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1. Introduction

The asymptotic cone of a space is a metric space representing the space viewed
from infinity. Since small-scale geometry disappears in this limit, it makes a good
tool for studying geometric properties of groups. Here, we’ll look at some asymp-
totic cones and some applications to filling.

2. Definitions

Let X be a metric space, {xi}i∈N a sequence of points in X (thought of as a
sequence of centers), and {di}i∈N a sequence of scaling factors such that di → ∞,
and an ultrafilter ω.

I’m not going to get into the details of ultrafilters here, but the main property of
an ultrafilter is that it lets you define the ultralimit limω ai of any bounded sequence
ai. Ultralimits use the axiom of choice to extend the notion of limit to arbitrary
bounded sequences; they are linear, and the ultralimit of a sequence is a limit point
of the sequence.

We use these to construct an asymptotic cone. Let XN
b be the set of sequences

{yi}i∈N such that d(xi, yi)/di is bounded. This looks huge, but it’s like defining
real numbers by Cauchy sequences – a lot of sequences have the same limit. Define
dω({xi}, {yi}}) = limω d(xi, yi)/di, and define

Conω X = XN
b / ∼

{xi} ∼ {yi} iff dω({xi}, {yi}) = 0.

This is a metric space; we call it an asymptotic cone for X. Denote the equivalence
class of {yi}i∈N by [yi]. Alternatively, this is the Gromov-Hausdorff limit of a
sequence of scalings of X with basepoint xi.

3. Examples

• X = Rn:
X is already scale-invariant, so Conω Rn is just Rn. It’s instructive to

look at the maps between the two. For simplicity, take xi = 0 for all i.
Then the maps

f : Rn → Conω Rn

f(x) = [dix]
g : Conω Rn → Rn

g([ai]) = lim
ω

ai/di

are isometries.
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• X = Hn:
Embedded geodesics in X correspond to geodesics in Conω X, so we can

build the asymptotic cone of Hn by looking at geodesics in the hyperbolic
plane. Let xi = x0 for all i. There are uncountably many geodesics through
x0, and each one corresponds to a geodesic in Conω Hn going through the
point x = [x0]. Now consider another point y = [yi] 6= x in Conω Hn. The
limit of the geodesics connecting x0 and yi is a geodesic between x and y,
and there are uncountably many other geodesics through y. As i increases,
the yi get further from x0, and fewer of the geodesics through y intersect
the geodesics through x. In the asymptotic cone, none of the geodesics
through x intersect geodesics through y except for ones that travel along
the geodesic segment connecting x and y. The same is true for any point
in the asymptotic cone. In fact, the asymptotic cone of Hn is an R-tree
where every point has uncountable degree. Any hyperbolic group has such
an asymptotic cone.

• X a symmetric space:
Like the geodesics in the previous example, the flats in X correspond to

copies of Rk in Conω X. In a symmetric space, the flats intersect in more
complicated ways. Kleiner and Leeb proved that the asymptotic cone of a
symmetric space is a building [4].

Remarks:

• Asymptotic cones have a lot of symmetry. If G acts on X discretely and
cocompactly, then Conω doesn’t depend on the sequence of scaling centers
and has a transitive group of isometries coming from limits of isometries of
X. If the asymptotic cone is independent of the choice of xi and di, it has
a family of scaling maps, but this isn’t true in general.

• If X and Y are quasi-isometric, then every asymptotic cone of X is Lipschitz
equivalent to an asymptotic cone of Y .

• Sequences of Lipschitz maps to X pass to Conω. If {fi} is a sequence
of maps fi : K → X and fi is cdi-Lipschitz, then [fi](x) = [fi(x)] is
c-Lipschitz. Going the other way is tougher. A map f : K → Conω

corresponds to a sequence of maps fi : K → X, but one can only control
the behavior of fi on a finite subsets of K.

• Generally, a space can have uncountably many asymptotic cones, depending
on the choices of xi, di, and ω. Take a space consisting of circles of length
ri joined at a basepoint x0. Any asymptotic cone also consists of circles
joined at a point, but the circles that are “visible” in the limit depends on
the scaling factors di and the ultrafilter.

