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Abstract. The influence of boundary roughness characteristics on the rate of dissipation in a
viscous fluid is analyzed using shape calculus from the theory of optimal control of systems governed
by partial differential equations. To study the mapping D from surface roughness topography to
the dissipation rate of a Navier–Stokes flow, expressions for the shape gradient and Hessian are
determined using the velocity method. In the case of Couette and Poiseuille flows, a flat boundary is
a local minimum of the dissipation rate functional. Thus, for small roughness heights the behavior
of D is governed by the flat-wall shape Hessian operator, whose eigenfunctions are shown to be the
Fourier modes. For Stokes flow, the shape Hessian is determined analytically and its eigenvalues are
shown to grow linearly with the wavenumber of the shape perturbation. For Navier–Stokes flow,
the shape Hessian is computed numerically, and the ratio of its eigenvalues to those of a Stokes flow
depend only on the Reynolds number based on the wavelength of the perturbation. The consequences
of these results on the analysis of the effects of roughness on fluid flows are discussed.
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1. Introduction. The flow of fluids over solid surfaces is a common feature of
engineered systems. The analysis and control of such fluid flows is complicated by
the fact that the surfaces involved are generally rough at some scale. This surface
topography can have a significant effect on the rate of momentum transfer to the
surface, i.e., on drag. In engineering analysis, the effect of roughness has long been
accounted for through the use of empirical adjustments to smooth-wall relations. It
is currently not possible to determine these effects directly from a description of the
roughness topography. However, predicting and understanding how the characteristics
of roughness affect fluid dynamics is important for effective engineering design and
analysis.

Generally, the magnitude of the roughness effect on a fluid flow varies with the
height of the roughness scaled by the thickness of the fluid shear layer in which it
exists. In engineered systems, for which surfaces are made to be relatively smooth,
these roughness effects are important in two situations: in lubrication applications,
where a thin viscous fluid film flows between sliding surfaces, and in turbulent flows,
where the turbulence acts to produce a thin viscously dominated layer very close to
the wall (this is the so-called viscous sublayer). As a first step in analyzing the effects
of roughness topography, we consider here the effects of roughness in the limit of
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small roughness height for simplified flows that serve as models for the lubrication
and turbulence situations.

In the lubrication case, the Reynolds number is generally low, and, in many
cases, the flow can be modeled as steady. Thus, the Stokes equations or the steady
low Reynolds number Navier–Stokes equations provide a good model for studying
roughness effects for lubrication flows.

In turbulent flows, the Reynolds number of the flow as a whole is high, but
the relevant feature of the flow is the viscous sublayer, and the Reynolds number
of this layer, based on its thickness and the velocity at its edge, is always small,
independent of the flow Reynolds number. This occurs because the viscous layer
becomes thinner as the Reynolds number increases. Turbulent flows are also unsteady,
but the unsteadiness in the viscous sublayer is driven by turbulence farther away
from the wall, which is on time scales that are larger than the viscous time scale that
governs sublayer dynamics. Thus, as a first approximation, a roughness analysis in
the steady low Reynolds number Navier–Stokes equations serves as a model for the
turbulent case. A more sophisticated analysis for finite roughness height in (unsteady)
turbulent flows is also of great interest but is beyond the scope of this paper. In
particular, phenomena such as drag reduction caused by riblets [8, 30] cannot be
addressed using the current analysis.

In this paper we focus on Stokes and steady low Reynolds number Navier–Stokes
flows. The influence of roughness on drag is studied by analyzing the functional map-
ping roughness topography to the dissipation rate, which is related to drag through
a global energy balance (see section 3). This functional, which we refer to as the
roughness functional in the remainder of this paper, is given by

(1.1) D(Ω) =
ν

4

∫
Ω

(∇u+∇uT ) : (∇u+∇uT ) dx,

where Ω ⊂ R
N (N = 2, 3) is a domain with a rough boundary surface, ν denotes the

kinematic viscosity, and u is that velocity field that satisfies the stationary incom-
pressible Navier–Stokes equations,

(1.2)
−∇ · (−Ip+ ν(∇u+∇uT )

)
+ u · ∇u = f in Ω,

∇ · u = 0 in Ω,

together with appropriate boundary conditions (to be specified later). The focus of
this paper is twofold. First, expressions for the shape derivative and shape Hessian of
D for general boundary roughness are derived. Second, these expressions are evaluated
for a perfectly flat boundary and used in a Taylor expansion to study D for small
roughnesses. The dependence of the drag increments on the viscosity ν and on the
characteristics of (small) boundary perturbations are then analyzed.

A common approach to analyzing flow over rough boundaries is to homogenize
the roughness to find effective boundary conditions (or a rough wall law) to be applied
in a smoother domain; see, e.g., [1, 20, 22]. Parameters in the resulting Robin-type
boundary conditions are usually derived numerically from the solution of problems
on representative cutouts of the domain. The homogenized problem, which uses the
effective boundary conditions, is solved on a smooth domain, and the solution is
considered as an approximation to the rough wall flow. In lubrication problems, it is
common to homogenize the simpler Reynolds lubrication equation as an alternative
to the Navier–Stokes equations [3, 4, 24]. The Reynolds equation is derived as an
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asymptotic approximation valid for geometric variations that occur over distances that
are large compared to the thickness of the lubrication film. Since roughness geometries
commonly vary over small length scales, the validity of roughness homogenization of
the Reynolds equation is limited. Generally, the homogenization approach applies
for a given roughness or a given type of roughness, and it is unclear how to use it
to compute sensitivities with respect to the shape variations to which the drag is
most sensitive. Our approach is significantly different from homogenization since we
measure the drag directly through the roughness functional (1.1) and consider the
shape as a variable. This allows first- and second-order derivative information to be
obtained, which is an attractive feature of the shape calculus-based approach for the
analysis of flow over rough surfaces.

In the past, shape Hessians (i.e., second-order shape derivatives) have been used
mainly as a tool to analyze the well-posedness of shape optimization problems [5,
6, 11, 16]. More recently, approximations of shape Hessians have also been used
to accelerate convergence of iterative methods for the solution of shape optimization
problems, for example, in imaging [17], aerodynamic design [13, 25], and elliptic shape
optimization problems [11, 12].

The tools of shape calculus are reviewed briefly in section 2 and are used in
section 3 to derive the shape gradient and Hessian of the roughness functional. Results
of this analysis are applied to Couette and Poiseuille flow problems in section 4, and
the implications for the fluid mechanics of rough surfaces are discussed in section 5.

2. Preliminaries. In this section basic results from shape calculus are recalled,
providing a general framework for the computation of first- and second-order shape
derivatives (section 2.1). Furthermore, when the shape derivatives are to be taken
in the presence of equality constraints, in this case imposed by the Navier–Stokes
equations, it is convenient to use the Lagrange method to incorporate the constraints.
This approach is outlined in section 2.2.

