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Conjecture (Thurston, Gromov, Leuzinger-Pittet,
Bestvina-Eskin-Wortman)

In a nonuniform lattice in a rank-k symmetric space, spheres with
dimension < k — 2 have polynomial filling volume, but there are
(k — 1)-dimensional spheres with exponential filling volume.
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In a nonuniform lattice in a rank-k symmetric space, spheres with
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Theorem (Leuzinger-Y.)

If T is a nonuniform lattice in a symmetric space of rank k > 2 and
n < k, then )
FVE(V) =~ V1

FVE(V) 2 exp(VFT).
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Filling invariants: Measuring connectivity

Let X be an (n — 1)-connected simplicial complex or manifold and
let @ € Ch—1(X) be a cycle. Define

Fv" = inf .
() BEICnn(X) mass 3
IfB=a

FV%(V) = sup FV"(a).
ac C,,,l(X)
mass(a)<V

» FV4(n) is also known as the homological Dehn function
> FV2.(27r) = mr?

> Fvﬂék(r”—l) = Cor" for k > n (i.e., FVR (V) = C, V1)
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Filling invariants as geometric group invariants

If X and Y are bilipschitz equivalent, then there is a C > 0 such
that

FVZ(C71V) < FVE(V) < FVE(CV).

Theorem (Gromov,
Epstein-Cannon-Holt-Levy-Paterson-Thurston)

If X and Y are quasi-isometric and are, for instance, manifolds
with bounded curvature or simplicial complexes with bounded
degree, then FV§ and FVY, are the same up to constants.

In particular, if G is a group acting geometrically on an

n—connected space X, we can define FVg = FV% (up to
constants).
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Small FV?2 is equivalent to negative curvature.

» If X has pinched negative curvature, then we can fill curves
using geodesics. These discs have area linear in the length of
their boundary, so FV2(n) ~ n.

> In fact, G is a group with sub-quadratic Dehn function
(FV2 % n?) if and only if G is 6-hyperbolic (Gromov).



Examples: nonpositive curvature and quadratic bounds

Nonpositive curvature implies quadratic Dehn function:

» If X has nonpositive curvature, we can fill curves with
geodesics, but the discs may have quadratically large area.



Examples: nonpositive curvature and quadratic bounds

Nonpositive curvature implies quadratic Dehn function:

» If X has nonpositive curvature, we can fill curves with
geodesics, but the discs may have quadratically large area.

» But the class of groups with quadratic Dehn functions is
extremely rich; it includes Thompson's group (Guba), many
solvable groups (Leuzinger-Pittet, de Cornulier-Tessera), some
nilpotent groups (Gromov, Sapir-Ol’shanskii, others), lattices
in symmetric spaces (Drutu, Y., Cohen, others), and many
more.
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Examples: higher dimensions

» (Lang, Bonk-Schramm) If G is d-hyperbolic, then
FV2(V) < V for all .

» (Gromov, Wenger) If X is complete and nonpositively curved,
then FV% (V) < V-1 for all n.

» But subsets of nonpositively curved spaces can have stranger
behavior!
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has FV2 ~ n?. (Gromov, Leuzinger-Pittet)
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Larger ranks

In general,
Solok_1 C (Hz)k

i.e., Solok_1 is a subset of a symmetric space of rank k
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So Solyk_1 contains (k — 1)-spheres (intersections with flats)
with exponentially large filling area (Gromov)

v

But there are plenty of lower-dimensional surfaces to fill
lower-dimensional spheres, so FV"(V) ~ V"1 when n < k

(Y.)
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The main theorem

Theorem (Leuzinger-Y.)

If T is a nonuniform lattice in a symmetric space X of rank k > 2
and n < k, then
FVE(V) =~ Va1

FVE(V) > exp(VFT).

> A lattice in a symmetric space is a group that acts on the
space with a quotient of finite volume
» When rank X > 2, all lattices come from arithmetic
constructions, e.g.:
» SL,(Z) acting on the symmetric space SL,(R)/SO(n)
» SLo(Z[v/2]) acting on H2 x H? (a Hilbert modular group)
» A nonuniform lattice is a lattice that acts with noncompact
quotient
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Lattices act on subsets of X

If T is a nonuniform lattice, the quotient '\ X has cusps. Cutting
out the cusps corresponds to cutting out horoballs in X.

