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How is FA(T) related to FA(2T)?

For all T, FA(2T) < 2FA(T).

» n=2: If Tisa curve in R?, then FA(2T) = 2FA(T).

» n=3: If Tisa curve in R3, then FA(2T) = 2FA(T).
(Federer, 1974)

» n=4: Thereis a curve T € R* such that

FA(2T) < 1.52FA(T)

(L. C. Young, 1963)
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L. C. Young's example

Let K be a Klein bottle and let T be the sum of 2k + 1 loops in
alternating directions.
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L. C. Young's example

» T can be filled with k » 2T can be filled with
bands and one extra disc D 2k + 1 bands

> FA(T) ~ %K +area D » FA(2T) ~ area K— less
than 2FA(T) by 2area D!
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The main theorem

Q: Is FA(2T) bounded below by a function of FA(T)?

Theorem (Y.)
Yes! For any d, n, there is a ¢ > 0 such that if T is a d-cycle in
R", then FA(2T) > cFA(T).
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“half of B" is a filling of T
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“Half” of the Klein bottle

Let T be a cycle and suppose that
0B =2T.

Then
0B =0 (mod 2),

so B mod 2 is a cycle.
If P is an integral cycle such that

B = P (mod 2) (a pseudo-orientation of
B), then

B+ P=0 (mod2)

P
B+ P 2T +0 pseudo-orientation

0

T.
2 2



The Klein bottle, again

_|_

filling of 2T pseudo-orientation filling of T



Nonorientability

If Ais a mod-2 cycle, define the nonorientability of A by
NO(A) = inf{mass P | P is an integral cycle and P=A (mod 2)}

This measures how hard it is to “lift” A to an integral cycle.



Nonorientability

If Ais a mod-2 cycle, define the nonorientability of A by
NO(A) = inf{mass P | P is an integral cycle and P=A (mod 2)}

This measures how hard it is to “lift” A to an integral cycle.
If 0B =2T, then

FV(T) < mass B + N;)(B mod 2)
So, to prove that FV(T) < FV(2T), it suffices to show:

Theorem
If A is a mod-2 d-cycle in R", then NO(A) < mass A.



Corollaries

This lets us prove some basic facts about currents and flat chains.
> If k > 0 is a positive integer, the multiply-by-k map
f(T) = kT on the space of integral flat chains is an
embedding with closed image.



Corollaries

This lets us prove some basic facts about currents and flat chains.
> If k > 0 is a positive integer, the multiply-by-k map
f(T) = kT on the space of integral flat chains is an
embedding with closed image.
» If T is a mod-k current, then T = Tz (mod k) for some
integral current Tz. Consequently, mod-k currents are a
quotient of the integral currents.
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Quantifying nonorientability

Theorem
If A is a mod-2 d-cycle in R", then NO(A) < mass A.

Strategy:
» Find a mod-2 (d + 1)-chain such that A= OF.

» Typically, F is non-orientable. Cut F into orientable pieces to
get a lift Fz of F with integer coefficients.

» Then P = OFy is a pseudo-orientation of A.

» The difference mass P — mass A measures how much of F we
had to cut.



Codimension 1

If Ais codimension 1, then A is the boundary of a top-dimensional
chain F:




Codimension 1

If Ais codimension 1, then A is the boundary of a top-dimensional
chain F:

%

F is orientable, so A is orientable and NO(A) = mass(A).
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Example: the immersed Klein bottle

A Klein bottle immersed in R3 has an inside and an outside

— Y |=

O C

so it is orientable!
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Results in low codimension

Proposition
Every (n — 1)—cycle in R" is orientable, i.e., NO(A) = mass(A).

Corollary (Federer)
If T is an integral (n — 2)—cycle in R", then FV(2T) =2FV(T).

What about higher codimensions?
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A simple argument in high codimension

Let A be a mod-2 cellular d-cycle of mass V

v

Fill A with a mod-2 chain F
» Fis a sum of V(4t1)/d cybes, each with side length ~ 1

Orient the cubes at random to get Fy

v

v

OFyz is a pseudo-orientation
NO(A) < mass dFz ~ V(d+1)/d

v



Bigger cubes

Total boundary: V(d+1)/d



Bigger cubes

Total boundary: V(d+1)/d Total boundary: much less
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2= |

~ V squares each with perimeter ~ 1

W,

~ V/ /2 squares each with perimeter ~ 2



Filling through approximations

Sketch:

» Approximate A at ~ log V scales, then connect the
approximations.

» We use cubes with total boundary ~ V' at each scale.
» Since there are ~ log V scales, we conclude:
Proposition (Guth-Y.)

If A is a cellular mod-2 cycle with volume V/, then it has a
pseudo-orientation P such that mass P < Vlog V.



Filling through approximations

Sketch:

» Approximate A at ~ log V scales, then connect the
approximations.

» We use cubes with total boundary ~ V' at each scale.
» Since there are ~ log V scales, we conclude:
Proposition (Guth-Y.)

If A is a cellular mod-2 cycle with volume V/, then it has a
pseudo-orientation P such that mass P < Vlog V.

How do we get rid of the log factor?
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Getting rid of the log factor

» Choosing orientations randomly is wasteful when A is close to
a plane



Getting rid of the log factor

» Choosing orientations randomly is wasteful when A is close to
a plane

» But what if A is never close to a plane?
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Dealing with complexity

How do we prove the proposition for sets that are close to fractals?

» Show that adding topological complexity adds extra area
> Prove the theorem when A has “low complexity”



Uniform rectifiability

Definition (David-Semmes)

A set E C R¥ is uniformly rectifiable if and only if E has a corona
decomposition. (Roughly, for all but a few balls B, the intersection
B N E is close to the graph of a Lipschitz function with small
Lipschitz constant.)



Sketch of proof

Proposition
Every mod-2 cellular d-cycle A can be written as a sum

A:ZA,-
i

of mod-2 cellular d-cycles with uniformly rectifiable support such
that
Z mass A; < C mass A.



Sketch of proof

Proposition
Every mod-2 cellular d-cycle A can be written as a sum

A:ZA,-
i

of mod-2 cellular d-cycles with uniformly rectifiable support such
that
Z mass A; < C mass A.

Proposition

Any mod-2 cellular d-cycle A with uniformly rectifiable support has
a pseudo-orientation P with

mass P < C mass A.
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Open questions

> Is FV(T) > FV(T)?

» More generally,
FV(kKT)
k
Can the ¢ be chosen uniformly?

> ¢ FV(T).

» What does this tell us about the geometry of surfaces
embedded in R” by a bilipschitz map?
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