2.1. Shape gradients and shape Hessians. We use the velocity method (see
[7, 10, 26, 31]) for the computation of shape derivatives, as summarized below. Let
D ⊂ R

N be open and Ω ⊂ D. We consider perturbations Ωt(V) ⊂ D of Ω defined
through a perturbation of identity, i.e.,

Ωt(V) = {x+ tV(x); x ∈ Ω}, |t| ≤ to,

where V is a Lipschitz continuous velocity field.1 Let J (·) : Ωt(V) → R be a func-
tional; then J is said to have a Hadamard semiderivative at Ω in direction V if the
limit

dJ (Ω;V) := lim
t→0

J (Ωt(V)) − J (Ω)

t
=

d

dt
J (Ωt)

∣∣∣∣
t=0

exists and is finite.
For later use, we now give derivatives for two shape functionals.
Lemma 2.1. Let Ω ⊂ D be a bounded and measurable domain and V(x) a

Lipschitz continuous velocity field. Then, for ψ ∈ W 1,1(D) ∩ L1(D), φ ∈ H2(D), the
derivatives of the shape functionals,

I(Ωt(V)) =

∫
Ωt(V)

ψ dx, J (Ωt(V)) =

∫
∂Ωt(V)

φds,

1Note that the velocity field discussed here is a velocity associated with the continuous transfor-
mation of the solution domain in pseudotime t. It should not be confused with the fluid velocity u.
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are given by

dI(Ω;V) =
d

dt
I(Ωt)

∣∣∣∣
t=0

=

∫
∂Ω

ψV · n ds,(2.1)

dJ (Ω;V) =
d

dt
J (Ωt)

∣∣∣∣
t=0

=

∫
∂Ω

(∇φ · n+Hφ)V · n ds,(2.2)

where H is the mean curvature of the boundary and n is the unit outward normal
vector of ∂Ω.

A detailed proof in a more general setting, which is based on a change of variables
and the chain rule, can be found, e.g., in [10, pp. 352–355]. Now, for g ∈ W 2,1(D) ∩
H1(D), consider the shape functional

K(Ωt(V)) =

∫
∂Ωt(V)

g · n ds.

Using Lemma 2.1, the shape derivative of K is

dK(Ω;V) =
d

dt
K(Ωt)

∣∣∣∣
t=0

=
d

dt

(∫
∂Ωt(V)

g · n ds
)∣∣∣∣

t=0

(2.3)

=
d

dt

(∫
Ωt(V)

∇ · g dx
) ∣∣∣∣

t=0

(using (2.1))
=

∫
∂Ω

∇ · gV · n ds,

in which the boundary integral is transformed into an integral over the domain Ω so
that (2.1) can be applied. This technique is also useful for the derivation of second-
order shape derivatives, which are based on a second transformation of the domain
Ωt(V), namely, on

Ωt,r(V,W) = {x+ tV(x) + rW(x + tV(x)); x ∈ Ω}, |t| ≤ t0, |r| ≤ r0,

where V and W denote sufficiently smooth velocity fields. The second-order shape
derivative of a functional J is then defined by

d2J (Ω;V,W) =
∂

∂r

(
∂

∂t
JV,W(t, r)

∣∣∣∣
t=0

) ∣∣∣∣
r=0

.

For f ∈ H2(D), consider the functional

JV,W(t, r) = J (Ωt,r(V,W)) :=

∫
Ωt,r(V,W)

f dx.

Using the expression for shape gradients,

∂

∂t
JV,W(t, r)

∣∣∣∣
t=0

= dJ (Ωr(W);V) =

∫
∂Ωr(W)

f V · nr ds,

where here nr is the outward normal vector of ∂Ωr. Using (2.3), the second shape
derivative is given by

d2J (Ω;V,W) =
d

dr

(∫
∂Ωr(W)

fV · nr ds

)
=

d

dr

(∫
Ωr(W)

∇ · (fV) dx

)

=

∫
∂Ω

∇ · (fV)(W · n) ds.
(2.4)
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Naturally, the following question arises: Under which conditions is the shape
Hessian symmetric? As shown in [10], a sufficient condition for the shape Hessian to
be symmetric is that the velocity fields V and W satisfy

(2.5)

∫
∂Ω

f ((∇V)W − (∇W)V) · n ds = 0 for all f ∈ C2(D).

Note that in the shape derivative formulae stated here in (2.1)–(2.4), the deriv-
atives are expressed in terms of boundary integrals involving V and W, so that the
shape perturbations matter only in a neighborhood of the boundary ∂Ω.

2.2. The formal Lagrange method. We seek the shape derivatives in the
presence of an equality constraint (here the Navier–Stokes equations). The constraint
can be incorporated using Lagrange multipliers. This approach is outlined below
but without concern for the technical details that arise in infinite dimensions (see
[9, 15, 19, 21, 29] for a more complete treatment). We are interested in the derivative
of a functional J(q, u) with respect to a control variable q, in which the state variable
u depends implicitly on q through a state equation c(q, u) = 0:

Ĵ : q �−→ J(q, u)

subject to c(q, u) = 0.
(2.6)

Here, Ĵ incorporates the dependence of the state u on the control q via the solution
of c(q, u) = 0; in other words, Ĵ(q) := J(q, u(q)).

Introducing the Lagrange multiplier (also known as the adjoint state variable) λ,
the Lagrangian functional is defined by

L (q, u, λ) = J(q, u) + (c(q, u), λ),

where (· , ·) denotes an appropriate inner product. The gradient of the Lagrangian
functional is given by ⎡

⎣δuL
δqL
δλL

⎤
⎦ :=

⎡
⎣δuJ + c�uλ
δqJ + c�qλ

c

⎤
⎦ ,

where δuL , δqL are the variations of the Lagrangian with respect to u and q, re-
spectively, and analogously for δuJ and δqJ , and the dependence of all operators on
q and u has been suppressed for notational simplicity. Moreover, cu and cq are the
Jacobians of the state equations with respect to the state and control variables, re-
spectively, and c�u and c�q denote the adjoint operators. The reduced gradient dĴ/dq
is then given simply by δqL evaluated for values of u and λ such that the adjoint
equation δuL = 0 and the state equation δλL = 0 are satisfied.

The reduced gradient can thus be determined by the following procedure:
1. Given q, solve the state equation c = 0 for u.
2. Given q and u, solve the adjoint equation δuJ + c∗uλ = 0 for λ.
3. Given q, u, and λ, evaluate the reduced gradient dĴ/dq = δqJ + c∗qλ.

The reduced Hessian d2Ĵ/dq2 can be determined by finding the Schur complement
of the control block in the matrix of second variations of L with respect to (u, q, λ),
i.e., in the matrix ⎡

⎣δ2uuL δ2uqL c∗u
δ2quL δ2qqL c∗q
cu cq 0

⎤
⎦ .
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Thus,

(2.7)
d2Ĵ

dq2
= δ2qqL − [δ2quL c∗q

] [δ2uuL c∗u
cu 0

]−1 [
δ2uqL
cq

]
,

where δ2uuL and δ2uqL are the variations of δuL with respect to u and q, respec-
tively, and analogously for δ2quL , δ2qqL . Often, it is not necessary or feasible to fully
construct the reduced Hessian. Instead, it suffices to know its action in arbitrary di-
rections. An efficient way to compute the action of the reduced Hessian in a direction
q̂ is to introduce auxiliary variables û, λ̂ defined by

(2.8) −
[
δ2uuL c∗u
cu 0

]−1 [
δ2uqL
cq

]
q̂ =

[
û

λ̂

]
.

In what follows, û and λ̂ are referred to as incremental state and incremental adjoint
variables. Once the state and adjoint equations have been solved, the action of the
reduced Hessian in the direction q̂ can be computed as follows:

1. Given q, u, and q̂, solve the incremental state equation (i.e., the lower equation
in (2.8))

cuû+ cq q̂ = 0 for û.

2. Given q, u, λ, q̂, and û, solve the incremental adjoint equation (i.e., the upper
equation in (2.8))

δ2uuL û+ c∗uλ̂+ δ2uqL q̂ = 0 for λ̂.

3. Finally, given q, u, λ, q̂, û, λ̂, evaluate the action of the reduced Hessian on q̂
by

d2Ĵ

dq2
q̂ = δ2qqL q̂ + δ2quL û+ c∗q λ̂.

