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Abstract. In this paper a simplified friction problem and iterative second-order algorithms for
its solution are analyzed in infinite dimensional function spaces. Motivated from the dual formulation,
a primal-dual active set strategy and a semismooth Newton method for a regularized problem as well
as an augmented Lagrangian method for the original problem are presented and their close relation
is analyzed. Local as well as global convergence results are given. By means of numerical tests,
we discuss among others convergence properties, the dependence on the mesh, and the role of the
regularization and illustrate the efficiency of the proposed methodologies.
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1. Introduction. This paper is devoted to the convergence analysis of iterative
algorithms for the solution of mechanical problems involving friction. As a model
problem we consider a simplified friction problem that can be stated as the minimiza-
tion of the nondifferentiable functional

{
J(y) := 1

2a(y, y) − (f, y)L2(Ω) + g
∫
Γf

|τy(x)| dx
over the set Y := {y ∈ H1(Ω) : τy = 0 a.e. on Γ0},

(P)

where Ω ⊂ Rn is an open bounded domain with Lipschitz continuous boundary Γ,
Γ0 ⊂ Γ is a possibly empty open set, Γf := Γ\Γ0, further g > 0, f ∈ L2(Ω), τ denotes
the trace operator, and a(· , ·) denotes a coercive bilinear form on Y ×Y . Introducing
for y ∈ H1(Ω) the abbreviation

j(y) := g

∫

Γf

|τy(x)| dx,

it is well known (cf. [12]) that (P) can be written as the elliptic variational inequality
of the second kind

{
Find y ∈ Y such that

a(y, z − y) + j(z) − j(y) ≥ (f, z − y)L2(Ω) for all z ∈ Y .
(1.1)

While usually in engineering papers finite dimensional discretizations of (P) or
(1.1) and related problems are studied, little attention has been paid to their infinite
dimensional counterparts, specifically to Newton-type methods. This contribution
focuses on the formulation and analysis of second-order solution algorithms for (P)
in a function space framework. Such an infinite dimensional analysis gives more

∗Received by the editors January 7, 2003; accepted for publication (in revised form) February
11, 2004; published electronically October 1, 2004. This work was supported by the “Fonds zur
Förderung der wissenschaftlichen Forschung” under “SRC 03, Optimization and Control.”

http://www.siam.org/journals/siopt/15–1/42083.html
†Institut für Mathematik, Karl-Franzens-Universität Graz, Heinrichstraße 36, A-8010 Graz, Aus-

tria (ge.stadler@uni-graz.at).

39



40 GEORG STADLER

insight into the problem, which is also of significant practical importance since the
performance of a numerical algorithm is closely related to the infinite dimensional
problem structure. In particular, it is desirable that the numerical method can be
considered as the discrete version of a well-defined and well-behaved algorithm for
the continuous problem. A finite dimensional approach misses important features
as, for example, the regularity of Lagrange multipliers and its consequences as well
as smoothing and uniform definiteness properties of the involved operators. It is
well accepted that these properties significantly influence the behavior of numerical
algorithms.

In principal there are two approaches to overcome the difficulty associated with
the nondifferentiability in (P). One is based on resolving the derivative of the abso-
lute value function introducing a Lagrange multiplier; the other one is based on an
appropriate smoothing of the nondifferentiable term j(·).

An overrelaxation method and the Uzawa algorithm are proposed in the mono-
graphs [12, 11] for the solution of (P), and convergence results for these first-order
methods are given. The Uzawa method is also suggested for a variational inequality
of the second kind in [14]; however, in that paper no numerical results are given. In
[19] iterative techniques for the solution of friction contact problems are presented
and further developed in [15]. Those methods require minimization of a nondifferen-
tiable functional over a convex set in every iteration step, which also motivates our
investigation of problem (P).

In [7, 5, 6] a generalized differentiability concept (Pang’s B-differential) is used
that allows application of a Newton-like method for discretizations of friction contact
problems, whereas algorithm formulation and analysis are done in finite dimensional
spaces and only few convergence rate results are given. The authors of those con-
tributions report on good numerical results and, in [6], an almost mesh independent
behavior of the algorithm is observed, which suggests that the finite dimensional
method is induced by an infinite dimensional one. A different approach towards nu-
merical realization of discrete elliptic variational inequalities of the second kind was
followed in [26, 25], where monotone multigrid methods are employed to derive an
efficient solution method.

For a smoothed variational inequality of the second kind, again in [11] the Uzawa
method is proposed. More recent contributions apply classical Newton methods to
the smoothed finite dimensional problems (see, e.g., [29]).

While there is a large literature on finite dimensional constrained and nondiffer-
ential optimization techniques (see, e.g., [10, 31, 30] for finite dimensional semismooth
Newton methods), the systematic analysis of these methods in continuous function
spaces started only rather recently [16, 33]. The methods proposed in this paper are
related to the primal-dual active set strategy for the solution of constrained optimal
control problems [1, 2]. This algorithm is closely related to semismooth Newton meth-
ods as shown in [16]. The papers [1, 2, 16, 22] apply these methodologies to unilateral
pointwise constrained optimization problems; the convergence analysis for bilaterally
constrained problems (as is the dual of (P)) involves additional problems as will come
out in this contribution (see also [18, 17]). The first-order augmented Lagrangian
method for nonsmooth optimization is investigated within a Hilbert space framework
in [21].

This paper is organized as follows: In section 2 the dual problem for (P) and
the extremality conditions are determined, and further possible generalizations of
the model problem to vector-valued friction problems in linear elasticity are dis-
cussed. Section 3 is devoted to a regularization procedure for the dual formulation, the
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corresponding primal problem, and the convergence of the regularized problems. In
section 4 we state algorithms for the solution of the regularized and the original fric-
tion problem and investigate their relation. Section 5 analyzes these algorithms and
gives local as well as global convergence results. Finally, section 6 summarizes our
numerical testing.

2. The dual problem. In this section we summarize basic results for (P); fur-
ther we calculate the dual problem and corresponding extremality conditions and
discuss the relation between friction problems in elasticity and the model problem (P).

To simplify notation we use the trace operator τf : Y −→ L2(Γf ) defined by
τf y = (τy)|Γf . Before we calculate the dual problem, we state the following existence
and uniqueness result.

Theorem 2.1. Problem (P) or equivalently (1.1) admits a unique solution ȳ ∈Y .
Note that in [8] conditions are stated that guarantee existence and uniqueness

of a solution to (P) in the case that a(· , ·) is not coercive. To get a deeper insight
into problem (P) we next calculate the corresponding dual problem. We start with
rewriting problem (P) as

inf
y∈Y

{F (y) + G(τf y)}(2.1)

with the convex functionals

F (y) =
1

2
a(y, y) − (f, y)L2(Ω) and G(τf y) = g

∫

Γf

|τf y(x)| dx.

Following [9], the dual problem can be written as

sup
λ∈L2(Γf )

{−F ∗(−τf
∗λ) −G∗(λ)} ,(2.2)

where F ∗ : Y ∗ −→ R and G∗ : L2(Γf ) −→ R denote the convex conjugate functionals
to F and G, and τf ∗ ∈ L(L2(Γf ), Y ∗) is the adjoint of τf . In (2.2) we already identified
L2(Γf ) with its dual. Calculating (2.2) explicitly results in the following dual problem.

sup
|λ|≤g a.e. on Γf

J∗(λ) := −1

2
a(w(λ), w(λ)),(P∗)

where w(λ) denotes the unique solution of

a(w, v) − (f, v)L2(Ω) + (λ, τf v)L2(Γf ) = 0 for all v ∈ Y(2.3)

for given λ ∈ L2(Γf ). From the convexity of F and G, further from the fact that there
exists a y0 ∈ Y such that F (y0) < ∞, G(τf y0) < ∞, and from the continuity of G at
τf y0, it follows that

inf
y∈Y

J(y) = − sup
|λ|≤g a.e. on Γf

J∗(λ);

that is, no duality gap occurs (see [9]). Existence of a solution λ̄ ∈ L2(Γf ) for the
dual problem (P∗) follows from Fenchel’s duality theorem. Thus, by means of duality
theory we have transformed (P), the unconstrained minimization of a nondifferentiable
functional, into (P∗), the constrained maximization of a smooth functional.

Following duality theory the solutions ȳ, λ̄ of the primal problem (P) and the dual
problem (P∗), respectively, are connected by the extremality conditions

−τf
∗λ̄ ∈ ∂F (ȳ), λ̄ ∈ ∂G(τf ȳ),
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with ∂ denoting the subdifferential. These conditions, which also characterize primal
and dual solution (cf. [9]), result in

a(ȳ, v) − (f, v)L2(Ω) + (λ̄, τf v)L2(Γf ) = 0 for all v ∈ Y(2.4)

and in the complementarity condition





τf ȳ ≤ 0 a.e. on A− := {x ∈ Γf : λ̄ = −g a.e. on Γf},
τf ȳ = 0 a.e. on I := {x ∈ Γf : |λ̄| < g a.e. on Γf},
τf ȳ ≥ 0 a.e. on A+ := {x ∈ Γf : λ̄ = g a.e. on Γf}.

