
MATH-UA.0252 (Georg Stadler, NYU Courant)

Spring 2017: Numerical Analysis
Assignment 2 (due Feb. 23, 2017)

1. [2+2+1+1pt] Newton’s method computes the new iterate xk+1 as the x-intercept of the
“line of best fit” through the point (xk, f(xk)), i.e., the line that passes through (xk, f(xk))
and whose first derivative is f ′(xk). We will define a new method which finds the “quadratic
of best fit” and uses it to compute the new iterate.

(a) Find the quadratic of best fit through the point (xk, f(xk)), i.e., find the quadratic
that goes through (xk, f(xk)) and whose first and second derivatives at xk agree with
f ′(xk) and f ′′(xk), respectively.

(b) Write down the new-Newton’s method by finding the x-intercept for the quadratic of
best fit.

(c) What is the order of convergence for this method? (No justification required.)

(d) How many steps are required for this method to find the solution of f(x) = 0, where
f is a quadratic?

2. [1+1+2+2pt] Let f : R2 7→ R2 defined by f(x, y) = (f1(x, y), f2(x, y))
T , where

f1(x, y) = x2 + 4y2 − 4, f2(x, y) = 2y −
√
3x2.

We want to find the roots of f , i.e., all pairs (x, y) ∈ R2 such that f(x, y) = (0, 0)T .

(a) Sketch or plot the sets Si = {(x, y) ∈ R2 : fi(x, y) = 0}, i = 1, 2, i.e., the set of all
zeros of f1 and f2. What geometrical shapes do these sets have?

(b) Calculate analytically the roots of f , i.e., the intersection of the sets S1 and S2.

(c) Calculate the Jacobian of f , defined by

Jf (x, y) =

(
∂xf1(x, y) ∂yf1(x, y)
∂xf2(x, y) ∂yf2(x, y)

)
∈ R2×2.

Here, ∂xfi(x, y) and ∂yfi(x, y), i = 1, 2 denote the partial derivatives of fi with
respect to x and y, respectively.

(d) The Newton method in 2D is as follows: Starting from an initial value (x0, y0)
T ∈ R2,

compute the iterates(
xk+1

yk+1

)
=

(
xk

yk

)
− [Jf (xk, yk)]

−1 f(xk, yk), for k = 0, 1, . . . ,

where [Jf (xk, yk)]
−1 is the inverse of the Jacobi matrix of f evaluated at (xk, yk).

Implement the Newton method in 2D and use it to calculate the first 5 iterates for
the starting values (x0, y0) = (2, 3) and (x0, y0) = (−1.5, 2). Please also hand in
your code.1

1Some useful syntax: The MATLAB commands b=[1;2] and A=[1, 2; 3, 4] create the column vector

b =

(
1
2

)
and the 2-by-2 matrix A =

(
1 2
3 4

)
. Moreover, A*b is a simple matrix multiplication and to obtain

A−1b, you can use either inv(A)*b, which inverts the matrix A, or (much better!) the command A\b, which
solves the linear system Ax = b. You can use the command surf to make surface plots.
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3. [1+2pt] We study basic properties of the LU-factorization.

(a) Give an example of an invertible 3× 3 matrix that does not have any zero entries, for
which the LU decomposition without pivoting fails.

(b) Show that the LU factorization of an invertible matrix A ∈ Rn×n is unique. That is,
if

A = LU = L1U1

with upper triangular matrices U , U1 and unit lower triangular matrices L, L1, then
necessarily L = L1 and U = U1. You can use the results we discussed in class about
products of lower/upper triangular matrices, and their inverses.

4. [3pt] Given is a tridiagonal matrix, i.e., a matrix with nonzero entries only in the diagonal,
and the first upper and lower subdiagonals:

A =


a1 c1
b1 a2 c2

. . . . . . . . .

bn−2 an−1 cn−1
bn−1 an

 .

Assuming that A has an LU decomposition A = LU with

L =


1
d1 1

. . . . . .

dn−1 1

 , U =


e1 f1

. . . . . .

en−1 fn−1
en

 ,

derive recursive expressions for di, ei and fi.

5. [4pt] For a given dimension n, fix some k with 1 ≤ k ≤ n. Now let L ∈ Rn×n be a
non-singular lower triangular matrix and let the vector b ∈ Rn be such that bi = 0 for
i = 1, 2, . . . , k.

(a) Let the vector y ∈ Rn be the solution of Ly = b. Show, by partitioning L into
blocks, that yj = 0 for j = 1, 2, . . . , k.

(b) Use this to give an alternative proof of Theorem 2.1(iv), i.e., that the inverse of a
non-singular lower triangular matrix is itself lower triangular.

6. [4pt] Let n ≥ 2. Consider a matrix A ∈ Rn×n for which every leading principal submatrix
of order less than n is non-singular.

(a) Show that A can be factored in the form A = LDU , where L ∈ Rn×n is unit lower
triangular, D ∈ Rn×n is diagonal and U ∈ Rn×n is unit upper triangular.

(b) If the factorization A = LU is known, where L is unit lower triangular and U is
upper triangular, show how to find the LU-factors of the transpose AT . Note that our
requirement for an LU-factorization is that L is unit lower triangular, and U is upper
triangular.
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7. [5pt] Implement backward substitution to solve systems Ux = b, i.e., write a function x

= backward(A,b), which expects as inputs an upper triangular matrix U ∈ Rn×n, and a
right hand side vector b ∈ Rn, which returns the solution vector x ∈ Rn. The function
should find the size n from the vector b and also check if the matrix and the vector sizes
are compatible before it starts to solve the system. Please hand in your code. Apply your
program for the computation of for x ∈ R4, with

U =


1 2 6 −1
0 3 1 0
0 0 4 −1
0 0 0 2

 , b =


−1
−3
−2
4

 .

8. [3+2pt]

(a) Implement LU factorization using (2.18), (2.19) from the textbook (hence assuming
no permutations are required), and apply it to the matrix

A =


6 2 1 −1
2 4 1 0
1 1 4 −1
−1 0 −1 3

 .

(b) Generalize your code to handle input matrices A of any order n ≥ 2. To avoid division
by very small numbers or zero, check at each step, that the absolute value of ujj in
(2.18) is not smaller than 10−8. Otherwise display an error message and stop the
code.

Please also hand in your code.
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