∫

ΓeN

θ ψ dΓeN .

3.4. Decoupling of u and ϕ

The structure of the bilinear form a(· , ·), obtained by the asymptotic procedure above allows a certain
uncoupling of the mechanical displacement u and the electric potential ϕ. This leads to a variational inequality
in the mechanical displacement u only, and an explicit formula for the electric potential. This explicit form,
which is a second order polynomial with coefficients that depend on the Kirchhoff-Love displacement u, obeys
a slightly different form for each of the boundary partitions (ebc1), (ebc2), (ebc3) for the electric data.

To derive the decoupling, we choose v = u in the variational inequality (38) and obtain

∫

Ω

(

p33 ∂3ϕ− p3αβ eαβ(u)
)

∂3ψ dx =

∫

Ω

r ψ dx−
∫

ΓeN

θ ψ dΓeN

for all ψ ∈ Ψl0. Due to the density of Ψl0 in D(Ω) (see [28]), this yields the following formula for ∂3ϕ

∂3ϕ =
p3αβ

p33

(

eαβ(ζ) − x3 ∂αβζ3
)

− d

p33
with d = P3r + c, (39)

where c ∈ D(ω) and P3r =
∫ x3

−h
r dy3 denotes the antiderivative of r with respect to the thickness variable x3.

Using this latter formula and one of the boundary conditions (ebci), we obtain explicit formulas for the electric
potential. In the case that the electric potential is given on both the upper and lower surface Γ− and Γ+,
we integrate (39) with respect to x3. Then, using the given boundary data, we obtain the formula (see also
Theorem 2.1 in [8])

ϕ(x1, x2, x3) = ϕ−
0 (x1, x2)+

∫ x3

−h

(

(p3αβ

p33
− aαβ

p33
c0

)

eαβ(ζ) −
(p3αβ

p33
y3 −

bαβ

p33
c0

)

∂αβζ3 +
(ϕ+

0 − ϕ−
0 +R) c0 − P3r

p33

)

dy3,

(40)

where

aαβ :=

∫ +h

−h

p3αβ

p33
dx3, bαβ :=

∫ +h

−h

x3
p3αβ

p33
dx3, c0 =

(

∫ +h

−h

1

p33
dx3

)−1

, R :=

∫ +h

−h

P3r

p33
dx3.

For the case that the electric potential is either given on Γ− or Γ+, i.e., for the cases (ebc2) and (ebc3), we plug
(39) into (38) and choose again v = u to obtain

−
∫

Ω

(P3r + c) ∂3ψ dx =

∫

Ω

r ψ dx−
∫

ΓeN

θ ψ dΓeN .

From the Green formula we obtain ∂3(P3r + c) = r in D(Ω) and

−
∫

ΓeN

(P3r + c)n3ψ dx−
∫

ΓeD

(P3r + c)n3ψ dx = −
∫

ΓeN

θ ψ dΓeN , (41)
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with n3 = 0 on the lateral boundaries Γe and Γs, n3 = ±1 on Γ± and ψ = 0 on ΓeD. Choosing ψ such that
ψ = 0 on the lateral boundary, (41) reduces to

∫

Γ+

(P3r + c)ψ dΓ+ =

∫

Γ+

θ ψ dΓ+ for (ebc2),

−
∫

Γ−

(P3r + c)ψ dΓ− =

∫

Γ−

θ ψ dΓ− for (ebc3).

This implies, for (ebc2) that c(x1, x2) = (θ−P3r)(x1, x2,+h), and for (ebc3) that c(x1, x2) = (−θ−P3r)(x1 , x2,−h).
Consequently, integrating (39) with d = P3r+ c along the thickness variable (from −h to x3 for (ebc2) and from
x3 to +h for (ebc3)), we obtain

ϕ(x1, x2, x3) = ϕ−
0 (x1, x2) +

∫ x3

−h

p3αβ

p33

(

eαβ(ζ) − y3 ∂αβζ3
)

dy3

−
∫ x3

−h

P3r(x1, x2, y3) + (θ − P3r)(x1, x2,+h)

p33
dy3 for (ebc2)

(42)

and

ϕ(x1, x2, x3) = ϕ+
0 (x1, x2) −

∫ +h

x3

p3αβ

p33

(

eαβ(ζ) − y3 ∂αβζ3
)

dy3

+

∫ +h

x3

P3r(x1, x2, y3) + (−θ − P3r)(x1 , x2,−h)
p33

dy3 for (ebc3).