(2.5)

The next lemma states an equivalent expression for condition (2.5), which will be
used frequently. The equivalence follows from results in convex analysis but can also
easily be verified by a direct computation.

Lemma 2.2. Condition (2.5) can equivalently be expressed as

τf ȳ = max(0, τf ȳ + σ(λ̄− g)) + min(0, τf ȳ + σ(λ̄ + g))(2.6)

for every σ > 0.
Concerning a numerical solution of (P) in [11], two methods are proposed. First,

an overrelaxation method for the discretized problem is described and tested; second,
Uzawa’s algorithm is applied to (P) and convergence results are given. Since we focus
on higher-order methods, and further since for (P∗) the iterates of the algorithms
presented in section 4 are not contained in spaces of square integrable functions, we
introduce a regularization procedure for (P∗) that allows the statement and analysis
of our algorithms in infinite dimensional Hilbert spaces and will be shown to be closely
related to augmented Lagrangians.

We conclude this section with a brief discussion of possible generalizations of our
model problem (P) to vector-valued friction problems in linear elasticity (see [8, 24]).
Let Ω ⊂ Rn be occupied by the elastic body in its nondeformed state and denote by
y ∈ Y := Y n the deformation of the body that is fixed on Γ0, subject to a given
force on Ω and to friction conditions on Γf . For the material law we take, e.g., the
Navier–Lamé equations and denote the corresponding bilinear form on Y × Y by
a(· , ·). Then, similarly as for (P), we get the following condition for y:

a(y,v) − (f ,v)L2(Ω) + (λ,vT )L2(Γf ) = 0 for all v ∈ Y ,(2.7)

where L2(Ω) := (L2(Ω))n, L2(Γf ) = (L2(Γf ))n, f ∈ L2(Ω) is a given force, (·)T
denotes the tangential part along Γf , and λ ∈ L2(Γf ). Let us assume that the region
of contact between the body and the rigid foundation is fixed (bilateral contact), i.e.,
the normal component yN of y along Γf is zero, and let us take Tresca’s law to model
friction on Γf . This leads to the conditions yN = 0 and ||λ|| ≤ g on Γf (here || · ||
denotes the Euclidean norm in Rn) and to

{
yT = 0 a.e. on I := {x ∈ Γf : ||λ|| < g a.e. on Γf},
yT = 1

g ||yT ||λ a.e. on A := {x ∈ Γf : ||λ|| = g a.e. on Γf}.(2.8)

The above complementarity system models the assumption that slip begins if a certain
magnitude of friction traction is exceeded. Note the similarity between (2.4), (2.5)
and (2.7), (2.8). In case of planar elasticity (i.e., n = 2), one has that yT = yt, where t
is the unit tangential vector along Γf and y is a scalar-valued function. This allows us
to replace (2.8) by (2.5); i.e., this paper covers friction in planar elasticity. For n ≥ 3,
however, compared to (2.5) the expression in (2.8) includes an inherent nonlinearity
on A. We plan to extend the results presented in this paper for the simplified model
problem (P) to elasticity problems with friction for n ≥ 3 in our future research.



SSN AND ALM FOR A SIMPLIFIED FRICTION PROBLEM 43

3. Regularization. In this section we introduce a regularization procedure to
overcome the difficulty associated with the nondifferentiability of the functional J
in (P). Therefore we consequently utilize results from duality theory and discuss
relations between the regularization and the primal and dual problem.

For the term
∫
Γf

|τy(x)| dx in (P), which involves the absolute value function,

many ways to construct sequences of differentiable approximations are possible (cf.,
e.g., [13, 20]). While these regularizations are mainly motivated by the primal prob-
lem, our approximation is motivated by considering the dual problem and by results in
the context of semismooth Newton methods [16, 22, 33] and augmented Lagrangians
[21]. In the corresponding primal problem the regularization turns out to be a very
natural one that is related to those used in [11, 14, 28].

This section is organized as follows. After presenting the regularization for the
dual problem, we calculate the corresponding primal problem and the optimality
system, argue the connection with [11, 14, 22, 28], and investigate the convergence as
the regularization parameter tends to infinity.

3.1. Regularization for (P∗). For fixed γ > 0 and λ̂ ∈ L2(Γf ), we consider

sup
|λ|≤g a.e. on Γf

J∗
γ (λ) := −1

2
a(w(λ), w(λ)) − 1

2γ
‖λ− λ̂‖2

L2(Γf ) +
1

2γ
‖λ̂‖2

L2(Γf ),(P∗
γ)

where again w(λ) denotes the solution to (2.3) for given λ. This regularized problem,
which has the form of the auxiliary problem in proximal point methods, is obtained
from (P∗) by adding

− 1

2γ
‖λ− λ̂‖2

L2(Γf ) +
1

2γ
‖λ̂‖2

L2(Γf )(3.1)

to the objective functional. Standard arguments show that (P∗
γ) admits a unique

solution λγ for every γ > 0. The second term in (3.1), which is a constant, can be
neglected from the optimizational point of view; it has been introduced to get a simple
connection with the corresponding primal problem (see Theorem 3.2).

In what follows we shall use e : Y × L2(Γf ) −→ Y ∗ defined by

〈e(y,λ), z〉Y ∗,Y = a(y, z) − (f, z)L2(Ω) + (λ, τf z)L2(Γf ).

This allows us to write (2.3) as e(y,λ) = 0 in Y ∗. We now derive the first-order
optimality conditions for the constrained optimization problem (P∗

γ) using Lagrange
multipliers.

Theorem 3.1. Let λγ ∈ L2(Γf ) be the unique solution of (P∗
γ). Then there exist

yγ ∈ Y and ξγ ∈ L2(Γf ) such that

e(yγ ,λγ) = 0 in Y ∗,(3.2a)

τf yγ + γ−1(λ̂− λγ) − ξγ = 0 in L2(Γf ),(3.2b)

ξγ − max(0, ξγ + σ(λγ − g)) − min(0, ξγ + σ(λγ + g)) = 0 in L2(Γf )(3.2c)

hold for every σ > 0.
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Note that (3.2c) is equivalent to





ξγ ≤ 0 a.e. on Aγ,− := {x ∈ Γf : λγ = −g a.e. on Γf},
ξγ = 0 a.e. on Iγ := {x ∈ Γf : |λγ | < g a.e. on Γf},
ξγ ≥ 0 a.e. on Aγ,+ := {x ∈ Γf : λγ = g a.e. on Γf}.

(3.3)

3.2. Corresponding primal problem. Next we turn our attention to the pri-
mal formulation of problem (P∗

γ). For α ∈ R we define

h(x,α) =

{
g
γ |γx + α|− g2

2γ if |γx + α| > g,

1
2γ (γx + α)2 if |γx + α| ≤ g.

The function h is a continuously differentiable smoothing of the absolute value
function. We can now define problem (Pγ):

min
y∈Y

Jγ(y) :=
1

2
a(y, y) − (f, y)L2(Ω) +

∫

Γf

h(τf y(x), λ̂(x)) dx.(Pγ)

Note that the functional Jγ is uniformly convex and continuously differentiable. The
next theorem clarifies the connection between (Pγ) and (P∗

γ). The proof uses standard
arguments from duality theory.

Theorem 3.2. Problem (P∗
γ) is the dual problem of (Pγ) and we have J∗

γ (λγ) =
−Jγ(yγ), where λγ and yγ denote the solutions of (P∗

γ) and (Pγ), respectively. Fur-

thermore, if one introduces the variable ξγ := τf yγ + γ−1(λ̂ − λγ) ∈ L2(Γf ), the
extremality conditions yield (3.2a)–(3.2c) and these conditions are sufficient for λγ

and yγ to be the solution of (P∗
γ) and (Pγ), respectively.

We next discuss by what means the above regularization is related to those used
in other papers. First consider the case that λ̂ ≡ 0. Then the smoothing of the
absolute value function in (Pγ) results in

h(x) =

{
g|x|− g2

2γ if |x| ≥ g
γ ,

γ
2x

2 if |x| < g
γ .

