Solutions to Problem Set 4

Robert Young

October 17, 2015

1. Let Y be a compact subset of X and let U be an open set containing Y. For every $y \in Y$, there is an $r(y)$ such that $B_{r(y)}(y) \subset U$; let $A_y = B_{r(y)/2}(y)$. These sets form an open cover of Y, so there are finitely many points y_1, \ldots, y_n such that $Y \subset \bigcup_i A_{y_i}$. Let $\epsilon = \min_i r(y_i)/2$ and suppose that $y \in Y$. We claim that $B_\epsilon(y) \subset U$. Suppose $z \in B_\epsilon(y)$. Let i be such that $y \in A_{y_i}$. Then

$$d(y_i, z) \leq d(y_i, y) + d(y, z) < r(y_i)/2 + \epsilon < r(y_i),$$

so $z \in B_{r(y_i)}(y_i) \subset U$.

The set $A \times B$ is compact and the function d is continuous, so by the Extreme Value Theorem, the restriction of d to $A \times B$ achieves a minimum at a point (a, b) such that $d(a, b) = d(A, B)$.

Oops, this turns out to be false – consider the interval $[-1, 1]$ with equivalence relation $x \sim y$ if $|x| = |y|$ and $|x| < 1$. The points $-1, 0, 1$ are in their own equivalence classes, and each other point is equivalent to its negative; we denote the equivalence class of x by $[x]$ and let $q: X \to X/\sim$ be the quotient map $q(x) = [x]$.

Suppose that $U \subset X/\sim$ is an open set containing $[1]$. Then $q^{-1}(U)$ is an open set containing 1; it thus contains an interval of the form $(1 - \epsilon, 1]$, so $q((1 - \epsilon, 1]) \subset U$. Likewise, if V is a neighborhood of $[-1]$, then there is an $\epsilon' > 0$ such that $q([-1, -1+\epsilon'])$. These two sets overlap, so X/\sim is not Hausdorff and thus not metrizable.

2. In class, we showed that if X is Hausdorff, Y is a compact subset of X, and $x \in X \setminus Y$, then there is a neighborhood U_x of Y such that $x \notin U_x$. Indeed, our proof showed that there is a neighborhood V_x of x such that $U_x \cap V_x \neq \emptyset$.

The sets $\{V_x\}_{x \in Z}$ form an open cover of Z. Let z_1, \ldots, z_k be a finite subset such that $Z \subset \bigcup_i V_{z_i}$. Define $V = \bigcup_i V_{z_i}$ and $U = \bigcap_i U_{z_i}$. If $x \in V$, then $x \in V_{z_i}$ for some i, so $x \notin U_{z_i}$ and thus $x \notin U$. Therefore, $U \cap V = \emptyset$, as desired.

3. Since X is compact, it is totally bounded, and for any ϵ, there is a cover of X by finitely many ϵ-balls. For each $i > 0$, let $\{B_{2^{-i}}(x_{i,j})\}_{j=1}^{n_i}$ be a finite cover of X.

We will define a sequence of maps F_i that converge uniformly to a map $F: S_2 \to X$. If $a = (a_1)_{i=1}^\infty \in S_2$, then $F_i(a)$ will depend on the first $N_i = \sum_{j=1}^i n_i$ terms of a. Let $p_i: S_2 \to \{0, 1\}^{n_i}$ be the map

$$p_i(a) = (a_{N_i-1+1}, \ldots, a_{N_i}).$$

Let σ_i be a surjective map from $\{0, 1\}^{n_i}$ to $\{1, \ldots, n_i\}$ and let

$$P_i(a) = x_{i, \sigma(p_i(a))}.$$
Note that P_i depends only on the first i terms of a, so it is continuous.

Let $F_1 : S_2 \to X$ be the map $F_1 = P_i$. For each $i > 1$, let $F_i : S_2 \to X$ be the map

$$F_i(a) = \begin{cases} P_i(a) & \text{if } \bigcap_{j=1}^{i} B_{2^{-j}}(P_j(a)) \neq \emptyset \\ F_{i-1}(a) & \text{otherwise.} \end{cases} \quad (1)$$

Each such map is continuous, and for each i, a, either $F_i(a) = F_{i-1}(a)$ or the intersection of $B_{2^{-i}}(F_i(a))$ and $B_{2^{-i+1}}(F_{i-1}(a))$ is nonempty. In the first case, $d(F_i(a), F_{i-1}(a)) = 0$. In the second, $d(F_i(a), F_{i-1}(a)) \leq 2^{-i+2}$. It follows that the sequences $F_i(a)$, as i goes to infinity, are uniformly Cauchy. Since a compact metric space is sequentially compact, these sequences converge uniformly, and we can define

$$F(a) = \lim_{i \to \infty} F_i(a).$$

This is a uniform limit of continuous functions, so it is continuous.

Finally, we claim that F is surjective. If $x \in X$, then there is a sequence of k_i’s such that $x \in B_{2^{-i}}(x_{1,k_1})$ for all i and there is a a such that $P_i(a) = x_{i,k_i}$ for all i. It follows that

$$x \in \bigcap_{i=1}^{\infty} B_{2^{-i}}(P_i(a)),$$

and thus that $F_i(a) = x_{1,k_1}$. Then $\lim_i F_i(a) = x$, as desired.

4. Suppose that $K \subset X \times Y$ is a closed set. We claim that $p(K)$ is closed. Suppose $x \in X \setminus p(K)$. Then $p^{-1}(x) = x \times Y$ is a compact subset of $X \times Y$ that is disjoint from K.

To separate $p^{-1}(x)$ from K, we use an argument from class (the Tube Lemma). For every point $(x, y) \in p^{-1}(x)$, there is a basis element $A_y \times B_y$ such that A_y is a neighborhood of x, B_y is a neighborhood of y, and $A_y \times B_y$ is disjoint from K. There are finitely many such neighborhoods $A_{y_i} \times B_{y_i}$ that cover $p^{-1}(x)$, and we let $A = \bigcap_i A_{y_i} \subset X$. Then A is a neighborhood of x such that $A \times Y \cap K = \emptyset$, so $A \cap p(K) = \emptyset$.

For the counterexample, let $X = Y = \mathbb{R}$. Then p is not a closed map; if $K = \{(x, y) \mid xy = 1\}$, then K is closed, but $p(K) = \mathbb{R} \setminus \{0\}$ is not.