1. Read Section 2.5–2.6 of Herstein. (Judson covers similar material in Chapter 10.)

2. Herstein, p. 47, #5, 12 (consider the sets \(Hg_1 \cap Kg_2 \) for \(g_1, g_2 \in G \))

3. Suppose that \(H \) is a finite-index subgroup of \(G \) and \(K \) is a finite-index subgroup of \(H \) (ie., \(|G : H| < \infty \) and \(|H : K| < \infty \)). Show that \(K \) is a finite-index subgroup of \(G \) and that \(|G : K| = |G : H| \cdot |H : K|\).
 (When \(G \) has finite order, you can use Lagrange’s Theorem – what if \(G \) has infinite order?)
 (Hint: Let \(g_1, \ldots, g_m \in G \) be elements such that \(Hg_1, \ldots, Hg_m \) are the right cosets of \(H \) in \(G \), and let \(h_1, \ldots, h_n \in H \) be such that \(Kh_1, \ldots, Kh_n \) are the right cosets of \(K \) in \(H \). Show that the cosets of \(K \) in \(G \) are all of the form \(Kh_jg_i \) and that all of these sets are disjoint.)

4. Let \(A_1 \) be the group of affine functions from Assignment 1. That is, if \(m, b \in \mathbb{R} \) and \(m \neq 0 \), we define \(f_{m,b}(x) = mx + b \) and let \(A_1 = \{ f_{m,b} | m, b \in \mathbb{R}, m \neq 0 \} \). Which of the following subgroups are normal? (You may assume that each of them is a subgroup.)
 (a) \(H = \{ f_{1,b} | b \in \mathbb{R} \} \)
 (b) \(K = \{ f_{m,0} | m \in \mathbb{R}, m \neq 0 \} \)
 (c) \(L = \{ f_{m,b} | m, b \in \mathbb{R}, m > 0 \} \)

5. Herstein, p. 53, #2, 3