Note that the incremental state equation can be viewed as one more variation of
δλL with respect to all variables; thus, below we will use δ2λ• to denote the residual
of the incremental state equation, and analogously δ2u• for the incremental adjoint
equation.

3. The roughness functional and its shape derivatives. The shape calculus
outlined in section 2 will be applied here to the roughness functional that maps the
boundary topography to the drag exerted on fluid flow governed by the Navier–Stokes
equations. The resulting expressions for the shape gradient and shape Hessian will
be applied in section 4 to analyze the effects of small roughness on an otherwise flat
boundary.

3.1. Problem statement. Of interest here is the steady incompressible flow
of a fluid between two walls (e.g., in a channel), where for simplicity only one wall
is rough, as sketched in Figure 3.1. The flow is governed by the incompressible,
stationary Navier–Stokes equations,

(3.1a)
−∇ · (− I p+ ν(∇u+∇uT )

)
+ u · ∇u− f = 0 in Ω,

∇ · u = 0 in Ω,
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Γb

Γl Γr

Γt

Ω

Fig. 3.1. Sketch of domain Ω with rough bottom boundary Γb. The flow is periodic on the left
and right boundaries Γl and Γr. In three dimensions, the flow is also periodic on the fore and aft
boundaries Γf and Γa (not shown).

on the domain Ω ⊂ D ⊂ R
N (N = 2, 3). Here, u is the flow velocity (which should not

be confused with the domain deformation “velocities” V and W), p is the pressure,
and f is a body force. The latter two variables have been rescaled to eliminate the
density. The channel is taken to be infinitely long in the directions parallel to the
wall, with roughness topography, boundary condition data, and forcing f that are
periodic in the streamwise (x) and spanwise (y) directions with periods Lx and Ly,
respectively. The solutions we seek are also periodic in both directions with the same
periods. Solutions will thus be sought on a domain Ω that is finite with periodic
boundary conditions in the streamwise and spanwise directions. To be precise, in the
case of a three-dimensional domain Ω (i.e., N = 3; specialization to N = 2 is obvious)
the boundaries in the x direction (left and right) and the y direction (fore and aft)
are denoted by Γl, Γr, Γf , and Γa, respectively, and the flow velocity u as well as the
traction

(− I p+ ν(∇u+∇uT )
)
n (where n is the unit outward normal vector) must

coincide on Γl and Γr, and on Γf and Γa. This, along with ∇ · u = 0, implies that p
and ∇u must also coincide on periodic boundaries. For subsequent use, the periodic
boundaries are designated collectively as Γp, and vector fields such as u will simply be
described as periodic on Γp when these conditions are satisfied. For the bottom and
top boundaries Γb and Γt, respectively, the no-slip boundary condition is imposed, so
the velocity is specified as

u = 0 on Γb,(3.1b)

u = u0 on Γt,(3.1c)

where u0 is the specified velocity of the upper boundary with u0 · n = 0 on Γt.
Our primary interest is the effect of roughness on the drag for a domain with fixed

volume. In this context, the drag is simply the driving force required to maintain the
steady fluid flow, and it is generally of interest because energy is required to do work
on the flow. The rate at which work is done on the flow is thus a particularly relevant
measure of the drag phenomenon. Furthermore, in the special cases of Couette flow
(f = 0, u0 fixed) and Poiseuille flow (u0 = 0, volume flow rate fixed) to be considered
in section 4, the drag force is directly proportional to the rate of work. Using the
notation τ = − I p+ ν(∇u+∇uT ) for the stress tensor, the total rate of work on the
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fluid is given by∫
∂Ω

u · (τn) ds +
∫
Ω

u · f dx

=

∫
Ω

∇u : τ dx+

∫
Ω

u · (∇ · τ + f) dx

=

∫
Ω

ν

2
(∇u+∇uT ) : (∇u+∇uT ) dx +

∫
Ω

u · (u · ∇u) dx

=

∫
Ω

ν

2
(∇u+∇uT ) : (∇u+∇uT ) dx.

The last equality follows from∫
Ω

u · (u · ∇u) dx =
1

2

∫
∂Ω

(u · u)u · n ds− 1

2

∫
Ω

(u · u)∇ · u dx = 0,

which holds since u ·n = 0 on Γb and Γt; periodicity holds on Γp and ∇ ·u = 0. Thus,
the effect of roughness on the drag is the same as its effect on the rate of kinetic energy
dissipation. The roughness functional D will be defined using the dissipation form
because this is more convenient for the subsequent derivations. Note that to obtain a
certain structure of the adjoint Navier–Stokes equations (which will be derived below),
the work done by drag is scaled by a factor of 1/2 in D :

D(Γb) =
ν

4

∫
Ω

(∇u+∇uT ) : (∇u+∇uT ) dx,

where (u, p) solves (3.1) on Ω.

(3.2)

The shape derivatives of the roughness functional D can now be derived. Since the
roughness functional (3.2) involves the solution of the Navier–Stokes equations, the
Lagrangian approach described in section 2.2 is used. For that purpose, the Navier–
Stokes equations are written in variational form and treated as equality constraints
in appropriate infinite-dimensional spaces. In particular, consider the following sub-
spaces of H1(Ω) := (H1(Ω))N :

H̃1(Ω) = {u ∈ H1(Ω) : u is periodic on Γp},
H̃1

u0
(Ω) = {u ∈ H̃1(Ω) : u = u0 on Γt},

H̃1
0(Ω) = {u ∈ H̃1(Ω) : u = 0 on Γt},

where u0 ∈ H̃1(Ω) with u0 · n = 0 on Γt. The variational form of the Navier–Stokes
equation is given as follows: Find (u, p) ∈ H̃1

u0
(Ω)× L2(Ω) such that∫

Ω

ν

2
(∇u+∇uT ) : (∇v +∇vT ) dx−

∫
Ω

(q∇ · u+ p∇ · v) dx +

∫
Ω

(u · ∇u) · v dx

−
∫
Ω

f · v dx+

∫
Γb

α · u ds =
∫
Γb

v · (− I p+ ν(∇u+∇uT )
)
n ds

(3.3)

for all (v, q,α) ∈ H̃1
0(Ω) × L2(Ω) × H−1/2(Γb). Note that in (3.3) the boundary

condition on Γb is enforced weakly as this is needed for the computation of shape
derivatives. It is well known (see, e.g., [28, p. 67]) that (3.3) admits a solution (u, p) ∈
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H̃1
u0
(Ω) × L2(Ω) for each Ω with ∂Ω ∈ C0,1 and f ∈ L2(Ω). Here, higher regularity

f ∈ H̃2(Ω) (i.e., f ∈ H2(Ω), and f is periodic on Γp) and bounded Ω with ∂Ω ∈ C3,1

are assumed, to meet requirements for the existence of shape derivatives. Introducing
Lagrange multipliers λ ∈ H̃1

0(Ω), α ∈ L2(Ω), and β ∈ H−1/2(Γb), the Lagrangian
functional is defined by

L (Γb,u, p,λ, α,β) =
ν

4

∫
Ω

(∇u+∇uT ) : (∇u+∇uT ) dx−
∫
Ω

α∇ · u+∇ · λp dx

+

∫
Ω

(ν
2
(∇λ +∇λT ) : (∇u+∇uT ) + (u · ∇u) · λ − λ · f

)
dx

−
∫
Γb

λ · (− I p+ ν(∇u+∇uT )
)
n ds+

∫
Γb

β · u ds.