This approximation of the absolute value function has also been studied and used
in [11, 14, 28] for the numerical solution of related problems. Let us now argue
the relation of the above regularization to the one in [22], where λ̂ is now arbitrary.
For this purpose we choose σ := γ−1 in the complementarity condition (3.2c) and
eliminate the variable ξγ using (3.2b). This gives

τf yγ + γ−1(λ̂− λγ) − max(0, τf yγ + γ−1(λ̂− g)) − min(0, τf yγ + γ−1(λ̂ + g)) = 0.
(3.4)

One can see that the specific choice of σ := γ−1 results in eliminating the variable
λγ in the max- and min-function, which is of interest regarding semismooth Newton
methods, as will become clear in the next section. In [22] a formulation related to (3.4)
was successfully used to construct an effective algorithm for unilaterally constrained
variational problems of the first kind. However, in the case of (P∗

γ), which is a bilat-
erally constrained optimization problem, (3.4) may mislead us to an algorithm, which
is less efficient. Obviously, from the theoretical point of view, the two formulations
are equivalent, but the splitting of (3.4) into (3.2b) and (3.2c) contains the additional
parameter σ and thus motivates a slightly different algorithm, as will be discussed in
section 4. Next we investigate the convergence as γ → ∞.
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3.3. Convergence of the regularized problems. We conclude this section
with a convergence result with respect to the regularization parameter γ (for related
results see [11, 22]).

Theorem 3.3. For any λ̂ ∈ L2(Γf ) the solutions yγ of the regularized problems
(Pγ) converge to the solution ȳ of the original problem (P) strongly in Y as γ → ∞.
Furthermore, the solutions λγ of the dual problems (P∗

γ) converge to the solution λ̄ of
(P∗) weakly in L2(Γf ).

Proof. Recall the complementarity conditions and the definition of the active and
inactive sets (2.5) for the original and (3.3) for the regularized problem. Note that
for all γ > 0 we have |λγ | ≤ g a.e. on Γf . We now choose an arbitrary sequence γn
such that γn → ∞ for n → ∞. From the weak compactness of the unit sphere in a
Hilbert space, we can infer the existence of λ∗ ∈ L2(Γf ) and a subsequence λγnk

in

L2(Γf ) such that

λγnk
⇀ λ∗ weakly in L2(Γf ).

Since closed convex sets in Hilbert spaces are weakly closed, we have |λ∗| ≤ g a.e. in
L2(Γf ). The weak convergence of (λγnk

) in L2(Γf ) implies yγnk
⇀ y∗ weakly in Y

for some y∗ ∈ Y and that the pair (y∗,λ∗) also satisfies e(y∗,λ∗) = 0. We henceforth
drop the subscript nk with γnk . It follows that

a(yγ − ȳ, yγ − ȳ) = (τf ȳ,λγ − λ̄)L2(Γf ) + (τf yγ , λ̄− λγ)L2(Γf ).(3.5)

We are now going to estimate the above two terms separately. Let us first turn our
attention to the term (τf ȳ,λγ − λ̄)L2(Γf ). We have that

τf ȳ(λγ − λ̄) = τf ȳ(λγ − g) ≤ 0 a.e. on A+,

since τf ȳ ≥ 0 and λγ ≤ g. Similarly we find that τf ȳ(λγ−λ̄) ≤ 0 on A− utilizing τf ȳ ≤ 0
and λγ ≥ −g. Finally, on I we have τf ȳ = 0 which yields, since Γf = A− ∪ A+ ∪ I,
that

(τf ȳ,λγ − λ̄)L2(Γf ) ≤ 0.(3.6)

Next we consider τf yγ(λ̄ − λγ) on the sets Aγ,−,Aγ,+, and Iγ , which also form a

disjoint splitting of Γf . On Aγ,− the variable λγ is equal to −g and γτf yγ + λ̂ ≤ −g
holds. This implies

τf yγ(λ̄− λγ) = τf yγ(λ̄ + g) ≤ γ−1(−g − λ̂)(λ̄ + g) a.e. on Aγ,−.(3.7)

By a similar calculation one finds

τf yγ(λ̄− λγ) ≤ γ−1(g − λ̂)(λ̄− g) a.e. on Aγ,+.(3.8)

On Iγ we have λγ = γτf yγ + λ̂ and thus |γτf yγ + λ̂| < g, which shows that a.e.

τf yγ(λ̄− λγ) = τf yγ(λ̄− γτf yγ − λ̂) = −γ|τf yγ |2 + τf yγ(λ̄− λ̂)
≤ −γ|τf yγ |2 + |τf yγ ||λ̄− λ̂| ≤− γ|τf yγ |2 + γ−1(g + |λ̂|)|λ̄− λ̂|.

(3.9)

Hence, using (3.7), (3.8), and (3.9), one gets

(τf yγ , λ̄− λγ)L2(Γf ) ≤ γ−1(g + |λ̂|, |λ̄| + |λ̂| + g)L2(Γf ).(3.10)
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Using (3.5), (3.6), (3.10), and the coercivity (with constant ν > 0) of a(· , ·) on Y , we
can estimate

0 ≤ lim sup
γ→∞

ν‖yγ − ȳ‖2
H1(Ω) ≤ lim sup

γ→∞
a(yγ − ȳ, yγ − ȳ)

≤ lim
γ→∞

(τf yγ , λ̄− λγ)L2(Γf ) ≤ lim
γ→∞

γ−1(g + |λ̂|, |λ̄| + |λ̂| + g)L2(Γf ) = 0.
(3.11)

It follows that yγ → ȳ strongly in Y and hence y∗ = ȳ. Passing to the limit in
e(yγ ,λγ) = 0 and using that weak limits are unique imply λ∗ = λ̄. Thus we have
proved that every sequence γn with γn → ∞ for n → ∞ contains a subsequence
γnk such that λγnk

⇀ λ̄ in L2(Γf ) and yγnk
→ ȳ in Y . Since (ȳ, λ̄) is the unique

solution to (3.2a)–(3.2c), the whole family {(yγ ,λγ)} converges in the sense given in
the statement of the theorem.

As a corollary to the proof of Theorem 3.3 one obtains a convergence rate of yγ
to ȳ.

Corollary 3.4. Let yγ and ȳ be solutions of (Pγ) and (P), respectively. Then
there exists a C > 0 independent of γ such that

‖yγ − ȳ‖H1(Ω) ≤
C
√
γ
.(3.12)

Proof. The inequality follows from (3.11) and the coercivity of a(· , ·) on Y .

4. Algorithms for the solution of (P∗
γ) and (P∗). In this section we present

iterative algorithms to solve (P∗
γ) and (P∗). To simplify notation we drop the sub-

script γ for the iterates (ykγ ,λ
k
γ , ξ

k
γ ) of the algorithms. The solution variables of the

regularized problem are still denoted by (yγ ,λγ , ξγ).

4.1. Primal-dual active set algorithm for (P∗
γ). The primal-dual active set

algorithm (PDAS) is related to the algorithms in [1, 2, 18, 17, 22] in the context of
constrained optimal control and obstacle problems. It is an iterative algorithm which
uses the current variables λk, ξk for (P∗

γ) to predict new active sets Ak+1
− , Ak+1

+ for
the constrained optimization problem (P∗

γ), whereas this prediction is motivated from
expressing the complementarity condition in the form (3.2c). On these active sets the
variable λk+1 is fixed. Thus in each iteration step the method requires solving the
equality constrained problem

sup
λ∈L2(Γf )

J∗
γ (λ) s.t. λ = −g on Ak+1

− , λ = g on Ak+1
+ ,(4.1)

which admits a unique solution. Note that, compared to inequality constrained opti-
mization, equality constrained problems are significantly easier to handle, both theo-
retically and numerically. The algorithm is specified next.

Algorithm 1: (PDAS)

1. Choose y0 ∈ {y ∈ Y : ∂y
∂n |Γf

∈ L2(Γf )}, σ > 0 and set λ0 := −∂y0

∂n |Γf
,

ξ0 := τf y0 + γ−1(λ̂− λ0), k := 0.
2. Determine

Ak+1
− = {x ∈ Γf : ξk + σ(λk + g) < 0},

Ak+1
+ = {x ∈ Γf : ξk + σ(λk − g) > 0},

Ik+1= Γf \ (Ak+1
− ∪Ak+1

+ ).

3. If k ≥ 1, Ak+1
− = Ak

−, and Ak+1
+ = Ak

+ stop, else
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4. Solve problem (4.1) for λk+1 on Ik+1 and the corresponding yk+1 ∈ Y and
update

ξk+1 =






τf yk+1 + γ−1(λ̂ + g) on Ak+1
− ,

τf yk+1 + γ−1(λ̂− g) on Ak+1
+ ,

0 on Ik+1,

k := k + 1 and goto step 2.
Note that ξk+1 is the Lagrange multiplier for the equality constraints in (4.1). The
justification of the stopping criterion in step 3 of (PDAS) is given in the following
lemma (see also [2]). The proof relies on the fact that, if the active sets coincide for
two consecutive iterations, the quantities ξ and λ satisfy the sign-structure as required
by the complementarity conditions (3.3).

Lemma 4.1. If Algorithm (PDAS) stops, the last iterate is the solution to system
(3.2a)–(3.2c).