Lemma

If T is a nonuniform lattice, then there is an ry such that for

r > ry, I acts geometrically on a set X(r) C X such that X(r) is
contractible and approximates the r—neighborhood of T.

We can write X(r) = X \ |U; H;, where the H; are a collection of
horoballs in X.
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Low dimensions

Dimension 1:
> (Lubotzky-Mozes-Raghunathan) If X has rank > 2, then
dr(x,y) = dx(r)(x,y) = dg(x,y) forall x,y € T.
Dimension 2:

» (Leuzinger-Pittet) If I is an irreducible lattice in a symmetric
space G of rank 2, then it has exponential Dehn function.

» (Drutu) If T is an irreducible lattice of Q-rank 1 in a
symmetric space X of rank > 3, then FVZ(n) < n?.

> (Y) FV%LP(Z)(n) < n? when p >5 (i.e., rank > 4).
» (Cohen) FV%PP(Z)(”) < n? when p >5 (i.e., rank > 5).
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Higher dimensions

Dimension > 2:
» (Epstein-Cannon-Holt-Levy-Paterson-Thurston) If
[ =SLx,1(Z), then FVE(rk=1) > expr.
» (Wortman) If T is an irreducible lattice in a semisimple group
G of rank k and its relative root system is not Gy, Fy4, Eg, or

BC,, then
FVE(rf=1) > expr.

» (Bestvina-Eskin-Wortman) If T is an irreducible lattice in a
semisimple group G which is a product of n simple groups,
then FV’F is bounded by a polynomial for k < n.

> (Leuzinger-Y.) If T is an irreducible lattice of Q-rank 1 in a
symmetric space X of rank k, then FV{(r"~1) < r" for n < k.
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Lower bounds using random flats

Results of Kleinbock and Margulis imply:

Lemma (see Kleinbock-Margulis)

There is a ¢ > 1 such that if x € X and p = d(x,T), then there is
a flat E passing through x such that the sphere Sg(cp) C E of
radius cp satisfies

Se(x,cp) C X(clogp+ c).
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Lower bounds using random flats

Results of Kleinbock and Margulis imply:

Lemma (see Kleinbock-Margulis)

There is a ¢ > 1 such that if x € X and p = d(x,T), then there is
a flat E passing through x such that the sphere Sg(cp) C E of
radius cp satisfies

Se(x,cp) C X(clogp+ c).

This sphere has filling volume =~ e”, and it can be retracted to a
sphere that lies in X(rg) at a cost of increasing the area by
exp(clog p + ¢) = p°.

Corollary

FVE(pk—11) = er.
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Upper bounds

Lemma (Y.)
Since dimay X < oo, we can prove upper bounds on FV[ by
constructing a collection of simplices with vertices in T.
Sketch of proof
» If «: "1 — X is a sphere, it has a filling 3 with
mass 8 = FV"(«).
» By results of Lang and Schlichenmaier, we can triangulate 3
efficiently.
» We can use a triangulation of 5 as a “template” for
assembling the simplices.

How do we construct random simplices?
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There is a ¢ > 1 such that if x,y € T, p=d(x,y), and m is the
midpoint of x and y, then there is a flat E passing through m such
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Filling using random flats

Lemma (see Kleinbock-Margulis)

There is a ¢ > 1 such that if x,y € T, p=d(x,y), and m is the
midpoint of x and y, then there is a flat E passing through m such
that d(x,E) <1, d(y,E) <1, and E\ B(m,cp) is
“equidistributed” in X. For example, for all R > cp,

En(B(m,R)\ B(m,cp)) C X(c+ clogRloglog R).

Corollary
Ifa: S"1 — X(rg) and V = massq,

Fvg((c+c|og V)(a) rg V-t

Using the retraction X(c + clog V') — X(rn),

FVA(V) &~ Vo,
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Bootstrapping

A filling is made of random flats:

» Cut out the parts of E that lie in a thin part.
» Replace them with a disc of polynomial area.

» The result is a filling that lies in X(ry) and has volume

_n_
=~ anl_



