

Problem Set 2

February 23, 2017

Due date: Thursday, February 23

1. In class, we used the fact that the curvature tensor can be expressed in terms of parallel transport. That is, we claimed that if $q \in M$ and if $\alpha: \mathbb{R}^2 \rightarrow M$ is a smooth map such that $\frac{\partial \alpha}{\partial x} = X$, $\frac{\partial \alpha}{\partial y} = Y$, then for all $Z \in T_q M$, we have

$$R(X, Y)Z = \lim_{s \rightarrow 0} \frac{Z - p_{\gamma_s}(Z)}{s^2},$$

where $\gamma_s: [0, 4] \rightarrow M$ is the image under α of the boundary of an $s \times s$ square, i.e.,

$$\gamma_s(t) = \begin{cases} \alpha(st, 0) & t \in [0, 1] \\ \alpha(s, s(t-1)) & t \in [1, 2] \\ \alpha(s(3-t), s) & t \in [2, 3] \\ \alpha(0, s(4-t)) & t \in [3, 4]. \end{cases}$$

Prove this fact.

(Hint: Construct a frame of vector fields $V_1, \dots, V_m \in \mathbf{V}(\alpha)$ such that $\nabla_X V_i = 0$ and $\nabla_Y V_i(u_1, 0) = 0$. Any vector field W along γ_s can be expressed as a linear combination of the V_i — when is W parallel?)

2. Suppose that M is a two-dimensional Riemannian manifold with curvature tensor R .

(a) Use the symmetries of the curvature tensor to show that if $p \in M$, $V, W \in T_p M$, then

$$K = \frac{\langle R(V, W)W, V \rangle}{\|V\|^2\|W\|^2 - \langle V, W \rangle^2}$$

is independent of V and W .

(b) Prove that if K is as above, then

$$R(X, Y)Z = K(\langle Y, Z \rangle X - \langle X, Z \rangle Y)$$

for all $X, Y, Z \in T_p M$.

3. Find a sequence $\gamma_i: [0, 1] \rightarrow S^2$ of piecewise-smooth curves with the same endpoints such that the γ_i converge to a piecewise-smooth curve γ , but the parallel transport maps $P_{\gamma_i}: T_p M \rightarrow T_q M$ do not converge to the map P_γ .

Let $M \subset \mathbb{R}^3$ be the cone

$$M = \{(r \cos \theta \sin \phi, r \sin \theta \sin \phi, r \cos \phi) \mid r > 0, \theta \in [0, 2\pi)\}$$

as in the first problem set.

4. Construct an isometry from the complement of the line $\theta = 0$ to a subset of \mathbb{R}^2 . Use this isometry to calculate the parallel transport map $P_{0, 2\pi}$ from problem 5 of the first problem set.