In the derivations of the shape gradient and shape Hessian, u, p are referred to as
state variables; λ, α,β are referred to as adjoint variables; and the incremental state
and incremental adjoint variables are denoted by û, p̂, λ̂, α̂, β̂. Finally, test functions
in variational formulations are denoted by ũ, p̃, λ̃, α̃, β̃.

3.2. Shape gradient. As described in section 2.2, determining the gradient of
D with respect to the shape Ω (or equivalently Γb) requires solutions to the state and
adjoint equations.

It is easy to see that setting variations of L with respect to the Lagrange multi-
pliers to zero results in the weak form (3.3) of the Navier–Stokes equations. Variations
with respect to u and p result in the adjoint equations for (λ, α):

δuL =

∫
Ω

(ν
2
(∇u+∇uT ) : (∇ũ+∇ũT ) +

ν

2
(∇λ+∇λT ) : (∇ũ+∇ũT )

)
dx

−
∫
Ω

α∇ · ũ dx−
∫
Γb

λ · ν(∇ũ +∇ũT )n ds +

∫
Γb

β · ũ ds(3.4a)

+

∫
Ω

(ũ · ∇u+ u · ∇ũ) · λ dx = 0,

δpL =

∫
Ω

(−∇ · λ)p̃ dx+

∫
Γb

p̃λ · n ds = 0

(3.4b)

for all (ũ, p̃) ∈ H̃1
0(Ω)× L2(Ω). Integration by parts in (3.4a) yields∫

Ω

(−∇ · (−Iα+ ν(∇u +∇uT ) + ν(∇λ +∇λT )
)
+∇uTλ −∇λu

) · ũ dx
+

∫
∂Ω

(−Iα+ ν(∇u+∇uT ) + ν(∇λ +∇λT ))n · ũ ds +
∫
Γb

β · ũ ds

−
∫
∂Ω

(u · n)(λ · ũ) ds−
∫
∂Ω

λ · (∇ũ+∇ũT )n ds = 0.(3.5)

From the boundary condition for u, we conclude that the corresponding strong form
of the adjoint equations is given by

−∇ · (− Iα+ ν(∇u+∇uT ) + ν(∇λ +∇λT )
)
+∇uTλ−∇λu = 0 in Ω,(3.6a)

∇ · λ = 0 in Ω,(3.6b)
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with λ = 0 on Γt ∪ Γb and periodic on Γp. In addition, (3.5) implies that

(3.6c) β = − (− Iα+ ν(∇u+∇uT ) + ν(∇λ+∇λT )
)
n.

Due to the regularity assumptions on f and ∂Ω, regularity theory (see, e.g., [27])
yields that u ∈ H4(Ω) ∩ H1

0(Ω) and p ∈ H3(Ω). Due to our assumption Ω ∈ C3,1,
u and p can be extended to functions in H4(D) and H3(D), respectively (see [14]).
Similar results hold for λ and α, and (3.6c) implies that β ∈ H3(D). Thus, the
integrands in L satisfy the requirements of Lemma 2.1, which shows that the La-
grangian L is shape differentiable with respect to Γb. Additionally, for N = 2, 3, the
Rellich–Kondrachov embedding theorem (see [2, p. 144]) shows that f ∈ C(Ω̄) and
u ∈ C2(Ω̄), where Ω̄ is the closure of Ω. This regularity result implies that the Navier–
Stokes equations are satisfied up to the boundary, which allows certain simplifications
of boundary terms.

Next, the velocity method is used to derive the shape derivative in direction V
via (2.1), (2.2), and (2.3). To apply (2.3) for the computation of the derivative with
respect to the shape, the boundary integrals over Γb in the Lagrangian functional can
be extended to ∂Ω if β is extended to Ω such that it is periodic on Γp and vanishes
on Γt. Thus, the shape derivative is given by

dD(Γb;V)

=

∫
Γb

ν

4
(∇u+∇uT ) : (∇u+∇uT )V · n ds−

∫
Γb

α∇ · uV · n ds

+

∫
Γb

(
−∇ · λp+ ν

2
(∇λ +∇λT ) : (∇u+∇uT )− λ · f

)
V · n ds

−
∫
Γb

∇ · (λ · (− I p+ ν(∇u+∇uT )
))

V · n ds +
∫
Γb

(u · ∇u) · λV · n ds

+

∫
Γb

∇ · (− (− Iα+ ν(∇u+∇uT ) + ν(∇λ +∇λT )
)
u
)
V · n ds

=

∫
Γb

(ν
4
(∇u+∇uT ) : (∇u+∇uT ) +

ν

2
(∇λ +∇λT ) : (∇u+∇uT )

)
V · n ds

−
∫
Γb

(∇u :
(
ν(∇u+∇uT ) + ν(∇λ +∇λT )

)
+∇λ : ν(∇u+∇uT )

)
V · n ds

+

∫
Γb

λ · (−∇ · (− I p+ ν(∇u +∇uT )
)
+ u · ∇u− f

)
V · n ds

+

∫
Γb

−∇ · (− Iα+ ν(∇u +∇uT ) + ν(∇λ +∇λT )
) · uV · n ds

=

∫
Γb

(
−ν
4
(∇u+∇uT )− ν

2
(∇λ +∇λT )

)
: (∇u+∇uT )V · n ds,

(3.7)

where V is the boundary deformation for which the gradient is evaluated, and the
regularity properties argued above, as well as the equality

∇u : ν(∇u +∇uT ) =
ν

2
(∇u+∇uT ) : (∇u+∇uT ),

are used to simplify the expressions. Note that, compared to the approach used in [25],
our results for the shape gradient contain additional terms that involve ∇uT and
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∇λT . However, the two expressions can be shown to be equivalent: since u vanishes
on Γb, ∇u is nonzero only in directions normal to the boundary. The divergence-free
condition additionally implies that (n · ∇u) · n = 0, which yields that

(3.8) ∇u :∇uT = 0 on Γb.

Analogously, one may argue that ∇u :∇λT = 0, and thus our results for the gradient
are consistent with those in [25]. The findings in this section are summarized in the
next theorem.

Theorem 3.1. The shape gradient of D at Ω in the direction of the shape velocity
field V is given by (3.7), where (u, p) denote the solution to the state equation (3.1),
and (λ, α) denote the solution to the adjoint equations (3.6).

3.3. Shape Hessian. The shape Hessian operator is particularly important at
stationary points, where the shape gradient vanishes and the second order derivatives
determine the local behavior of the roughness functional. Using the assumptions that
f ∈ H2(Ω) and Ω is a bounded domain with a C3,1 boundary, we see that dD(Γb;V) as
defined in (3.7) is differentiable with respect to Γb since the integrands are inW

2,1(Ω)
and can be extended to W 2,1(D). Hence one more derivative of the Lagrangian
functional can be taken to derive the shape Hessian operator. Let W be the velocity
field corresponding to the second shape variation. Variations of δλL yield that for
all λ̃ ∈ H̃1

0(Ω),

δ2λ•D(Γb,W) =

∫
Ω

(
−∇ · λ̃p̂+ ν

2
(∇λ̃ +∇λ̃T ) : (∇û+∇ûT )

(3.9)

+ (û · ∇u+ u · ∇û) · λ̃
)
dx−

∫
Γb

λ̃ · (− I p̂+ ν(∇û +∇ûT )
)
n ds

+

∫
Γb

(−∇ · (− I p+ ν(∇u+∇uT )
)
+ u · ∇u− f

) · λ̃W · n ds.

