THE GEOMETRY OF SURFACES AND 3-MANIFOLDS

ROBERT YOUNG

Note: Most of the illustrations in these notes are omitted. Please draw
your own!

4. A 3-MANIFOLD BESTIARY

How does all of this generalize to three-dimensional manifolds? In gen-
eral, the picture is a lot more complicated, because 3-manifolds are a lot
more complicated. So let’s start with some examples.

A surface (or 2-manifold) is a space where every point has a neighbor-
hood which looks like a plane locally — every point has a neighborhood
topologically equivalent to part of the plane. A 3-manifold is a space where
every point has a neighborhood that looks like part of 3-space. So what are
some examples?

First, easy examples:

e 3-space
e The 3-torus (a cube with opposite faces glued together)
e The 3-sphere (two balls with surface glued together, or a sphere in
4-space, or R3 plus a point at infinity)
e 3-dimensional hyperbolic space
Intermediate examples:

e Quotients of the above by group actions.
For example, while every rotation of the 2-sphere has an axis,
there are “rotations” of the 3-sphere without fixed points. Recall
that rotations in the plane have matrices like:

cos  sinf
—sinf cosd
If we combine a rotation by 6 in the xy-plane with a rotation by
¢ in the zw-plane, we get:

cosf  sinf 0 0
—sinf cos@ 0 0
0 0 cos¢ sing
0 0 —sing cos¢
If & # 0 and ¢ # 0, this has no fixed points. Furthermore, if we
take ¢ = 6 = 2™ then repeating the rotation n times takes us back

n

to the identity. The quotient by this action is a lens space.

e There are weirder examples too. For example, there’s a manifold
called the Poincaré homology sphere which is the quotient of S3
by a group which is isomorphic to the group of symmetries of the
icosahedron.

Combinations of manifolds:

e Products: If we have a surface X, we can make a 3-manifold out of
it in a couple different ways. First, consider the space consisting of
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pairs of points, one in the surface and one in the real line. This is
a 3-manifold called ¥ x R.

There are a couple ways to think about this — either it’s a col-
lection of lines, one for each point in the surface, or a collection
of surfaces, one for each point in R. This is just one example of a
bundle.

Similarly, we can take ¥ x S!, the product of ¥ with a circle.

e There are more complicated ways to construct bundles. For ex-
ample, say I want to construct a bundle of surfaces over a circle.
We've seen one of these — the product ¥ x S' has one surface for
every point in S?.

Here’s another: cut ¥ x S* along one circle, then glue it back
along some different map. There are a lot of different maps, for
example:

— Symmetries of surfaces: for example, you can embed the sur-

face of genus 2 in R? so that a rotation by 27/3 is a symmetry.

— Dehn twists: cut one of the handles, twist, and reglue.

— Puncture-dragging: If you have a punctured surface, you can
“drag” the puncture around the surface to get a map from the
surface to itself. You can drag handles, too.

So there are a lot of manifolds that come from this construction.

e The previous bundle had one surface for every point on the circle.
Here’s an example of a bundle with one circle for every point on
a surface: Consider the space of directions on a surface. Then
every point is associated with the circle of directions at that point,
so there’s one circle for each point. We can check that this is a
3-manifold. This is called the unit tangent bundle.

Advanced examples: The techniques above only construct some 3-manifolds,
but there are a few different constructions that lead to every 3-manifold.

e Any 3-manifold can be triangulated, so we can construct manifolds
out of polyhedra and gluings.

(Warning: We have to be a little more careful here than when
we were working with triangulations of surfaces. With surfaces, as
long as every edge is glued to exactly one other edge, you have a
surface, but not for 3-manifolds — you need to check that the neigh-
borhood of each vertex is homeomorphic to part of R?. Example:
dodecahedron with opposite faces glued.)

e Some of our constructions involved cutting up a manifold and then
gluing it back together. This is sometimes called surgery.

