Intro to Math Analysis: HW2

Due: Sep 25 (Thursday)

1. Doubling the cube
Prove there is no rational number \(r \) such that \(r^3 = 2 \).

2. Fields
A field is a set \(F \) satisfying the axioms A1-A11 from the textbook.

i. Give at least four examples of a field.

ii. Prove that for every field, additive and multiplicative inverse elements are unique.

3. Least upper bound
Let \(X \) and \(Y \) be sets of real numbers with least upper bound \(a \) and \(b \), respectively. Prove that \(a + b \) is the least upper bound for the set

\[
X + Y = \{x + y | x \in X, y \in Y\}.
\]

4. Greatest lower bound
Prove that every nonempty subset \(X \subset \mathbb{R} \) which is bounded below has a unique greatest lower bound.

5. Limit of absolute values
Given a sequence of real numbers with \(\lim_{n \to \infty} a_n = L \), prove that \(\lim_{n \to \infty} |a_n| = |L| \).

6. Number of subsequential limits
Give an example of a sequence which has "many" different subsequential limits. Is the number of subsequential limits always countable?