We now discuss the influence of the parameter σ on the iteration sequence for
k ≥ 1. On Ik we have that ξk = 0 and thus σ has no influence when determining
the new active and inactive sets. On Ak

− we have λk = −g and distinguish two cases:

The set where ξk < 0 belongs to Ak+1
− for the next iteration independently from σ.

In case ξk > 0 we have ξk + σ(λk − g) = ξk − 2σg. The set where ξk − 2σg ≤ 0
moves to Ik+1 if ξk − 2σg > 0 to Ak+1

+ for the next iteration. Hence, only in this
case σ influences the sequence of iterates. Smaller values for σ make it more likely
that points belong to Ak

− ∩Ak+1
+ . A similar observation as for Ak

− holds true for Ak
+,

which shows that with σ > 0 one can control the probability that points are shifted
from one active set to the other within one iteration. We also remark that, if for
some σ := σ1 > 0 one has Ak

− ∩Ak+1
+ = Ak

+ ∩Ak+1
− = ∅, then for every σ ≥ σ1 also

Ak
− ∩Ak+1

+ = Ak
+ ∩Ak+1

− = ∅ and the sets Ak+1
− ,Ak+1

+ , and Ik+1 are the same for all
σ ≥ σ1. This observation will be of interest regarding our local convergence analysis
of (PDAS).

4.2. Semismooth Newton method for (P∗
γ). This section applies an infinite-

dimensional semismooth Newton method (SS) to (P∗
γ). We use the differentiability

concept as introduced in [16], which we recall for the reader’s convenience later in this
section.

We start with writing the optimality system (3.2a)–(3.2c) as one nonlinear op-
erator equation utilizing (3.4). For this purpose we denote by ỹ the solution to the
problem

a(y, v) − (f, v)L2(Ω) = 0 for all v ∈ Y.

Further we introduce B−1 ∈ L(H− 1
2 , Y ), the solution mapping for the variational

equality

a(y, v) − 〈λ, τf v〉H− 1
2 ,H

1
2

= 0 for all v ∈ Y

for given λ ∈ H− 1
2 (Γf ). We can now define the Neumann-to-Dirichlet operator

C := τfB
−1
|L2(Γf ) ∈ L(L2(Γf ), L2(Γf ))(4.2)

and summarize some of its properties in the next lemma.
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Lemma 4.2. The Neumann-to-Dirichlet operator defined in (4.2) is self-adjoint,
positive definite, injective, and compact.

Proof. Self-adjointness, positive definiteness, and injectivity follow easily from
the properties of a(· , ·). Sobolev’s embedding theorem implies the compactness of
C.

With the help of the operators B−1 and C one can write the solution y to e(y,λ) =
0 in Y ∗ for given λ ∈ L2(Γf ) as y = −B−1λ + ỹ and τf y as −Cλ + τf ỹ. This allows
elimination of the variable τf y in (3.4). We introduce the mapping F̄ : L2(Γf ) −→
L2(Γf ) by

F̄ (λ) = Cλ− τf ỹ − γ−1(λ̂− λ) + max(0,−Cλ + τf ỹ + γ−1(λ̂− g))
+ min(0,−Cλ + τf ỹ + γ−1(λ̂ + g)).

(4.3)

Note that F̄ (λ) = 0 characterizes λ as the solution of (P∗
γ). In what follows we utilize

for S ⊂ Γf the extension-by-zero operator ES : L2(S) −→ L2(Γf ) defined by

ES(g)(x) :=

{
g(x) if x ∈ S,
0 else.

(4.4)

Its adjoint operator E∗
S : L2(Γf ) −→ L2(S) is the restriction operator onto S. Writing

the optimality system as done in (4.3) suggests applying a semismooth Newton method
to solve F̄ (λ) = 0. We briefly summarize those facts on semismooth Newton methods
which are relevant for the following results. Let X,Y, and Z be Banach spaces and
F : D ⊂ X −→ Z be a nonlinear mapping with open domain D.

Definition 4.3. The mapping F : D ⊂ X −→ Z is called Newton differentiable
on the open subset U ⊂ D if there exists a mapping G : U −→ L(X,Z) such that

lim
h→0

1

‖h‖‖F (x + h) − F (x) −G(x + h)h‖ = 0(4.5)

for every x ∈ U .
The mapping G in the above definition is referred to as generalized derivative.

The following convergence result for a generalized Newton method holds (see [4]).
Theorem 4.4. Suppose that x∗ ∈ D is a solution to F (x) = 0 and that F is

Newton differentiable in an open neighborhood U containing x∗ and that {‖G(x)−1‖ :
x ∈ U} is bounded. Then the Newton-iteration

xk+1 = xk −G(xk)−1F (xk)(4.6)

converges superlinearly to x∗ provided that ‖x0 − x∗‖ is sufficiently small.
To apply a Newton iteration to the mapping F̄ , we need to consider Newton dif-

ferentiability of the max- and min-operator. For this purpose let X denote a function
space of real-valued functions on some Ω ⊂ Rn, and further max(0, y) and min(0, y)
the pointwise max- and min-operations, respectively. We now introduce candidates
for the generalized derivatives

Gmax(y)(x) =

{
1 if y(x) ≥ 0,

0 if y(x) < 0,
Gmin(y)(x) =

{
1 if y(x) ≤ 0,

0 if y(x) > 0.
(4.7)

Then we have the following result (see [16]).
Theorem 4.5. The mappings max(0, ·) : Lq(Ω) −→ Lp(Ω) and min(0, ·) :

Lq(Ω) −→ Lp(Ω) with 1 ≤ p < q < ∞ are Newton differentiable on Lq(Ω) with
generalized derivatives Gmax and Gmin, respectively.
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Note that Theorem 4.5 requires a norm gap (i.e., p < q) to hold true. In [16] it
is shown that the functions defined in (4.7) cannot serve as generalized gradients if
p ≥ q. We now quote a chain rule for Newton differentiability (for a proof see [22]).

Theorem 4.6. Let F2 : Y −→ X be an affine mapping with F2y = By + b,
B ∈ L(Y,X), b ∈ X, and assume that F1 : D ⊂ X −→ Z is Newton differentiable on
the open subset U ⊂ D with generalized derivative G. If F−1

2 (U) is nonempty, then
F = F1 ◦ F2 is Newton differentiable on F−1

2 (U) with generalized derivative given by
G(By + b)B ∈ L(Y, Z) for y ∈ F−1

2 (U).
We can now apply the above results to the mapping F̄ . Observe that Rg(C) ⊂

H
1
2 (Γf ) and that

H
1
2 (Γf ) ↪→ Lq(Γf ) for

{
q = 2(n−1)

n−2 if n ≥ 3,

q < ∞ if n = 2,
(4.8)

where n ≥ 2 denotes the dimension of Ω. Note that q > 2 for all n ≥ 2. From Theo-
rems 4.5 and 4.6 it follows that F̄ is Newton differentiable on L2(Γf ). A generalized
derivative of F̄ is given by

GF̄ (λ)(δ) =

(
EIE

∗
IC +

1

γ

)
δ(4.9)

with the following definition for A−, A+, I:

A− = {x ∈ Γf : −Aλ + τf ỹ + γ−1(λ̂− g) ≥ 0},
A+ = {x ∈ Γf : −Aλ + τf ỹ + γ−1(λ̂ + g) ≤ 0},
I = Γf \ (A− ∪A+).

Calculating (4.6) explicitly results in a semismooth Newton-iteration step for the
solution of F̄ (λ) = 0 that is equal to one iteration step of (PDAS) with σ = γ−1.

An analogous result for unilaterally constrained optimal control problems was
established in [16]. Note that the norm gap required for Newton differentiability of
the max- and min-function results from directly exploiting the smoothing property of
the operator C. This has become possible since we chose σ := γ−1 in (3.2c) which
allowed elimination of the explicit appearance of λ in the max- and min-function.
Taking advantage of this fact, the above semismooth Newton method does not require
a smoothing step, as do the semismooth Newton methods in [33].

We now investigate whether (PDAS) with arbitrary σ > 0 can also be interpreted
as a Newton method. We introduce F : Y ×L2(Γf )×L2(Γf ) −→ Y ∗×L2(Γf )×L2(Γf )
by

F (y,λ, ξ) :=




e(y,λ)
τf y + γ−1(λ̂− λ) − ξ
ξ − max(0, ξ + σ(λ− g)) − min(0, ξ + σ(λ + g))



(4.10)

and observe that F (y,λ, ξ) = 0 characterizes y and λ as solutions to (Pγ) and (P∗
γ),

respectively. Applying now the Newton iteration (4.6) with the generalized derivative
of the max- and min-function as given in (4.7) to the mapping F results in Algorithm
(PDAS) which can be seen similarly as for (SS). In section 5.2 it is shown that for
certain problems, (PDAS) converges locally superlinearly without the necessity of a
smoothing step as used in [33] to get local superlinear convergence of semismooth
Newton methods.
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We conclude this section with some remarks on the development of semismooth
Newton methods. The application of generalized Newton methods for semismooth
problems in finite dimensions has a rather long history (see, e.g., [10, 31, 30] and the
references given there). Recently, in [4, 16, 27, 33] concepts for generalized deriva-
tives in infinite dimensions were introduced. Our work uses the notion of slant dif-
ferentiability in a neighborhood as proposed in [16], which is a slight adaptation of
the terminology introduced in [4], where the term slant differentiability at a point
is also introduced. A similar concept is proposed in [27], where the name “New-
ton map” is coined. Applications of such pointwise approaches to Newton’s method,
however, presuppose knowledge of the solution. The differentiability concept in [16]
coincides with a specific application of the theory developed in [33]; we refer to the
discussion on this relationship in [16]. As in [22] and also motivated by [27], we
use instead of the notion slant differentiability in a neighborhood the name Newton
differentiability.