(43)

Next, we plug the above explicit forms for the electric potential into (38) and choose the electric test function
ψ = 0. This gives an equivalent formulation for the variational inequality (38), which is summarized in the
next theorem. Now, the mechanical displacement and the electric potential are not coupled in the variational
inequality any more. The main advantage of this decoupled formulation is that after solving a variational
inequality for the mechanical displacement, one can use an explicit formula for the electric potential.

Theorem 3.3. Let (u, ϕ) ∈ VKL × Ψl be a solution of problem (38), where uα = ζα − x3∂αζ3, u3 = ζ3, and
ζ = (ζ1, ζ2, ζ3). Then the Kirchhoff-Love mechanical displacement u ∈ VKL is also characterized as solution of
the variational inequality

{

Find u ∈ VKL ∩K such that:

aebci(u, v − u) + j(v) − j(u) ≥ lebci(v − u) ∀v ∈ VKL ∩K,
(44)

and the electric potential can be derived a posteriori from (40) for (ebc1), (42) for (ebc2) and (43) for (ebc3).
The modified bilinear and linear forms, respectively aebci(·, ·) and lebci(·), are defined by

aebci(u, v) :=

∫

ω

(

Nebci
αβ (u) eαβ(η) +M ebci

αβ (u) ∂αβη3

)

dω,

lebci(v) :=

∫

Ω

f · v dΩ +

∫

ΓN

g · v dΓN + lebci
e (v),

where Nebci
αβ (u), M ebci

αβ (u) and lebci
e (.) are detailed in part B of the appendix.

Remark 3.4. Let us comment on a different (fourth) choice of electric boundary condition (ebc4) given by

(ebc4) : ΓeN = Γs ∪ Γ− ∪ Γ+ and ΓeD = Γe
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where we assume meas(γe) > 0. This means that we apply an electric surface charge on both the upper and
lower surface of the plate. This case requires a different treatment in the asymptotic analysis: Note that in-

stead of (23) we only obtain uh ⇀ u⋆ in
(

H1(Ω̂)
)3

, κh(uh) ⇀ κ⋆ in
(

L2(Ω̂)
)9

and (h∂1ϕ
h, h∂2ϕ

h, ∂3ϕ
h) ⇀

(ϑ1, ϑ2, ϑ3) in
(

L2(Ω̂)
)3

. Now, we cannot conclude that ϕh, ϕ̄h are weakly convergent since (24) and con-
sequently (25) do not apply. Hence, ϑ1, ϑ2 are not necessary equal to zero and the limit problem changes
considerably. This is in accordance with observations in [25,26,33], where it is shown that for different electric
boundary conditions significantly different limit problems may arise. To obtain an easier interpretation for the
limit problem in case of (ebc4), it might be advantageous to consider scalings different from those used in this
paper for the electric potential.

Remark 3.5. We now sketch the strong (i.e., the differential) form of the limit problem obtained in Theorem
3.3. This form uses Lagrange multipliers to resolve the contact and friction conditions and is obtained assuming
sufficient regularity of (u, ϕ) as well as partial integration. It follows from duality theory [10] that there exist
so called multipliers (or dual variables) (λ, µ) ∈ (H2(ω))′ × (L2(ω))2 satisfying complementarity conditions (see
(48d), (48e) below) for (44), where (H2(ω))′ denotes the dual of H2(ω). Then, u ∈ VKL ∩K can be written as

aebci(u, v) +

∫

Γ−

λ vn dΓ− +

∫

Γ−

µ · vt dΓ− = lebci(v), ∀v ∈ VKL. (45)

Choosing test functions v = (η1 − x3∂1η3, η2 − x3∂2η3, η3) ∈ VKL with η1 = η2 = 0 and η3 6= 0, i.e., v =
(−x3∂1η3,−x3∂2η3, η3), (45) is equivalent to

∫

ω

M ebci
αβ (u) ∂αβη3 −

∫

Γ−

λ η3 dΓ− +

∫

Γ−

µα (−x3∂αη3) dΓ− =

lebci
(

(−x3∂1η3,−x3∂2η3, 0)
)

∀η3 ∈ H2(ω) with η3 = 0 on γ0.