As introduced in section 2, here δ2λ•L denotes a variation of δλL with respect to all

variables. Using (3.6c), for all (α̃, β̃) ∈ L2(Ω)×H−1/2(Ω),

δ2α•D(Γb,W) = −
∫
Ω

α̃∇ · û dx−
∫
Γb

(α̃∇ · u)W · n ds,(3.10)

δ2β•D(Γb,W) =

∫
Γb

(
− I α̃+ ν(∇ũ +∇ũT ) + ν(∇λ̃ +∇λ̃T )

)
û · n ds(3.11)

+

∫
Γb

(
− I α̃+ ν(∇ũ +∇ũT ) + ν(∇λ̃ +∇λ̃T )

)
:∇uW · n ds

+

∫
Γb

∇ ·
(
− I α̃+ ν(∇ũ+∇ũT ) + ν(∇λ̃ +∇λ̃T )

)
· uW · n ds.

Setting (3.9) and (3.10) to zero leads to the following strong form for the incremental
state equation for (û, p̂):

−∇ · (− I p̂+ ν(∇û+∇ûT )
)
+ u · ∇û+ û · ∇u = 0 in Ω,

∇ · û = 0 in Ω,(3.12)

û+ (∇u+∇uT )nW · n = 0 on Γb.
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Additionally, û vanishes on Γt and is periodic on Γp. Next, the incremental adjoint
equations are obtained from the variations of δuL and δpL . From (3.4a), we obtain

for all (ũ, p̃) ∈ H̃1
0(Ω)× L2(Ω),

δ2u•D(Γb,W) =

∫
Ω

ν

2
(∇û+∇ûT ) : (∇ũ+∇ũT ) +

ν

2
(∇λ̂+∇λ̂T ) : (∇ũ+∇ũT ) dx

−
∫
Ω

α̂∇ · ũ dx +

∫
Ω

(
(ũ · ∇û+ û · ∇ũ) · λ+ (ũ · ∇u+ u · ∇ũ) · λ̂

)
dx

−
∫
Γb

(
− I α̂+ (∇û+∇ûT ) + (∇λ̂ +∇λ̂T )

)
n · ũ ds

+

∫
Γb

ν

2
(∇u+∇uT +∇λ +∇λT ) : (∇ũ+∇ũT )W · n ds

−
∫
Γb

α∇ · ũW · n ds+
∫
Γb

(ũ · ∇u+ u · ∇ũ) · λW · n ds(3.13)

−
∫
Γb

∇ · (λ · ν(∇ũ+∇ũT )
)
W · n ds−

∫
Γb

λ̂ · ν(∇ũ+∇ũT )n ds

−
∫
Γb

∇ ·
((− Iα+ ν(∇u+∇uT ) + ν(∇λ +∇λT )

)
ũ
)
W · n ds.

For all p̃ ∈ L2(Ω),

δ2p•D(Γb,W) =

∫
Ω

(−∇ · λ̂)p̃ dx+

∫
Γb

p̃λ̂ · n ds+
∫
Γb

(−∇ · λ)p̃W · n ds

+

∫
Γb

∇ · (p̃λ)W · n ds,

=

∫
Ω

(−∇ · λ̂)p̃ dx+

∫
Γb

p̃λ̂ · n ds+
∫
Γb

∇p̃ · λW · n ds(3.14)

=

∫
Ω

(−∇ · λ̂)p̃ dx.

The variational forms (3.13), (3.14) are equivalent to the following strong form of the
incremental adjoint equations:

−∇ ·
(
− I α̂+ ν(∇û+∇ûT ) + ν(∇λ̂+∇λ̂T )

)
= −∇ûTλ−∇uT λ̂+∇λû+∇λ̂u in Ω,(3.15a)

∇ · λ̂ = 0 in Ω,(3.15b)

λ̂+ (∇λ+∇λT )n(W · n) = 0 on Γb.(3.15c)

Additionally, λ̂ = 0 on Γt and is periodic on Γp. Defining V and W as shape per-
turbations in the velocity method and using (2.4), we are able to obtain a simplified
form for the evaluation of the shape Hessian in directions (V,W) since the residuals
of the state and adjoint momentum and mass equations on the boundary vanish:
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d2D(Γb;V,W) =

∫
Γb

(
−ν
2
(∇u+∇uT ) : (∇û+∇ûT )− ν

2
(∇λ+∇λT ) :

(∇û+∇ûT )− ν

2
(∇λ̂ +∇λ̂T ) : (∇u+∇uT )

)
V · n ds(3.16)

+

∫
Γb

∇ ·
(
−ν
4
(∇u+∇uT ) : (∇u+∇uT )V

)
(W · n) ds

+

∫
Γb

∇ ·
(
−ν
2
(∇λ +∇λT ) : (∇u+∇uT )V

)
(W · n) ds.

To obtain this final simplified form of the shape Hessian, we have used the fact that
since Γp and Γt are fixed boundaries (i.e., not subject to perturbations), the normal
components V · n and W · n of the shape perturbations have to vanish on these
boundaries. Thus, one can rewrite the integral over Γb in (3.7) as an integral over ∂Ω
and apply (2.4).

We remark that, compared to the incremental state equation in [25],2 the bound-
ary condition in (3.12) contains the additional terms ∇uTn and ∇λTn. However,
using the homogeneous boundary condition for u and λ on Γb, as well as the divergence-
free condition, one can argue that∇uTn = 0 and∇λTn = 0. This argument is similar
to the proof of (3.8). Summarizing, we have the following theorem.

Theorem 3.2. The application of the shape Hessian operator at Ω to directions
(V,W) is given by (3.16), where (u, p) and (λ, α) denote the solution to the state

and adjoint equations, respectively, and (û, p̂) and (λ̂, α̂) denote the solution to the
incremental state and incremental adjoint equations (3.12) and (3.15), respectively.

4. Couette and Poiseuille flow examples. In this section, the shape gradient
and shape Hessian given in Theorems 3.1 and 3.2 are evaluated for the special case
of a flat boundary. In this case, analytical Hessians are found for Stokes flow, while
only numerical Hessians are available for Navier–Stokes flow.

It will be shown below that the flat boundary is a stationary point of the roughness
functional D ; that is, the shape gradient vanishes. Hence, the behavior of D around
the flat boundary is dominated by its second-order shape derivatives, as illustrated
by the Taylor expansion

(4.1) D(Γb) ≈ D(Γ0
b ) + dD(Γ0

b ,V) +
1

2
d2D(Γ0

b ;V,V),

where Γb is the perturbed boundary given by

Γb = {x : x = X+V(X) for X ∈ Γ0
b }.

Since this analysis is for a domain with fixed volume, the admissible boundary per-
turbations V(X) must satisfy

(4.2)

∫
Γb

V · n ds = 0.

In what follows, we restrict ourselves to considering only boundary perturbations
in the wall-normal direction. This assumption limits the roughness topographies
we permit but enables the use of Fourier modes as a parametrization. However, it

2The incremental state equation is referred to as local shape derivative in [25], where it is used
to derive the shape gradient.
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excludes certain topographies, for instance, those that cannot be written as a single-
valued function of x and y.