4.3. Augmented Lagrangian methods for (P∗). Augmented Lagrangian
methods (ALMs) combine ordinary Lagrangian methods and penalty methods with-
out suffering of the disadvantages of these methods. For instance, the augmented
Lagrangian method converges without requiring that the penalty parameter tends to
infinity. For a detailed discussion of these methods we refer to [3, 21].

To argue the close relation of the regularization for (P∗) to augmented La-
grangians recall that (3.2b), (3.2c) can equivalently be expressed as (3.4) and, after
multiplication with γ, as

λγ = γτf yγ + λ̂− max(0, γτf yγ + λ̂− g) − min(0, γτf yγ + λ̂ + g).(4.11)

The augmented Lagrangian method is an iterative algorithm for the calculation
of λ in (P∗).

It sets λ̂ := λl in (4.11) and determines λl+1 from the solution of (4.11), (3.2a).
Note that the augmented Lagrangian method can be seen as an implicit version of
Uzawa’s algorithm (see [21]). The whole method is specified next.

Algorithm 3: (ALM)
1. Choose γ > 0, λ0 ∈ L2(Γf ) and set l := 0.
2. Solve for (yl+1,λl+1, ξl+1) ∈ Y × L2(Γf ) × L2(Γf ) system (3.2a)–(3.2c) with

λ̂ := λl.
3. Update l := l + 1 and goto step 2.

The auxiliary problem in step 2 of (ALM) has exactly the form of our regularized
problem and can thus efficiently be solved using (PDAS) or (SS). The question arises
concerning the precision to which the system in step 2 is solved. Several strategies
are possible, such as solving the system exactly for all l or performing only one it-
eration step of the semismooth Newton method in each iteration. We tested several
strategies and report on them in section 6. Note that in (ALM) the regularization
parameter γ plays the role of a penalty parameter, which is not necessarily taken
to infinity; nevertheless (ALM) detects the solution of (P∗), as will be shown in
section 5.4.

5. Convergence analysis. In this section we present local convergence results
for (SS) and (PDAS) as well as a conditional global convergence result for (SS) and
unconditional global convergence of (ALM).
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5.1. Local superlinear convergence of (SS). In this section we give a lo-
cal convergence result for algorithm (SS) for the solution of the regularized friction
problem.

Theorem 5.1. If ‖λ0 − λγ‖L2(Γf ) is sufficiently small, then the iterates λk of
(SS) converge to (λγ) superlinearly in L2(Γf ). Furthermore, the corresponding primal
iterates yk converge superlinearly to yγ in Y .

Proof. We have only to show superlinear convergence of λk to λγ in L2(Γf ); then
superlinear convergence of yk to yγ in Y ⊂ H1(Ω) follows since B−1 is continuous.

We already argued Newton differentiability of F̄ ∈ L(L2(Γf ), L2(Γf )). To apply
Theorem 4.4 it remains to verify that the generalized gradients GF̄ ∈ L(L2(Γf ), L2(Γf ))
of F̄ have uniformly bounded inverses. Recall the definition of the extension-by-zero
operator E. and its adjoint E∗

. as given in (4.4). Let (hA− , hA+ , hI) ∈ L2(A−) ×
L2(A+) × L2(I) and consider the equation

GF̄ (λ)(δ) = GF̄ (λ)(δA− , δA+ , δI) = (hA− , hA+ , hI).(5.1)

Recalling the explicit form (4.9) of GF̄ , we get from (5.1) that δA− = γhA− and
δA+ = γhA+ must hold; further

(
1

γ
+ E∗

ICEI

)
δI = hI − γE∗

ICEA−hA− − γE∗
ICEA+hA+ .

Due to the positivity of C we can define a new scalar product 〈〈· , ·〉〉 on L2(I) by

〈〈x, y〉〉 :=

〈(
1

γ
+ E∗

ICEI

)
x, y

〉

L2(I)
for x, y ∈ L2(I).

Utilizing the positivity of C we have that the product 〈〈· , ·〉〉 is coercive with constant
γ−1 independently from I. Applying the Lax–Milgram lemma, one finds not only
that (5.1) admits a unique solution δI, but also that

‖δI‖L2(I) ≤ γ‖hI‖L2(I) + γ2‖C‖L(L2(Γf ))

{
‖hA−‖L2(A−) + ‖hA+‖L2(A+)

}
.

This proves the uniform boundedness of GF̄ (λ)−1 with respect to λ ∈ L2(Γf ) and
ends the proof.

5.2. Local superlinear convergence of (PDAS). As observed at the end of
section 4, algorithm (PDAS) cannot directly be interpreted as a locally superlinear
convergent semismooth Newton method if no smoothing steps are used. However,
exploiting the role of σ in (PDAS) (see the discussion after Lemma 4.1), it turns out
that local superlinear convergence holds for (PDAS) as well, provided the dimension
n of Ω is 2.

Corollary 5.2. Assume that n = 2 and Γ0 ⊂ Γ is a sufficiently regular subset.
If ‖λ0 − λγ‖L2(Γf ) is sufficiently small, the iterates (yk,λk) of (PDAS) with σ ≥ γ−1

converge superlinearly in Y × L2(Γf ).
Proof. The idea of this proof is to show that in a neighborhood of the solution

λγ the iterates λk of (PDAS) coincide with λk from (SS), which allows application of
Theorem 5.1 also for (PDAS).

Step 1. We first consider only (SS) and denote by δ > 0 the convergence radius
of this semismooth Newton method. We introduce a δ0 with 0 < δ0 ≤ δ, which will
be further specified below, and choose λ0 ∈ L2(Γf ) such that ‖λ0 − λγ‖L2(Γf ) ≤ δ0.
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Since δ0 ≤ δ the method converges and ‖λk − λk+1‖L2(Γf ) ≤ 2δ0 for k ≥ 1. Note that

the difference of the corresponding variables yk − yk+1 solves

a(yk − yk+1, v) + (λk − λk+1, τf v)L2(Γf ) = 0 for all v ∈ Y.

It thus follows from regularity results for mixed elliptic problems [32] that

‖yk − yk+1‖C0(Ω̄) ≤ C‖λk − λk+1‖L2(Γf ) for some C > 0.

For the corresponding traces we have

‖τf (yk − yk+1)‖C0(Γf ) ≤ C‖λk − λk+1‖L2(Γf ) ≤ 2Cδ0.(5.2)

We now show that for δ0 sufficiently small Ak
− ∩Ak+1

+ = Ak
+ ∩Ak+1

− = ∅. We prove

this claim by contradiction; i.e., we assume that J = Ak
+ ∩Ak+1

− 2= ∅. Then, almost
everywhere on J we have

τyk−1 + γ−1(λ̂− g) > 0 and τyk + γ−1(λ̂ + g) < 0,

which implies τ(yk+1 − yk) > 2gγ−1. Thus, utilizing (5.2)

2gγ−1 < ‖τ(yk+1 − yk)‖C0(Γf ) ≤ 2Cδ0.(5.3)

If we choose δ0 ≤ g
Cγ , relation (5.3) cannot hold true and therefore J = ∅. An

analogous observation holds true for Ak
− ∩Ak+1

+ , which shows that

Ak
− ∩Ak+1

+ = Ak
+ ∩Ak+1

− = ∅ if δ0 ≤ g

Cγ
.(5.4)

Step 2. Recall that the iterates of (PDAS) with σ = γ−1 coincide with those of
(SS). Thus, if ‖L2(Γf )‖λ0 − λγ ≤ δ0, then Ak

− ∩ Ak+1
+ = Ak

+ ∩ Ak+1
− = ∅ for (PDAS)

with σ = γ−1. It follows from the discussion after Lemma 4.1 that for the active sets
calculated from (PDAS) using σ ≥ γ−1 also Ak

−∩Ak+1
+ = Ak

+∩Ak+1
− = ∅ holds. This

shows that (SS) and (PDAS) determine the same iterates for the variable λγ provided
that ‖λ0 − λγ‖L2(Γf ) < δ0. Hence, superlinear L2-convergence for λk determined from

(PDAS) holds. For the variables yk superlinear convergence in Y follows from the
continuity of the solution mapping B−1.