(46)

On the other hand, choosing η3 = 0 and ηα 6= 0 for α = 1, 2, i.e., v = (η1, η2, 0), (45) becomes

∫

ω

Nebci
αβ (u) eαβ(η) +

∫

Γ−

µα ηα dΓ− = lebci
(

(η1, η2, 0)
)

∀(η1, η1) ∈
(

H1(ω)
)2

with ηα = 0 on γ0. (47)

Using Green’s theorem in (46) and (47) while neglecting regularity issues, and stating the complementarity
conditions satisfied by (λ, µ) leads to the following strong formulation of the limit problem.
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Equilibrium equations (coupling mechanical and electric effects)
[

∂αβM
ebci
αβ (u) − λ+ hx3 ∂αµα = F ebci

3 in ω,

−∂αN
ebci
αβ (u) + µβ = F ebci

β on ω, and β = 1, 2.
(48a)

Boundary conditions
[

ζ3 = 0 = ∂ζ3

∂n , (ζ1, ζ2) = (0, 0) on γ0,

boundary conditions for the terms M ebci
αβ + µα and Nebci

αβ .
(48b)

Constitutive equations
[

σαβ(u, ϕ) = Aαβγρeγρ(u) + p3αβ∂3ϕ, σi3(u, ϕ) = 0 in Ω,

Di(u, ϕ) = piαβeαβ(u) − pi3∂3ϕ in Ω.
(48c)

Contact condition

un = −u3 ≤ s, λ ≥ 0, λ(un − s) = 0 on Γ−. (48d)

Friction condition








|µ| =
√

µ2
1 + µ2

2 ≤ q and

|µ| < q ⇒ ut = 0,

|µ| = q ⇒ ∃c ≥ 0 : ut = cµ















on Γ−. (48e)

The terms F ebci
3 and F ebci

β represent the transverse and tangential forces acting on the middle plane ω of the
plate. They are related to the mechanical forces, electric data and charges appearing in the definition of the
linear form lebci(·) (see part C of the appendix for details).

We observe that the limit mechanical displacement u satisfies a system of equations independent of ϕ but
depending on the elastic and piezoelectric coefficients as well as the mechanical and electric data and boundary
conditions. Moreover, (u, ϕ) also satisfies the limit constitutive equations (48c), which are a consequence of (35)
and the descalings. In the equations (48a), the tangential and transverse displacements ζα and ζ3 are coupled
due to the anisotropy of the material (as can be seen in the definitions of M ebci

αβ (u) and Nebci
αβ (u)) and since to

the friction condition (the Lagrange multiplier µ appears in both equations of (48a)).
For the case of a homogeneous and isotropic material and if we neglect friction, the tangential and transverse

displacements ζα and ζ3 decouple in the asymptotic model. This happens since the equations in (48a) become
independent from each other since the friction terms containing µ vanish, since M ebci

αβ (u) = M ebci
αβ (ζ3) only

depends on ζ3 and Nebci
αβ (u) = Nebci

αβ (ζ1, ζ2) only depends on (ζ1, ζ2), see also [8, 11].

Remark 3.6. The derivations in this paper remain true for two special cases: Firstly, for bilateral contact
problems (i.e., the contact region is known a priori) with Tresca friction. And, secondly, for unilateral contact
without friction. The latter case corresponds, at least formally, to the choice q ≡ 0. Both of these special cases
are physically more meaningful than unilateral (i.e., unknown) contact with Tresca friction. However, for the
realization of contact with Coulomb friction, which is realistic and often used in practice, usually a sequence of
Tresca frictional contact problems is solved. This renders unilateral contact with Tresca friction to an important
problem as well.

It should be mentioned that the asymptotic procedure employed in this paper applies in a similar way to
contact problems with thin linear elastic plates with integrated piezoelectric patches or layers. The corresponding
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asymptotic models can be derived using similar arguments as in this paper, provided the piezoelectric patches
or layers are perfectly linked (surface bonded or embedded) to the elastic plates.

4. Numerical Examples

Here, we present numerical tests for the asymptotic equations obtained in the previous sections. We first use
a simple example to verify our code and to discuss the friction and contact conditions and then focus on two
examples, where the mechanical frictional contact behavior interacts significantly with the electric potential.
The numerical treatment of the contact and friction conditions for the mechanical displacement follows [16].
The mechanical equations are discretized with bilinear finite elements for the tangential components ζ1 and ζ2
and with third-order nonconforming elements for ζ3. Note that, while the asymptotic equations are defined on a
two-dimensional domain, the contact and friction conditions remain structurally as in three-dimensional contact
mechanics, where frictional contact occurs on two-dimensional boundary surfaces. To simplify the problem we
replace for our numerical implementation the contact and friction conditions on Γ− by the same conditions in
the middle plane (and, for consistency, we also elevate the obstacle by h).