Due to the periodicity of the boundary perturbations in both x and y, it will be
convenient to expand the boundary perturbations in a Fourier basis. To this end, the
normalized one-dimensional Fourier basis in the streamwise (x) direction is defined as

ψx
j =

1√
Lx

⎧⎨
⎩

1 if j = 0,√
2 sin(kx(j)x) if j > 0,√
2 cos(kx(j)x) if j < 0,

where Lx is the length of the computational domain in the x direction and kx(j) =
2π|j|
Lx

is the wavenumber. Fourier basis functions ψy
j in the spanwise (y) direction are

defined similarly, with x replaced by y, kx replaced by ky(j) =
2π|j|
Ly

, and Lx replaced

by Ly (the domain size in the y direction). A basis for the boundary perturbations is
then given by Vi,j = (0, 0, ψi,j)

T with ψi,j = ψx
i ψ

y
j , where, because the mean distance

between the top and bottom walls is constrained to remain constant h, the function
ψ00 is excluded from the basis of allowed shape perturbations. Note that for these
shape perturbations Vi,j , the condition (2.5) is satisfied, and thus the shape Hessian
will be symmetric. Moreover, for Vi,j defined above, we have ∇·Vi,j = 0. Thus using
the regularity of Ω, the boundary data, and the forcing f , we can define the following
function h(W) on Γb:

h(W) =
(
−ν
2
(∇u+∇uT ) : (∇û+∇ûT )− ν

2
(∇λ+∇λT ) : (∇û+∇ûT )

− ν

2
(∇λ̂ +∇λ̂T ) : (∇u+∇uT )

)
n

+∇
(
−ν
4
(∇u+∇uT +∇λ+∇λT ) : (∇u+∇uT )

)
(W · n).

(4.3)

Then, the application of the shape Hessian (3.16) to shape directions (V,W) can be
expressed as the L2-inner product

d2D(Γb;V,W) =

∫
Γb

h(W) ·V ds.

Moreover, due to the regularity assumptions, h(W) is a continuous function on Γb.
The characterization of the shape Hessian for the flat boundary is greatly simplified
by the following lemma.

Lemma 4.1. The Fourier basis functions are eigenfunctions of the Navier–Stokes
shape Hessian operator at the flat boundary Γb provided the forcing f and the boundary
conditions on Γt are homogeneous (i.e., independent of x and y). To be precise, in the
three-dimensional case the eigenfunctions are given by Vi,j ·n = ψi,j, with (i, j) ∈ Z

2,
excluding i = j = 0.

Proof. Homogeneity in x and y of f and the boundary conditions imply that the
flow is homogeneous. Thus, the velocity and any function of the velocity, in particular
the shape Hessian, are homogeneous. We define the operator H that maps the normal
boundary perturbations ψi,j for the flat-boundary Hessian to h(Vi,j)

Tn, with h(V)
as defined in (4.3). Thus, for i, j, k, l ∈ Z,∫

Γb

(H(ψi,j))ψk,l = d2D(Γ0
b ,Vi,j ,Vk,l).
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The homogeneity of the shape Hessian implies that H commutes with translations
(H is said to be a translation-invariant operator); therefore, for any ψi,j ,

τx0,y0(Hψi,j) = H(τx0,y0ψi,j),

where τx0,y0 is the translation-by-(x0, y0) operator; that is, τx0,y0f(x, y) = f(x − x0,
y − y0) for a function f . Note that the Fourier basis functions defined above satisfy

(4.4) (τ−x0ψ
x
i )(x) = ψx

i (x+ x0) =

⎧⎪⎨
⎪⎩
ψx
i (x)ψ

x
−i(x0) + ψx

−i(x)ψ
x
i (x0) for i > 0,

ψx
i (x) for i = 0,

ψx
i (x)ψ

x
i (x0)− ψx

−i(x)ψ
x
−i(x0) for i < 0.

In the remainder of the proof, i, j > 0 is imposed, and negative subscripts on ψ are
indicated explicitly. With this convention, (4.4) implies

τ−x0,−y0ψi,j = ψ−i,−j(x0, y0)ψi,j + ψi,j(x0, y0)ψ−i,−j

+ ψ−i,j(x0, y0)ψi,−j + ψi,−j(x0, y0)ψ−i,j ,
(4.5)

and similar relations hold for ψ±i,±j , ψ0,±i, and ψ±j,0. Using the translation invari-
ance of H, the fact that Hψi,j can be understood as a pointwise defined function and
(4.5) result in

(Hψi,j)(x0, y0) = (τ−x0,−y0 Hψi,j)(0, 0) = (H(τ−x0,−y0ψi,j))(0, 0)

= ψi,j(x0, y0)(Hψ−i,−j)(0, 0) + ψ−i,−j(x0, y0)(Hψi,j)(0, 0)

+ ψ−i,j(x0, y0)(Hψi,−j)(0, 0) + ψi,−j(x0, y0)(Hψ−i,j)(0, 0).

(4.6)

Analogously, for (i,−j) one obtains that

(Hψi,−j)(x0, y0) = ψ−i,−j(x0, y0)(Hψi,−j)(0, 0)− ψi,j(x0, y0)(Hψ−i,j)(0, 0)

− ψ−i,j(x0, y0)(Hψi,j)(0, 0) + ψi,−j(x0, y0)(Hψ−i,−j)(0, 0).
(4.7)

Similar expressions hold for (−i,−j), (−i, j) and for (i, 0), (0, j). Using the fact that
the Hessian, and thus H, is a symmetric operator, the orthonormality of the Fourier
modes, together with (4.6) and (4.7), implies

(Hψ−i,j)(0, 0) =

∫
Γb

Hψi,jψi,−j ds =

∫
Γb

Hψi,−jψi,j ds = −(Hψ−i,j)(0, 0),

which shows that (Hψ−i,j)(0, 0) = 0. Similarly, it follows that (Hψi,−j)(0, 0) =
(Hψi,j)(0, 0) = 0, so that (Hψi,j)(0, 0) is nonzero only if both subscripts are nonpos-
itive. With this result, only one term in (4.6), (4.7), and the analogous expressions
survives, yielding

(4.8) Hψ±i,±j = (Hψ−i,−j)(0, 0)ψ±i,±j .

A brief computation shows that the eigenvalue equation (4.8) also holds for i = 0 or
j = 0, completing the proof.

Note that Lemma 4.1 can be seen as a particular case of a general result on
translation-invariant operators. In particular, in [18] it is shown that translation-
invariant operators between proper Lp-spaces are convolutions, which are known to
have Fourier functions as eigenfunctions. Note that the homogeneity assumption for
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the flow in Lemma 4.1 is satisfied only for homogeneous boundary conditions, volume
force, and flat Γb. If these conditions are not satisfied, the eigenfunctions are not
known a priori. Also, observe in (4.8) that the eigenvalues for ψi,j and ψi,−j are the
same, which is also observed in the examples below.

In the first three examples, the influence of roughness on Stokes flow is considered.
Stokes flow is the limit case of Navier–Stokes flow as the Reynolds number tends to
zero, which results in the nonlinear term u · ∇u vanishing. Thus, for Stokes flow,
the nonlinear term and its linearizations vanish in the state, adjoint, incremental
state, and incremental adjoint equations, while the expressions for the gradient (3.7)
and Hessian (3.16) remain unchanged. Three of the examples below are posed in
two-dimensional domains Ω. Thus, the deformation velocity fields simplify to Vj =
(0, ψx

j ), and a result analogous to Lemma 4.1 holds.

4.1. Two-dimensional Stokes Couette flow. The first example is a two-
dimensional Stokes Couette flow; that is, the flow is driven by the top boundary
moving at constant velocity u0 = (Ut, 0)

T . Since the bottom boundary Γb is flat, the
state and adjoint systems can be solved analytically on the domain (0, Lx)× (0, h) to
obtain u = Ut/h(y, 0)

T and λ = (0, 0)T , with h being the distance between the two
walls. Moreover, the pressure p and adjoint pressure α are constant. Thus, for the
shape gradient in any admissible direction V, we obtain

dD(Γb;V) = −νU
2
t

2h2

∫
Γb

V · n ds = 0.