5.3. Conditional global convergence of (SS). Our global convergence result
is based on an appropriately defined functional which decays when evaluated along
the iterates of the algorithm. A related strategy to prove global convergence (i.e., con-
vergence from arbitrary initialization) is used in [23] in the context of optimal control
problems. In what follows we use the notation from (PDAS) with σ := γ−1 for (SS).
For (λ, ξ) ∈ L2(Γf ) × L2(Γf ) we define the functional

M(λ, ξ) :=
1

γ2

∫

Γf

|(λ− g)+|2 + |(λ + g)−|2 dx +

∫

A∗
+

|ξ−|2 dx +

∫

A∗
−

|ξ+|2 dx,(5.5)

where A∗
+ = {x ∈ Γf : λ(x) ≥ g} and A∗

− = {x ∈ Γf : λ(x) ≤ −g}. By (·)+ and
(·)− we denote the positive and negative part, i.e., (·)+ := max(0, ·) and (·)− :=
−min(0, ·). As a preparatory step for the following estimates we prove a lemma that
can easily be verified using the spectral theorem for compact and positive definite
operators.
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Lemma 5.3. Let X be a real Hilbert space with inner product (· , ·) and C ∈ L(X)
be injective, self-adjoint, positive, and compact. Then

(y, y) ≤ ‖C‖L(X)(C
−1y, y)

for all y ∈ Rg(C).
Following Lemma 4.2 the Neumann-to-Dirichlet mapping C, as given in (4.2),

fulfills the conditions of Lemma 5.3. Utilizing the operator C step 4 of (PDAS)
implies

C−1τf y
k+1 = −λk+1 = −






g on Ak+1
+ ,

γτf yk+1 + λ̂ on Ik+1,

−g on Ak+1
− ,

τf y
k+1 + γ−1(λ̂− λk+1) − ξk+1 = 0.(5.6)

With the above notation we get

C−1(τf (y
k − yk+1)) = λk+1 − λk =






Rk
A+ on Ak+1

+ ,

γ(τf (yk+1 − yk)) + Rk
I on Ik+1,

Rk
A− on Ak+1

− ,

(5.7)

where

Rk
A+

=






0 on Ak+1
+ ∩Ak

+,

g − λk < 0 on Ak+1
+ ∩ Ik,

2g < γξk on Ak+1
+ ∩Ak

−,

Rk
I =






γτf yk + λ̂− g = γξk ≤ 0 on Ik+1 ∩Ak
+,

0 on Ik+1 ∩ Ik,
γξk ≥ 0 on Ik+1 ∩Ak

−,

Rk
A+

=






−2g > γξk on Ak+1
− ∩Ak

+,

−g − λk > 0 on Ak+1
− ∩ Ik,

0 on Ak+1
− ∩Ak

−.

Let us denote by Rk the function defined on Γf , whose restrictions to Ak+1
− , Ik+1, and

Ak+1
+ coincide with Rk

A− , Rk
I , and RAk

−
, respectively. Note that, from the definition

of Rk, we have

‖Rk‖2
L2(Γf ) ≤ γ2M(λk, ξk).(5.8)

To shorten the notation we introduce δky := τf (yk+1 − yk). Multiplying (5.7) by −δky
results in

C−1(δky )(δky ) = −Rkδky − χIk+1γ(δky )2

a.e. on Γf , where χIk+1 denotes the characteristic function for Ik+1. Thus,

(C−1δky , δ
k
y )L2(Γf ) =

∫

Γf

−Rkδky dx− γ

∫

Ik+1

(δky )2 dx ≤ ‖Rk‖L2(Γf )‖δky‖L2(Γf ),(5.9)
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where we used the Cauchy–Schwarz inequality and
∫
Ik+1(δky )2 dx ≥ 0. Utilizing

Lemma 5.3 for the Neumann-to-Dirichlet mapping C and (5.9) yields

‖δky‖L2(Γf ) ≤ ‖C‖L(L2(Γf ))‖Rk‖L2(Γf ).(5.10)

We can now prove the following convergence theorem for (SS), or equivalently for
(PDAS), with σ = γ−1.

Theorem 5.4. If γ < ‖C‖−1
L(L2(Γf )), then

M(λk+1, ξk+1) < M(λk, ξk)

for k = 0, 1, 2, . . . with (λk, ξk) 2= (λγ , ξγ), where (λk, ξk) denote the iterates of
(PDAS) with σ = γ−1. Moreover, (yk,λk, ξk) converges to (yγ ,λγ , ξγ) strongly in
Y × L2(Γf ) × L2(Γf ).

Proof. Recall that from the definition of (PDAS) with σ = γ−1 one gets

λk+1 = γτf yk+1 + λ̂ on Ik+1,
ξk+1 = τf yk+1 + γ−1(λ̂ + g) on Ak+1

− ,
ξk+1 = τf yk+1 + γ−1(λ̂− g) on Ak+1

+ .

We therefore have

ξk+1 = δky + τf y
k + γ−1(λ̂− g) = δky +






ξk − γ−1(g − λk) > 0 on Ak+1
+ ∩Ak

−,

γ−1(λk − g) > 0 on Ak+1
+ ∩ Ik,

ξk > 0 on Ak+1
+ ∩Ak

+.

Thus, |(ξk+1)−| := |max(0,−ξk+1)| ≤| δky | a.e. on Ak+1
+ . Note that

A∗,k+1
+ := {x ∈ Γf : λk+1(x) ≥ g} = Ak+1

+ ∪ {x ∈ Ik+1 : λk+1(x) ≥ g},

which implies, using ξk+1 = 0 on Ik+1, that

|(ξk+1)−| ≤| δky | a.e. on A∗,k+1
+ .(5.11)

Analogously, it follows that

|(ξk+1)+| ≤| δky | a.e. on A∗,k+1
− ,(5.12)

where A∗,k+1
− := {x ∈ Γf : λk+1(x) ≤ −g}. Moreover, on Ik+1

λk+1 − g = γδky + γτf y
k + λ̂− g = γδky +






γ(ξk + γ−1(λk − g)) ≤ 0 on Ik+1 ∩Ak
−,

λk − g ≤ 0 on Ik+1 ∩ Ik,
γξk ≤ 0 on Ik+1 ∩Ak

+.

The above estimate shows that

|(λk+1 − g)+| ≤ γ|δky | a.e. on Ik+1,(5.13)

and analogously one can show

|(λk+1 + g)−| ≤ γ|δky | a.e. on Ik+1.(5.14)
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Since on active sets λk+1 is set to either g or −g, we have on Ak+1
− ∪ Ak+1

+ that
(λk+1−g)+ = (λk+1 +g)− = 0. Further, at most one of the expressions at a.a. x ∈ Γf

|(λk+1 − g)+|, |(λk+1 + g)−|, |(ξk+1)−|, |(ξk+1)+|

can be strictly positive, which shows, combining (5.11)–(5.14), that

M(λk+1, ξk+1) ≤ ‖δky‖2
L2(Γf ).(5.15)

Combining (5.8) and (5.10) with (5.15) shows that

M(λk+1, ξk+1) ≤ γ2‖C‖2
L(L2(Γf ))M(λk, ξk).(5.16)

Our assumption on γ implies that

‖C‖2
L(L2(Γf ))γ

2 < 1,(5.17)

which shows that

M(λk+1, ξk+1) < M(λk, ξk)

unless (λk, ξk) = (λγ , ξγ). Combining (5.8), (5.10), (5.15), and (5.16) it follows that

‖δky‖2
L2(Γf ) ≤ ‖C‖2

L(L2(Γf ))‖Rk‖2
L2(Γf ) ≤ γ2‖C‖2

L(L2(Γf ))M(λk, ξk)

≤ γ2‖C‖2
L(L2(Γf ))‖δk−1

y ‖2
L2(Γf ) ≤

(
γ‖C‖L(L2(Γf ))

)2(k+1)
M(λ0, ξ0),(5.18)

which shows, utilizing (5.17), that limk→∞ M(λk, ξk) = limk→∞ ‖Rk‖L2(Γf ) = 0.