In all our examples we consider a laminated plate made of two layers of different PZT piezoelectric ceramic
materials. The material parameters are taken from the tables VIII and XI in [19]. Both layers are assumed
to be of the same thickness h = 0.01 leading to a plate of thickness 0.02. The data are given in SI units, i.e.,
length is measured in meter, mechanical forces in Newton and electrical potentials in Volt.

4.1. Example 1

Using this example we verify our implementation for the contact conditions and briefly discuss properties of
Tresca friction contact problems. We assume a plate with middle plane ω = [0, 1] × [0, 2] that is subject to the
mechanical volume forces f ≡ (5 · 107, 0,−5 · 105). The obstacle is given by s = 0.015 and we assume the case
(ebc2) with all zero electrical boundary conditions. The friction bound for the Tresca friction law is q = 107.
In the upper plot of Figure 2 we show the deformed plate. In the lower left plot, the a priori unknown contact
nodes are shown as black dots. In the lower right plot of Figure 2 we visualize the tangential stress (red arrows)
and the tangential displacement (blue arrows). Note that sliding occurs only in direction of the tangential stress
as required in the Tresca friction law. Moreover, note that friction (that is, nonzero tangential stress) occurs
also in points where the plate is not in contact with the obstacle, which is an unphysical behavior. This is
due to the fact that in the Tresca friction law an a priori given friction bound q is used, see also Remark 3.6.
The more realistic Coulomb friction law uses q = F|σn| with the so called friction coefficient F ≥ 0. Thus, in
the latter case, q depends on u (see also Example 2). For a more detailed discussion of friction laws we refer
to [9, 13], see also [16].

4.2. Example 2

For this second example, ω = [0, 1] × [0, 2] and we again use the electric boundary conditions (ebc2). To be
more precise, we apply an electric surface charge density θ = 3 on the upper surface Γ+ and assume the lower
surface to be grounded. Moreover, all mechanical forces are zero with exception of f3 ≡ −105 (that is, the
plate is subject to a gravity force pressing it onto the obstacle). In Figure 3, we show the deformed plate using
various different obstacles. Besides the Signorini contact conditions, we use the Coulomb friction law since it
is more realistic than the Tresca law. Coulomb friction means that q is not given a priori, but that q = F|σn|,
with F ≥ 0 (we use F = 1). The Coulomb friction problem is numerically treated by solving a sequence of
Tresca friction problems, see [16]. The computations shown in Figure 3 are done using 40 × 80 finite elements.

Remarkably, the region of actual contact between obstacle and plate is relatively small, even though addition-
ally to the applied electric surface charge density the plate is subject to a gravity force pressing it towards the
obstacle: For all obstacles, contact essentially only occurs along one-dimensional curves consisting of relatively
few points. This remains true when the mesh is refined to, e.g., to 80 × 160 elements. A possible explanation
for this behavior is that large inner stresses resulting from the applied electric surface charge density θ avoid a
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Figure 2. Example 1: deformed plate (upper plot); top view of nodes where the plate is in
contact with the rigid obstacle (black dots in lower left plot); top view of tangential displacement
(blue) and tangential stress (red, lower right plot).

larger contact region with the obstacle. We’ve observed a similar phenomenon also for the Tresca friction law
and for other (non affine) obstacles: If an electric surface charge is applied to the plate, contact regions are
remarkably small.

4.3. Example 3

With this last example we show, how the direct piezoelectric effect can be used for the detection and study
of obstacles using the sensor effect of piezoelectric plates. We use a plate with middle plane ω = [0, 1] × [0, 1]
that is clamped along the boundary {0}× [0, 1]. It is subject to the constant gravity force f3 = −106. All other
mechanical forces are zero and there are no applied electrical forces. We use the boundary conditions (ebc2)
with grounded lower surface (ϕ0 = 0 on Γ−). On the upper surface Γ+, where we measure the electric potential,
we assume homogeneous electric Neumann boundary conditions. The plate deforms from its original state due
to the applied mechanical force and the shape of the obstacle. For this example we neglect the frictional forces
and only assume Signorini contact conditions. We focus on the electric potential on the upper surface of the
plate and study if it is possible to draw conclusions about the shape of the obstacle.