One type of surgery is Dehn surgery; if we have a curve in a
manifold, we can thicken it into a solid torus. We can cut that
torus out and glue it back in differently. Some gluings don’t change
the manifold, but some gluings change it a lot — in fact, you can
construct any closed 3-manifold by starting with a sphere and then
applying repeated Dehn surgeries to it.

e Heegaard splittings: A genus-g handlebody is a solid ball with g
handles glued on — imagine a genus-g surface embedded in R? plus
its inside. This is a 3-manifold with boundary, and its boundary
is a surface of genus g. It’s a theorem that any 3-manifold can be
cut into two handlebodies: for example, you can cut the sphere
S3 into two balls (handlebodies of genus 0) by cutting along an
“equator”, or into two solid tori (handlebodies of genus 1) (try it!)
A decomposition like this is called a Heegaard splitting.



THE GEOMETRY OF SURFACES AND 3-MANIFOLDS 3

So that means that we can make any 3-manifold by gluing the
surfaces of two handlebodies! This gives us another way to turn a
homeomorphism from a surface to itself into a 3-manifold.

Even if not all these constructions are clear, it’s clear that there are a
lot of 3-manifolds — certainly, that there are a lot more 3-manifolds than
surfaces. Surfaces were simple enough that we could construct geometric
structures essentially “by hand”, but 3-manifolds seem a lot more compli-
cated.

That’s why the Perelman-Thurston Theorem (which we’ll talk about
tomorrow) is so remarkable; it says that any 3-manifold can be cut into
pieces, each of which has a geometric structure!

4.1. Exercises. In class, we discussed the lens space which comes from the

action of
27 s 2T

cos <& sin <% 0 0
—sin & cos =& 0 0
" " 27T 27
0 0 cos <& sin ?
0 0 —sin £&  cos =&
n n

on the 3-sphere. This is sometimes called L ,. These problems will help
you visualize this space. (It may help to have a computer available to plot
some of the things we’ll describe.)
(1) First, let’s try to visualize rotations of the 3-sphere. Remember
that we can think of the 3-sphere in two ways: as a subset of R?,
namely

S3 = {(x,y,z,w) | 2* +y* + 22 +w? =1}
or as R? plus a “point at infinity”. Show that the map
2x,2y,22,1 — 22 —y? — 22
f(x7 y? Z) = ( : : : 2 2 2 )
14+224+y=+2
maps R3 to S3. What happens to the point at infinity? (This map

is called a stereographic projection, and its inverse is the map:

—1 _ (.’L’,y,Z)
f (x7yvsz)_ 1—w

We'll use this map to visualize different parts of S3.)
2) The rotation

—~

cosf  sinf 0 0 cosf sinf 0 O 1 0

M= —sinf cosf 0 0 _ —sinf cosf 0 O 0 1
0 0 cos¢ sing 0 0 1 0 0 0

0 0 —sing cos¢ 0 0 0 1 0 0

can be broken down into two rotations. Each of these is a rotation
“around” a plane in R*. The first one is a rotation around the
zw-plane and the second is a rotation around the zy-plane.

Which points in S? are fixed by each rotation? What are their

images in R3? We can think of these as two axes of rotation in S3.
(3) What do rotations around these axes look like? For example:

e The orbit of a point under a rotation is a circle. What do these
circles look like in R3?

e The rotation by angle § = 27 /n around the zw-plane generates
an action of Z/p on S®. What’s a fundamental domain for this
action?

e The rotation by angle ¢ = 27 /n around the zy-plane generates
an action of Z/p on S3. What’s a fundamental domain for this
action?

0
0
cos ¢
—sin ¢

0

0
sin ¢
cos @
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(4) If you choose the fundamental domains in the previous question
right, you get fundamental domains for the action of M on S3. Use
them to describe L, , as a polyhedron with some of its faces glued
together.

Can you see where the name lens space comes from?