Further, summing up (5.18) over k and utilizing (5.17) results in
∑∞

k=1 ‖δky‖2
L2(Γf ) <

∞, which shows that there exists a z ∈ L2(Γf ) such that limk→∞ τf yk = z in L2(Γf ).
Using (5.7) results in

‖λk+1 − λk‖L2(Γf ) ≤ γ‖δky‖L2(Γf ) + ‖Rk‖L2(Γf )

≤
(
γ‖C‖L(L2(Γf ))

)k
(γ2‖C‖L(L2(Γf )) + γ)M(λ0, ξ0)

1
2 ,

and thus there exists λ̌ ∈ L2(Γf ) with limk→∞ λk = λ̌ in L2(Γf ). From (5.6) one gets
limk→∞ ξk = ξ̌ ∈ L2(Γf ) for ξ̌ ∈ L2(Γf ). Since 0 = limk→∞ M(λk, ξk) = M(λ̌, ξ̌), the
pair (λ̌, ξ̌) satisfies condition (3.2c). From (3.2a) follows the existence of ỹ ∈ Y such
that limk→∞ yk = y̌ in Y . Note that, since (yk,λk, ξk) satisfies (3.2a), (3.2b), this
is also the case for (y̌, λ̌, ξ̌). Hence (y̌, λ̌, ξ̌) = (yγ ,λγ , ξγ) due to the uniqueness of a
solution to (3.2a)–(3.2c), which ends the proof.

Note that for unilaterally constrained problems global convergence results can
possibly be gained using monotonicity properties of the involved operators (see, e.g.,
[22]), where the maximum principle for the Laplace operator is used to prove global
convergence. For bilaterally constrained problems (such as (P∗

γ)), however, mono-
tonicity of the iterates does not hold, even if the operator satisfies a maximum
principle.

5.4. Global convergence of (ALM). The next theorem states global conver-
gence of (ALM) for all γ > 0 and shows that large γ increases the speed of convergence.
In the statement of the next theorem we denote the coercivity constant of a(· , ·) on
Y by ν > 0.
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Theorem 5.5. The iterates λl of (ALM) and the corresponding variables yl

satisfy

ν‖yl+1 − ȳ‖2
H1(Ω) +

1

2γ
‖λl+1 − λ̄‖2

L2(Γf ) ≤
1

2γ
‖λl − λ̄‖2

L2(Γf )(5.19)

and

ν
∞∑

k=1

‖yl+1 − ȳ‖2
H1(Ω) ≤

1

2γ
‖λ0 − λ̄‖2

L2(Γf ),(5.20)

which implies that yl −→ ȳ strongly in Y and λl ⇀ λ̄ weakly in L2(Γf ).
Proof. From the fact that ȳ and λ̄ are the solutions to (P) and (P∗), respectively,

it follows that

a(ȳ, yl+1 − ȳ) − (f, yl+1 − ȳ)L2(Ω) + (λ̄, τf (y
l+1 − ȳ))L2(Γf ) = 0,(5.21)

and since yl+1 and λl+1 solve (Pγ) and (P∗
γ) with λ̂ := λl, we infer

a(yl+1, yl+1 − ȳ) − (f, yl+1 − ȳ)L2(Ω) + (λl+1, τf (y
l+1 − ȳ))L2(Γf ) = 0.(5.22)

Subtracting (5.21) from (5.22) results in

a(yl+1 − ȳ, yl+1 − ȳ) + (λl+1 − λ̄, τf (y
l+1 − ȳ))L2(Γf ) = 0.(5.23)

Note that one can write (4.11) and (2.6) as

λl+1 = P (γτf y
l+1 + λl) and λ̄ = P (γτf ȳ + λ̄),(5.24)

where P : L2(Γf ) → L2(Γf ) denotes the pointwise projection onto the convex set
{v ∈ L2(Γf ) : |v| ≤ g a.e. on L2(Γf )}. Thus we get

(λl+1 − λ̄, τf (y
l+1 − ȳ))L2(Γf ) = γ−1(λl+1 − λ̄, (γτf y

l+1 + λl) − (γτf ȳ + λ̄))L2(Γf )

− γ−1(λl+1 − λ̄,λl − λ̄)L2(Γf )

≥ γ−1‖λl+1 − λ̄‖2
L2(Γf ) − γ−1(λl+1 − λ̄,λl − λ̄)L2(Γf ),

where we used that

(λl+1 − λ̄, (γτf y
l+1 + λl − λl+1) − (γτf ȳ + λ̄− λ̄))L2(Γf ) ≥ 0,

which holds using (5.24) and since P is a projection onto a convex set. Using (5.23)
and the coercivity of a(· , ·) on Y , we get

ν‖yl+1 − ȳ‖2
H1(Ω) ≤ a(yl+1 − ȳ, yl+1 − ȳ) = −(λl+1 − λ̄, τf (y

l+1 − ȳ))L2(Γf )

≤ − 1

γ
‖λl+1 − λ̄‖2

L2(Γf ) +
1

γ
(λl+1 − λ̄,λl − λ̄)L2(Γf )

≤ − 1

2γ
‖λl+1 − λ̄‖2

L2(Γf ) +
1

2γ
‖λl − λ̄‖2

L2(Γf ),

which proves (5.19). Summing up (5.19) with respect to l, we obtain (5.20).
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Table 6.1
Number of iterations for different values of γ for Example 1.

γ 102 104 106 108

No. of iterations 2 3 3 3

6. Numerical tests. In this section we present three test examples for the
algorithms proposed in section 5 for the solution of (P∗

γ) and (P∗). For simplicity
we use for all examples the unit square as domain, i.e., Ω = (0, 1) × (0, 1) and the
bilinear form

a(y, z) := (∇y,∇z)L2(Ω) + µ(y, z)L2(Ω) for y, z ∈ Y ,

which is coercive if µ > 0 or Γ0 ⊂ Γ has positive measure. For our calculations we
utilize a finite difference discretization with the usual five-point stencil approximation
to the Laplace operator. The discretization of the normal derivative is based on
one-sided differences and all linear systems are solved exactly. We denote by N the
number of gridpoints in one space dimension, which means we work on N ×N -grids.
To investigate convergence properties we frequently report on

dlλ := ‖λ̄− λl‖L2(Γf ),(6.1)

where λ̄ := λ1016 is the solution of (P∗
γ) with γ = 1016 and λl denotes the actual

iterate. We compare our results with those obtained using the Uzawa algorithm,
which can be interpreted as an explicit form of the augmented Lagrangian method
[21]. While (ALM) converges for every γ > 0 the Uzawa method converges for only
γ ∈ [α1,α2] with 0 < α1 < α2, where α1 and α2 are in general not known [11]. We
initialize the Uzawa method with λ0 := 0 and report on the number of iterations
(one iteration requires one linear solve), where the iteration is stopped if dlλ < 10−4.

Unless otherwise specified, we use λ̂ = 0, and σ = 1 for (PDAS). As initialization for
(PDAS), (SS), and (ALM), the solution to (3.2a)–(3.2c) with ξ0 = 0 is used, which
corresponds to the solution of (P∗

γ) neglecting the constraints on λ.

6.1. Example 1. This example is taken from [11]. The data are as follows:
Γf = ([0, 1] × {0}) ∪ ([0, 1] × {1}), g = 1.5, µ = 0, and

f(x) =

{
10 if x ∈ (0, 1

2 ) × (0, 1),

−10 if x ∈ [ 12 , 1) × (0, 1).

Choosing N = 80 the Uzawa algorithm requires 32 iterations for γ = 10 and 17
iterations for γ = 20 and does not converge for γ = 30. In our tests for (PDAS)
and (SS) we vary the value for the regularization parameter γ and investigate the
convergence as γ → ∞. Table 6.1 reports on the number of iterations needed by (SS)
for various values of γ and N = 80. It can be seen that the algorithm requires only very
few iterations to find the solution and that increasing the regularization parameter
for this example does not increase the number of iterations required to detect the
solution (cf. [22], where a different behavior for obstacle problems is observed). We
remark that for (SS) no points are shifted from the lower active set to the upper or
conversely within one iteration and thus (PDAS) determines the same iterates as (SS)
for all σ ≥ γ−1.
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Fig. 6.1. Solution yγ for γ = 108 (left) and convergence with respect to γ (right) for Example 1.
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Fig. 6.2. Solution yγ for Example 2 (left) and Example 3 (right) for γ = 1010.

The primal solution yγ for γ = 108 is shown in Figure 6.1 (left). We also investi-
gate the convergence as γ → ∞. The table in Figure 6.1 reports on the value of

|||yγ − ȳ||| := (a(yγ − ȳ, yγ − ȳ))
1
2

for various γ, where we take ȳ := y1016 as approximation to the solution of the sim-
plified friction problem and use N = 160. Note that ||| · ||| is a norm equivalent to
the usual one in H1(Ω). The result suggests the convergence rate γ−1, while from
Corollary 3.4 we get only the rate γ− 1

2 .

6.2. Example 2. This example investigates the behavior of (PDAS), (SS), and
(ALM) for a more complicated structure of the active and inactive sets (see the
solution yγ for γ = 1010 in Figure 6.2 (left)). Uzawa’s method faces serious troubles
with this example: In all test examples with γ > 0.2 the method did not converge.
For γ = 0.2 we stopped our test after 400 iterations at d400

λ =1.03e-2. We choose
Γf = ∂Ω, which implies Y = H1(Ω); and further µ = 0.5, g = 0.4, and the external
force f(x) = 10(sin 4πx + cos 4πx).