The shape derivative is thus zero, and the flat boundary is a stationary point of
the roughness functional. Since the Fourier functions are the eigenfunctions of the
shape Hessian, the Hessian can be completely determined by evaluating it for shape
perturbations in directions Vl and Wj . The solutions to the incremental state and
adjoint equations (3.12) and (3.15) can be calculated explicitly and, letting k = kx(j),
are given by

û =

(
−[c1e

ky − c2e
−ky + c3(

1
k + y)eky + c4(

1
k − y)e−ky]ψx

j (x)

(c1e
ky + c2e

−ky + c3ye
ky + c4ye

−ky)(ψx
j )

′(x)

)
, λ̂ =

(
0
0

)
,

where

c1 =
hUtk

2

2h2k2 + 1− cosh(2kh)
, c2 = − hUtk

2

2h2k2 + 1− cosh(2kh)
,

c3 =
Utk

h

e−kh[− sinh(kh) + khekh]

2h2k2 + 1− cosh(2kh)
, c4 = −Utk

h

ekh[− sinh(kh) + hke−kh]

2h2k2 + 1− cosh(2kh)
.

Note that the incremental solution û exponentially decays to zero in the wall-normal
direction. Its scale height, which is the size of the layer in which the incremental solu-
tion is significant, is at the order of the roughness wavelength (i.e., 2π/k). Evaluating
(3.16), the Hessian is found to be

d2D(Γb;V,W) =
S2νLx

h
γc(k)δjl with γc(k) =

2kh(2kh− sinh(2kh))

1 + 2k2h2 − cosh(2kh)
> 0,

where δjl is the Kronecker delta and S = Ut/h. The diagonal structure of the Hessian
operator is a consequence of the Fourier modes being eigenfunctions, and γc(k) is seen
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Fig. 4.1. Eigenvalues of shape Hessian for two-dimensional Stokes flows for various frequencies
kh of the shape perturbation.

to be the scaled (i.e., dimensionless) eigenvalue associated with the Fourier mode with
wavenumber k. The eigenvalues are plotted in Figure 4.1. Note that for large k,

γc(k) ≈ 2kh, where k = 2πj/Lx.

4.2. Two-dimensional Stokes Poiseuille flow. Next, consider a two-dimen-
sional Stokes Poiseuille flow (channel flow), in which no-flow conditions u0 = 0 hold
on Γt and the body force f is specified such that the total mass flux through the
domain Ω is fixed, so that ∫

Ω

u1 dx = c,

∫
Ω

u2 dx = 0,

which implies that f = (12cν Lxh
3, 0)T . In this case, the solutions to the state and the

adjoint equations are

u =
6c

Lxh3

(−y2 + hy
0

)
, λ =

(
0
0

)
,

with constant pressure and adjoint pressure p and α, respectively. The shape gradient
becomes

dD(Γb;V) = −18c2ν

L2
xh

4

∫
Γb

V · n ds = 0 for all admissible V.

Thus, again the flat boundary is a stationary point of D . Also, for Poiseuille flow, the
solutions to the incremental equations (3.12) and (3.15) can be derived analytically,
and the application of the shape Hessian to Vj ,Wl becomes, with k = kx(j),

d2D(Γb;V,W) =
S2νLx

h
γp(k)δjl with γp(k) =

2kh(2kh− sinh(2kh))

1 + 2k2h2 − cosh(2kh)
− 2,

where S = 6c/Lxh
2 is the gradient of the state solution on Γb. The eigenvalues for

the Poiseuille case are also shown in Figure 4.1. For large k,

γp(k) ≈ 2kh− 2.
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4.3. Three-dimensional Couette flow. The two-dimensional results from sec-
tion 4.1 can be generalized to a three-dimensional Couette Stokes flow with two-dimen-
sional roughness. The flow is driven by the boundary condition u0 = (Ut, 0, 0)

T on
Γt. As in the two-dimensional case, solutions to the state and adjoint equations are
found as

u =
Ut

h

⎛
⎝z0
0

⎞
⎠ , λ =

⎛
⎝0
0
0

⎞
⎠ , p = constant, α = constant,

so that, as before, the shape gradient vanishes, making the flat wall a stationary
point of the roughness functional D . Solving the incremental equations as in the
two-dimensional case yields, for the application of the Hessian to directions Vij and
Wkl,

d2D(Γb;V,W) =
S2νLxLy

h
γ(kx, ky)δikδjl,

where again the i- and j-dependence of kx(i) and ky(j) are not shown, and

γ(kx, ky) =

(
kx
k

)2
2kh(2kh− sinh(2kh))

1 + 2k2h2 − cosh(2kh)
+

(
ky
k

)2
kh cosh(kh)

sinh(kh)

with k =
√
k2x + k2y, S = Ut/h. Here, γ(kx, ky) is the eigenvalue associated with

wavenumber (kx, ky). For large k, one obtains γ(kx, ky) ≈ kh(1 + (kx/k)
2), and, for

a constant ratio kx/ky, γkx,ky increases linearly with k. Moreover, for fixed k, γkx,ky

is maximal in the case ky = 0 and minimal for kx = 0.
Note that it is possible to obtain analytical solutions in the above examples be-

cause the incremental equations for Stokes flow can be solved analytically. To verify
the above findings, the state equation was solved numerically on perturbed domains,
and finite differences were used to compute the shape gradient and shape Hessian.
The difference between the resulting numerically computed and the analytical eigen-
values was found to be at the order of the discretization error. More information
concerning the numerical solution is provided in the Navier–Stokes example described
below, where analytical solutions are not available.

4.4. Navier–Stokes Couette flow. Finally, consider a two-dimensional Cou-
ette flow governed by the Navier–Stokes equations. The state and adjoint equations
at the flat boundary have the same solutions as for Stokes flow, namely,

(4.9) u =
Ut

h

(
y
0

)
, λ =

(
0
0

)
, p = constant, α = constant.

Thus, also for Navier–Stokes flow, the shape gradient vanishes at the flat boundary.
Since analytical solutions to the incremental solutions are not available, the incremen-
tal equations must be solved numerically. A numerical Hessian can then be found by
evaluating the expression (3.16) using the approximate solutions of the incremental
equations. As proved in Lemma 4.1, the Fourier modes are the eigenfunctions of the
shape Hessian for the flat boundary. This implies that, in the Fourier basis, the shape
Hessian is diagonal, and hence a single pair of incremental state and incremental
adjoint solves is sufficient to find all the eigenvalues. We choose W as a sum of eigen-
functions (i.e., Fourier modes), solve the incremental equations, and use individual
Fourier modes for V in (3.16) to compute the diagonal elements of the shape Hessian.
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Fig. 4.2. Ratio of shape Hessian eigenvalues of Navier–Stokes and Stokes flow for the case of
Couette flow. The plot shows results for Reh ranging between 20 and 6000.

To obtain numerical solutions to the incremental state and incremental adjoint
equations, the computational domain, Ω (= [0, Lx] × [0, h] × [0, Lz]), is discretized
with hexahedral Q4–Q2 finite elements (i.e., biquartic polynomials represent the com-

ponents of the incremental velocities û, λ̂, and biquadratic elements represent the
incremental pressures p̂, q̂). The mesh is graded towards the bottom boundary to re-
solve boundary layer effects. To ensure accuracy of the numerical solution, empirical
convergence studies were performed using a hierarchy of meshes and an escalation
of polynomial order of the finite element approximation. We found that a (graded)
mesh with 100× 100 elements gives highly accurate results for the Reynolds numbers
considered.