In Figure 4 we show the three different obstacles used (left column), the corresponding deformed plates
(middle) and the contour plots of the electric potentials on Γ+ (right). Note that the electric potential on the
upper surface allows to guess the shape of the obstacle. In this sense, piezoelectric plates can be used as sensors
for scanning and for the study of surfaces.
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Figure 3. Example 2: deformed plate subject to contact with Coulomb friction, i.e. q = |σn|;
obstacle corresponding to s = 0.015 (upper left), to s = 0.06 (upper right), to s = 0.11 (middle
left) and deformation if not restricted with an obstacle (middle right); top view of contact nodes
for s = 0.015 (lower, left) and for s = 0.06 (lower, right)—note that the contact regions are
small.

Appendix

Part A. The modified tensors Aαβγρ, piαβ and pi3, in Theorem 3.1, are defined by

Aαβγρ := Cαβγρ − Cαβ33C33γρ

C3333
+

(

Cαβ33
Cν333

C3333
− Cαβν3

)

bδν aδγρ,

piαβ := Piαβ − Cαβ33

C3333
Pi33 +

(

Pi33
C33ν3

C3333
− Piν3

)

bδν aδαβ ,

pi3 := εi3 +
Pi33P333

C3333
−

(

Pi33
C33ν3

C3333
− Piν3

)

bδν cδ,
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Figure 4. Example 3: different obstacles (left), the corresponding deformed plates (middle)
and contour plots of the electric potentials on Γ+ (right).

where

aδγρ := C33γρCδ333 − Cδ3γρC3333, cδ := Cδ333P333 − C3333P3δ3,

[

bδν

]

:=
[

Cδ333C33ν3 − Cδ3ν3C3333

]−1
(identity between two matrices).

We remark that p3αβ can equivalently be computed as

p3αβ := P3αβ − Cαβ33

C3333
P333 +

(

Cαβ33
C33ν3

C3333
− Cαβν3

)

bδν cδ.
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Part B. The terms (Nebci
αβ (u)) and (M ebci

αβ (u)), in Theorem 3.3, are the components of second-order tensor
fields corresponding to the Kirchhoff-Love displacement u, given by the following matrix formula

[

Nebci
αβ (u)

M ebci
αβ (u)

]

= Oebci

[

eγρ(ζ)

∂γρζ3,

]

,

where the components of the 6 × 6 matrix Oebci are functions of the middle plane ω, namely

Oebci =





∫ +h

−h C
ebci
αβγρdx3 −

∫ +h

−h D
ebci
αβγρdx3

−
∫ +h

−h x3 C
ebci
αβγρdx3

∫ +h

−h x3D
ebci
αβγρdx3





6×6

,

with the modified coefficients defined on Ω:

Bαβγρ := Aαβγρ +
p3αβ p3γρ

p33

Cebci
αβγρ := Bαβγρ + C̃ebci

αβγρ with C̃ebci
αβγρ =

{

− p3αβ aγρ

p33
c0 for (ebc1),

0 for (ebc2) and (ebc3),

Debci
αβγρ := x3Bαβγρ + D̃ebci

αβγρ with D̃ebci
αβγρ =

{

− p3αβ bγρ

p33
c0 for (ebc1),

0 for (ebc2) and (ebc3).

The linear form lebci(.) is defined by

lebci(v) :=

∫

Ω

f · v dΩ +

∫

ΓN

g · v dΓN + lebci
e (v),

with

lebci
e (v) :=



















∫

Ω

(

P3r + (ϕ−
0 − ϕ+

0 −R) c0
) p3αβ

p33
eαβ(v) dx for (ebc1),

{
∫

Ω
p3αβ

p33

(

P3r(x1, x2, x3) + (h∗θ − P3r)(x1, x2, h
∗)

)

eαβ(v),

with h∗ = +1 for (ebc2) and h∗ = −1 for (ebc3).

Part C. The formulas for F ebci
3 and F ebci

β , which appear in Remark 3.5, are defined by

F ebci
3 =

∫ +h

−h
(x3∂αfα + f3) dx3 + g+

3 + g−3 + h ∂α(g+
α − g−α ) + ∂αβ

(

− x3G
ebci
αβ

)

,

F ebci
β =

∫ +h

−h
fβ dx3 + (g+

β + g−β ) − ∂αG
ebci
αβ for β = 1, 2,

where

Gebci
αβ =























∫ +h

−h

(

P3r + (ϕ−
0 − ϕ+

0 −R) c0
) p3αβ

p33
dx3 for (ebc1)







∫ +h

−h
p3αβ

p33

(

P3r(x1, x2, x3) + (h∗θ − P3r)(x1, x2, h
∗)

)

dx3,

with h∗ = +1, if i = 2 and h∗ = −1, if i = 3.
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