We investigate superlinear convergence of the iterates, properties of (PDAS) and
(SS), and the behavior of algorithm (ALM). Table 6.2 reports on

qkλ :=
‖λk − λγ‖L2(Γf )

‖λk−1 − λγ‖L2(Γf )
, k = 1, 2, . . . ,
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Table 6.2
Values for qkλ in Example 2, γ = 50.

k 1 2 3 4 5

qkλ 0.58 0.45 0.25 0.18 0.00

Table 6.3
Number of iterations of (SS) and (PDAS) for different values of γ for Example 2, N = 160.

γ 3 5 10 50 100 150 160 103 1010

#iterSS 3 4 4 5 6 7 div div div
#iterPD 3 4 4 5 6 5 5 6 6

Table 6.4
Tests for (ALM) with exact solve of the auxiliary problem for Example 2, N = 160.

l 1 2 3 4 5 6 7

#iterPD 6 3 2 1 1 1 1
γ = 102

dlλ 2.55e-2 8.54e-3 3.62e-3 1.62e-3 7.45e-4 3.58e-4 1.77e-4

#iterPD 6 1 1 1 1
γ = 104

dlλ 4.00e-4 3.06e-6 2.67e-8 2.62e-10 2.84e-12

for γ = 50. We observe superlinear convergence of the iterates determined with (SS).
Table 6.3 shows the number of iterations #iterSS and #iterPD required by (SS)

and (PDAS), respectively, to find the solution for different values of γ. We observe
a slight increase in the number of iterations as γ increases. For γ ≥ 160 (SS) does
not detect the solution, whereas (PDAS) does. Using (SS) for these examples we
can observe the following behavior: Points in Γf move from Ak−1

− to Ak
+, and then

from Ak
+ back to Ak+1

− for some k ≥ 2, and due to this scattering the algorithm
does not find the solution (cf. the remark on the role of σ in (PDAS) after Lemma
4.1). Algorithm (PDAS) with σ = 1 does not experience such problems and finds the
solution after a few iterations for all tested γ > 0.

To avoid possible difficulties due to the local convergence of (SS), we test two
globalization strategies: First we use a continuation procedure with respect to γ,
motivated from the local convergence result for (SS). We solve for γ = 150 and use
the solution as initialization for the algorithm with larger γ. This procedure turns out
to be successful for only a moderate increase in γ. Increasing γ moderately, typically
only one or two more iterations are needed to find the solution for larger γ. However,
this method appears inconvenient and costly. Next we test backtracking with Jγ as
merit function to globalize (SS). This strategy works successfully, but in particular
for larger γ, several backtracking steps are necessary in each iteration. The resulting
stepsize is very small and thus overall up to 50 iterations are needed to find the
solution. This behavior becomes more distinct for large γ.

We also apply algorithm (ALM) for the solution of this example. In a first attempt
we solve the auxiliary problem in (ALM) exactly using (PDAS), whereas this method
is initialized with the solution of the auxiliary problem in the previous iteration step
of (ALM). Due to the local superlinear convergence of (PDAS), the auxiliary problem
is solved in very few iterations, as can be seen in Table 6.4, where for γ = 102

and γ = 104 we report on the number of iterations #iterPD required by (PDAS)
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Table 6.5
Tests for (ALM) with inexact solve of the auxiliary problem for Example 2, N = 160.

l 1 2 3 4 5 6 7

#iterPD 1 2 2 2 1 1 1
γ = 102

dlλ 2.96e-1 5.03e-2 7.60e-3 1.89e-3 9.99e-4 5.36e-4 2.91e-4

#iterPD 1 2 1 2 1 1 1
γ = 104

dlλ 3.81e-1 1.46e-1 3.79e-2 1.87e-4 2.20e-6 2.67e-8 3.28e-10

#iterPD 1 3 2 1 1 1
γ = 10l

dlλ 1.41e-1 2.30e-2 2.16e-3 1.11e-5 1.04e-8 1.14e-12

Table 6.6
Number of iterations for different values of γ (first line) and N (first column) for Example 3.

5 10 30 50 102 103 105 1010

20 3 3 3 3 3 3 3 3∗

40 3 3 4 5 4 4 4 4∗

80 3 4 4 5 5 6 6 6∗

160 3 3 5 5 6 8 7∗ 7∗

320 3 4 5 6 7 7 8∗ 8∗

in every step l of (ALM). Further we report on dlλ as defined in (6.1). We observe
a monotone decrease of dlλ and a faster convergence in the case that γ = 104. In a
second approach we test an inexact version of the augmented Lagrangian method: We
stop the (PDAS)-iterations for the auxiliary problem as soon as the initial residual in
(3.2c) has been reduced at least by a factor of 2. The results for γ = 102, 104 are shown
in Table 6.5, where we report on the number of (PDAS)-iterations and the value of
dlλ. We observe that for γ = 102 the first iterates present a better approximation to λ̄
than for γ = 104, whereas then the case γ = 104 shows a faster convergence behavior.
This leads to the idea of increasing the parameter γ in every step of (ALM). Choosing
γ = 10l in the lth (ALM)-iteration, the impressing results shown in the last line of
Table 6.5 were obtained.

6.3. Example 3. The solution y1010 for this last example is shown in Figure 6.2
(right). Again the Uzawa algorithm only converges for small γ which results in an
extremely slow convergence. The data are as follows: Γf = ∂Ω, µ = 0.5, g = 0.3, and

f(x) = |3x− 1| + 2sgn(2y − 1) + 2sgn(x− 0.75) + 5 sin(6πx).

We investigate the number of iterations required by (PDAS) and (SS) for various
values of γ and N ; further we report on results obtained with (ALM). In a series of
test runs (Table 6.6) we investigate the number of iterations for various grids and
different values for γ. We observe the low number of iterations for all mesh-sizes and
choices for γ. For the calculations in Table 6.6 we use (SS), except for those indicated
by ∗. For these examples with a rather large value of γ, (SS) starts to chatter due
to effects described in the previous example. Thus we utilize (PDAS) to solve these
problems, which is always successful. Utilizing (PDAS) also for the examples with
smaller γ yields the same number of iterations as (SS). Further, note from Table 6.6
that the number of iterations increases very weakly as the mesh becomes finer.
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Table 6.7
Tests for (ALM) with inexact solve of the auxiliary problem for Example 3, N = 160.

l 1 2 3 4 5 6 7

#iterPD 1 2 1 1 1 1 2
γ = 102

dlλ 1.62-1 1.99e-2 6.94e-3 1.40e-3 4.67e-4 1.91e-4 9.20e-5

#iterPD 1 3 2 1 1 1
γ = 104

dlλ 2.14e-1 1.46e-2 4.11e-4 9.06e-7 8.20e-9 8.43e-11

#iterPD 1 2 2 1 1 1
γ = 10l

dlλ 8.54e-2 2.62e-2 2.40e-3 4.21e-4 9.08e-8 8.23e-12

We again test (ALM) with (PDAS) for the auxiliary problem. In the case that this
inner problem is solved exactly, the overall number of system solves is 16 for γ = 50
and between 10 and 20 for other tested values of γ, where we used dlλ < 10−4 as
stopping criterion and N = 160. The results for the case where the auxiliary problem
is solved approximately in every (ALM)-iteration are summarized in Table 6.7, where
we again report on the number of (PDAS)-iterations and on dlλ as defined in (6.1).
Again increasing γ as in Example 6.2 turns out to be very efficient.

6.4. Summary of the numerical results. In our numerical testing we ob-
serve a remarkable efficiency of algorithms (SS) and (PDAS) for the solution of the
regularized simplified friction problem (P∗

γ) and of (ALM) for the solution of (P∗).
For moderate values of γ, the iterates for (SS) and (PDAS) coincide and these al-
gorithms converge superlinearly. For large values of γ, (SS) may start to chatter,
while (PDAS) always detects the solution. The two tested globalization strategies
for (SS) turn out to be successful but inconvenient. The number of iterations of the
semismooth Newton methods increases only slightly for finer grid and larger regular-
ization parameter. The efficiency of (SS) and (PDAS) is interesting also with respect
to augmented Lagrangian methods since these algorithms present a powerful tool to
solve or approximately solve the auxiliary problem in (ALM). Our tests show that,
solving the auxiliary problem in (ALM) only approximately using (SS) or (PDAS), the
overall number of system solves for (ALM) is rather the same as for the semismooth
Newton methods with large γ. However, (ALM) has the advantage that it detects the
solution of the dual (P∗) of the original simplified friction problem without requiring
that γ → ∞. Finally, we remark the advantage of (PDAS) with large γ that one has
a simple stopping criterion at hand that guarantees that the exact solution of (P∗

γ) is
detected.
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