The results of these computations show that the shape Hessian eigenvalues, and
thus the sensitivity of the roughness functional to Fourier basis perturbations, increase
with the Reynolds number based on h, i.e., Reh = Uth/ν. For modes for which
kh > 2π, so that the scale height of the Stokes incremental solutions (which is order
2π/k) is small compared to the fluid layer thickness h, the shape Hessian eigenvalues
for different wavenumbers and Reynolds numbers can be made to collapse on a single
curve. In fact, the ratio of the Navier–Stokes shape Hessian eigenvalues γNS to those
for Stokes flow γS depends only on the Reynolds number Re∗,

(4.10) Re∗ :=
Utλ

2

νh
= Reh

λ2

h2
,

where λ = 2π/k is the wavelength of the roughness Fourier mode. The wavelength
is also the scale height of the incremental solution, so Re∗ is the Reynolds number
based on the scale height λ and on the velocity λdU/dz = λUt/h at the scale height.
This collapse of the ratios between Stokes and Navier–Stokes eigenvalues when plotted
against Re∗ is shown in Figure 4.2. Additionally, the plot shows that Re∗ determines
the range in which the Stokes eigenvalues are a good approximation for the Navier–
Stokes eigenvalues and how they relate as Re∗ increases.

Further insight into this behavior of the eigenvalues can be gained from scaling
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analysis. At distances from the wall greater than the scale height λ, the incremental
solutions decay exponentially to zero. Thus the incremental solutions are insensitive
to features of the state solution farther from the wall than ∼λ. If λ/h is sufficiently
small, then the incremental solutions will not depend on Ut or h separately. Instead,
the only property of the state solution on which the incrementals can depend is the
velocity gradient S = dU/dz = Ut/h. The incremental solutions, and therefore the
Hessians, can thus depend only on three dimensional parameters (S, λ, and ν), so by
dimensional analysis, the nondimensional Hessian eigenvalues (γNS/γS) depend only
on the dimensionless parameter Sλ2/ν = Re∗. The same argument holds in other
flows (e.g., Poiseuille flow), provided that the scale height of the incremental solution
is small compared to flow features in the state solution.

The Reynolds number Re∗ can also be interpreted in terms of the wall scaling
commonly used in the analysis of wall-bounded turbulent flows; see, e.g., [23]. In
this scaling, the wall or friction velocity uτ is defined by u2τ = νdU/dz = νUt/h, and
the viscous length scale δν is defined as δν = ν/uτ . The Reynolds number (4.10) is
then given by Re∗ = (λ+)2, where λ+ = λ/δν is the wavelength (and thus also the
scale height) normalized by the viscous length scale. Since λ+ = uτλ/ν, it can also
be understood as a local Reynolds number based on uτ and λ, which measures the
importance of inertial effects in the incremental solution, relative to viscous effects.

5. Discussion. In this paper, shape calculus is used to study the response of fluid
flows to boundary roughness, particularly the response of the drag. Shape derivatives
are evaluated for a flat boundary to characterize the roughness effect in the limit
of small roughness. As expected, the analysis shows that the flat boundary is a
stationary point of the roughness functional, so that the shape Hessian provides the
lowest order description of the roughness effect. Furthermore, for a flat wall, the
shape Hessian operator is translation invariant, so that its eigenfunctions are known
a priori to be the Fourier functions. This allows the shape Hessian to be completely
characterized by its eigenvalue spectrum and greatly simplifies the determination of
the Hessian. The analysis reported here leads to the following observations regarding
the sensitivity of the drag to roughness:

• The simple structure of the shape Hessian for Stokes flow allows the sensitivity
of D to a general small-amplitude roughness to be determined easily from the
roughness spectrum. Consider a two-dimensional channel with roughness

V · n =
∑
k

(αk sin(kx) + βk cos(kx))

satisfying

(5.1)
∑
k

α2
k + β2

k <∞ and
∑
k

(α2
k + β2

k)k <∞.

Then, the drag increment due to this roughness is simply

(5.2) δD =
LxS

2ν

2h

∑
k

(α2
k + β2

k)γ(k).

Due to the assumption (5.1) and the fact that γ(k) ≈ 2hk for large k, the
sum in (5.2) converges. While valid only for small roughness heights, this
is nonetheless a useful result, as it provides a simple metric for the effect
of roughness surface topography on the drag, and (4.1) (or (5.2)) applies
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to all roughnesses that are Lipschitz continuous and satisfy condition (5.1).
The expression (5.2) also applies to the roughness analysis for Navier–Stokes
flow with the Stokes Hessian eigenvalues γ(k) replaced by the Navier–Stokes
Hessian eigenvalues. The latter are well approximated by γ(k) if Re∗ (as
defined in (4.10)) is small; see Figure 4.2.

• For all k, γc(k) > 0 and γp(k) > 0. Since all Hessian eigenvalues are positive,
the flat boundary corresponds to a local minimum of the roughness functional.
Moreover, for Stokes flow it is the global minimum, since the flat boundary
is the only stationary point. This is due to the fact that dD(Γb;V) vanishes
if and only if ∇u is constant on Γb with λ = 0 for Couette flow and λ = −u
for Poiseuille flow, and the flat boundary is the only shape for which this is
true.

• In Stokes flow, for large wavenumbers (kh > 2π),

γc(k) ≈ 2kh, γp(k) ≈ 2kh− 2,

which shows that the eigenvalues increase linearly with the wavenumber.
Thus, the sensitivity of the roughness functional increases linearly with the
wavenumber of the boundary perturbation. Provided hk � 1, that is, the
height (h) of the channel is much larger than the scale height of the incre-
mental solution,

γc(k) ≈ γp(k) ≈ 2kh.

In this case, the boundary conditions on the far outer flow do not influence
the flow increment due to the roughness.

• The linear dependence of the eigenvalues with the wavenumber shows that the
Hessian for Stokes flow is a pseudodifferential operator with order 1. This is
also pointed out in [25], where the Hessian operator is considered as an input-
to-output mapping in frequency space, which is motivated by the derivation
of operator symbols.

• For small k, γ(k) approaches the asymptotic value of 4 or 2 for Couette or
Poiseuille flow, respectively. When kh� 1, the scale height of the incremental
solution is much larger than the fluid layer. The solution details in this case
thus depend on the boundary conditions on the upper surface.

• For Navier–Stokes Couette flow, the flat boundary also corresponds to a sta-
tionary point of D (a minimum). The sensitivity of the roughness functional
to Fourier basis perturbations increases with the Reynolds number. The ra-
tio of the Navier–Stokes shape Hessian eigenvalues to those for Stokes flow
depends only on the Reynolds number Re∗ (as defined in (4.10)), which can
be understood using scaling arguments.

• The scaling arguments mentioned above (see section 4.4) also provide guid-
ance for the applicability of the Navier–Stokes Couette flow analysis to rough-
ness in a turbulent wall layer. For the analysis to apply, the scale height of
the incremental solutions (of order λ) must not exceed the sublayer thickness,
which is approximately 5δν [23]. Therefore, of the results shown in Figure 4.2,
only those with Re∗ < 25 (λ+ < 5) are a valid approximation for turbulent
flows.

Finally, note that roughness is of particular concern in turbulent flows. A partic-
ularly useful generalization of the steady Navier–Stokes shape Hessian analysis would
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thus be its application to turbulence. This would require generalization to the time-
dependent Navier–Stokes state equation, and the definition of the drag functional as
a time average.
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