STUDY GUIDE

This is a guide to some of the skills, examples, and theorems that we’ve covered in class.

1. **Skills**

- **Groups**
 - Define *group*
 - Define *abelian*
 - Decide whether a given set and operation form a group
 - Compute using group properties
 - Construct groups of symmetries
 - Calculate with multiplication tables
 - Prove facts about groups

- **Subgroups**
 - Define *subgroup*
 - Define *cyclic group*
 - Determine whether a group is cyclic
 - Identify subgroups
 - Find subgroups of a group
 - Prove facts about subgroups

- **Cosets**
 - Define *coset*
 - Define the *index* and *order* of a subgroup
 - Define the *order of an element*
 - Calculate the cosets of a subgroup
 - Calculate the index of a subgroup
 - State Lagrange’s Theorem
 - Reason using Lagrange’s Theorem
 - Prove facts about cosets
 - Use counting arguments to measure the order or index of a subgroup
 - Use counting arguments to count products

- **Normal subgroups**
 - Define *normal subgroup*
 - Identify normal subgroups
 - Find normal subgroups of a group
 - Prove facts about normal subgroups

- **Quotients**
 - Define *quotient group*
 - Calculate G/N
 - Calculate with quotient groups
 - Use the Correspondence Theorem (2.7.5)
 - Prove facts about quotients

- **Homomorphisms**
 - Define *homomorphism* and *isomorphism*
 - Identify homomorphisms and isomorphisms

Date: November 17, 2014.
– Check whether functions are well-defined
– Use properties of homomorphisms
– Calculate the image/kernel of a homomorphism
– Calculate the homomorphisms from one group to another
– Use the first isomorphism theorem to construct isomorphisms between quotients and images
– Prove facts about homomorphisms
– Determine whether two groups are isomorphic
• Automorphisms and automorphism groups
 – Define automorphism
 – Calculate Aut(G)
 – Prove facts about automorphisms and automorphism groups
• Products
 – Define direct product
 – Define semidirect product
 – Construct direct and semidirect products.
 – Prove facts about products
• Permutation groups
 – Define symmetric group
 – Define the signature of a permutation
 – Calculate cycle decompositions of permutations
 – Calculate products of permutations
• Finite abelian groups
 – Classify the finite abelian groups of a given order
 – Determine when two finite abelian groups are isomorphic
 – Find subgroups, quotients, and homomorphisms of finite abelian groups
• Rings
 – Define ring, commutative ring, unital ring, integral domain, division ring, and field
 – Decide whether a set with given operations is a ring, commutative ring, unital ring, etc.
 – Compute using ring properties
 – Define the characteristic of a ring
 – Prove facts about rings
• Homomorphisms
 – Define ring homomorphism
 – Determine whether there are homomorphisms between two rings
 – Prove whether two rings are isomorphic
 – Compute the kernel of a homomorphism
 – Prove facts about homomorphisms
• Ideals and quotients
 – Define ideal
 – Define quotient ring
 – Decide whether a given subset of a ring is an ideal
 – Construct and calculate with quotients
 – Prove facts about ideals and quotients

2. Important examples

2.1. Groups. What are some subgroups, normal subgroups, quotients, etc. of these groups? What are some homomorphisms between them?

• Cyclic groups: \(\mathbb{Z}_n \)
• Systems of numbers: $(\mathbb{Z}, +), (\mathbb{R}, +), (\mathbb{R}^*, \times), (\mathbb{C}^*, \times), (\mathbb{Q}, +), (\mathbb{Q}^*, \times)$
• Vector spaces: $(\mathbb{R}^n, +)$
• Groups of symmetries: $\text{Sym}(\Delta)$, etc.
• Matrix groups: $\text{GL}_n(\mathbb{R}), \text{SL}_n(\mathbb{R})$
• Affine groups: A_1
• Direct products: $A \times B$
• Semidirect products: $A \ltimes B$
• Dihedral groups: $D_{2n} \cong \mathbb{Z}_2 \ltimes \mathbb{Z}_n$
• Permutation groups

2.2. **Rings.** What are some ideals and quotients of these rings? Are they commutative rings, unital rings, integral domains, fields, etc? What elements are invertible? What are some homomorphisms between them?

- Systems of numbers: $\mathbb{Z}, \mathbb{R}, \mathbb{Q}, \mathbb{H}$
- Integers mod n: \mathbb{Z}_n
- Polynomials: $\mathbb{Z}[t], \mathbb{R}[t], \mathbb{Z}_n[t]$
- Matrices: $M_n(\mathbb{R})$
- Functions: $C([0,1]) = \{ f : [0,1] \to \mathbb{R} \mid f \text{ is continuous} \}$
- Square roots: $\mathbb{Z}[\sqrt{2}] = \{ a + b\sqrt{2} \mid a, b \in \mathbb{Z} \}$, $\mathbb{Q}[\sqrt{2}] = \{ a + b\sqrt{2} \mid a, b \in \mathbb{Q} \}$

3. **Important theorems**

Can you state these theorems? Can you use them to solve problems?

- Lagrange’s Theorem
- Counting products (2.5.1)
- Characterizing normality (Sec. 2.6)
- First Isomorphism Theorem (2.7.1, see also 11.3 in Judson)
- Cayley’s Theorem
- Cycle decompositions (2.10.1)
- Signature of a permutation (2.10)
- Fundamental Theorem of Finite Abelian Groups (2.14)