4. Applications to filling

We’d like to see how properties of the space are reflected in its asymptotic cone,
in particular, whether filling functions of the space can be determined by its asymp-
totic cone. The first difficulty is to define an appropriate filling function for ConX.
Given a partition τ of a disc into polygons ρi and a map f from the vertices of the
partition to a geodesic metric space K, define

Mesh(f, τ) = max
i

perim(f(ρi)),
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where if ρ = (v1, . . . , vn), then

perim(f(ρ)) = d(f(v1), f(v2)) + · · ·+ d(f(vn), f(v1)).

If α : S1 → K, define
FAK

δ (α) = min
Mesh(f,τ)≤δ

#τ

where #τ is the number of polygons in τ and the minimum is taken over maps f
which agree with α on the boundary of the disc. You can break up α into FAK

δ (α)
curves of length δ.

We can then define a filling function that makes sense for asymptotic cones:

FAK
δ (n) = max

l(α)<n
FAK

δ (α).

This turns out to descend fairly well from an asymptotic cone to the original space.
The main theorem is due to Papasoglu, and can be found in [1].

Theorem 1. If X is a s.c. geodesic metric space with bounded local geometry (e.g.,
X is a manifold on which a group acts discretely and cocompactly), and there is an
a > 0 and p > 0 such that in each asymptotic cone of X we have

FACon X
1 (n) ≤ anp

for all n > 1, then
δX(n) . np+ε

for all ε > 0.

This theorem refines a theorem of Gromov, a detailed proof of which can be
found in [2].

Theorem 2. If X is a s.c. geodesic metric space with bounded local geometry and
every asymptotic cone of X is s.c., then there is a p such that δX(n) . np.

The proof shows some of the techniques for going back and forth between a space
and its asymptotic cone.

Proof. We will show that
FAX

n/2(n) ≤ c

for n > l0. Then any curve with length l(α) > l0 can be broken into c curves of
length l(α)/2. We can break a curve α into roughly

clog2 l(α) = l(α)log2 c

curves of length < l0 by repeating this procedure. Since the area of each of these
curves is bounded, this results in a polynomial isoperimetric function.

We proceed by contradiction. Assume FAX
n/2(n) → ∞. Then we can find a

sequence of curves αi such that

FAX
l(αi)/2(αi) →∞

Take a sequence of basepoints lying on αi and let di = l(αi); this gives an asymptotic
cone Con X and the αi correspond to a curve α : S1 → ConX of length 1. Since
ConX is s.c., there is a disc filling α. A sufficiently fine partition of this disc gives
a filling of α with Mesh(f, τ) < 1/3. But f is the ultralimit of a sequence of maps
fi : τ (0) → K, each of which agrees with αi on the boundary of τ . We must have
Mesh(fi, τ) < di/2 for some i, which is a contradiction. ¤
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Papasoglu’s theorem is proved by similar methods; instead of bounding FAX
n/2(n),

he uses the bound on FACon X
1 (n) to find bounds on FAX

n/k(n) for large k.

5. Higher dimensions?

Extending this sort of result to higher dimensions is tough. The problem is
that a sequence of curves is a sequence of Lipschitz maps and gives a curve in the
asymptotic cone. A sequence of spheres is less controlled, so you need an extra step,
namely, breaking up an arbitrary sphere into spheres with some sort of controlled
geometry.

This is tricky, and there’s still a lot of work to be done. One of the biggest suc-
cesses is in spaces with cone-type inequalities (e.g., non-positively curved spaces).
In these spaces, one can cut a map into “round” pieces whose diameters correspond
to their volumes [3, 7], and use this decomposition to prove euclidean filling in-
equalities in all dimensions. Papasoglu used a related technique to show that under
certain conditions, there is a “gap” in the possible exponents of second-order Dehn
functions [5].

In nilpotent groups, one can use scaling and approximation techniques to de-
compose a sphere into a collection of simplices [8]. This operates differently from
the previous method; instead of looking for small separating cycles, one constructs
triangulations of the nilpotent group at all scales and approximates a map in those
triangulations. As such, it isn’t clear how to apply this method to groups with
more complicated asymptotic cones.

Once you’ve done this decomposition, asymptotic cone methods can be applied
to get bounds on spheres with controlled geometry. Riley [6], for instance, showed
that if all asymptotic cones of a group are highly connected, then spheres with
volume < n and diameter < l can be filled polynomially in n and l. Similarly, it
may be much easier to prove bounds on filling maps with Lipschitz constant < n
or some other measure of bounded complexity than it is to prove bounds on maps
with bounded volume.

References
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