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I Introduction - Classical Compression

Data compression is a branch of Information Theory, a field studying the mathematical

theory of communications, founded by Claude E. Shannon in a landmark paper [1] dated

1948.

Definition I.1. An information source in general is a random process. A discrete memo-

ryless source (DMS) is an i.i.d process over a finite discrete alphabet X , with letter proba-

bilities p(x), i.e.,

Pr(x1, . . . , xn) = Pr(x
n) =

n∏
i=1

p(xi) , xi ∈ X

We will discuss the DMS case only. The fundamental question of classical compression

is: How many bits per source letter are required on the average to reliably

represent the source? We shall define what we mean by reliable in a moment.

Definition I.2. A block code C for a source X is a quadruplet C = (E,D,R, F ) where1

Encoder : E : X n 7→ Yk

Decoder : D : Yk 7→ X n

Compression Rate : R =
k log |Y|

n
[bit/letter]

Fidelity : F (C) = Pr

{
xn ∈ X n : D(E(xn)) = xn

}
where Y is a finite code alphabet, and the probability is taken w.r.t. the source’s distribution.

Definition I.3. A rate R is called attainable for a source X if for any ε > 0 there exists

a rate R code C for the source with fidelity F (C) > 1− ε. The optimal compression rate for

the source is the infimum of all achievable rates.

Remark I.1. Block codes are a special case and in general a code may be of variable length.

However, in terms of achievable compression rates considering block codes is enough, and

more general coding schemes can only improve upon the trade-off between delay and fidelity.

1All logarithms are taken to the base of 2.



Example I.1. Let X be a binary DMS with alphabet X = {0, 1} and probability distri-

bution p(1) = p , p(0) = 1− p. The probability of a block xn of n source letters is

Pr(x
n) = pn1(1− p)n−n1

where n1 is the number of 1’s in xn. For a large n we expect that n1 ∼ np. This can be

quantified using, say, Chebyshev inequality as follows:

E(n1) = np , V ar(n1) = np(1− p)

Pr

{
|n1 − np| > δn

}
≤ V ar(n1)

(δn)2
=
p(1− p)

δ2n
−→
n→∞

0

Define a Typical Set Aδ
n as follows:

Aδ
n =

{
xn ∈ X n :

∣∣∣∑ xi − np
∣∣∣ < δn

}
, Pr

{
Aδ

n

}
−→
n→∞

1 ,∀δ > 0

Now, the probability of any sequence xn ∈ Aδ
n is given by

Pr(x
n) = p n(p+α)(1− p)n(1−p−α)

for some |α| < δ. Taking the logarithm we get:

logPr(x
n) = n(p+ α) log p+ n(1− p− α) log(1− p)

Define the binary entropy function

h(p) = −
(
p log(p) + (1− p) log(1− p)

)
we have that

logPr(x
n) = −n

(
h(p) + α log

1− p

p

)
and so

2−n(h(p)+δ|log 1−p
p |) ≤ Pr(x

n) ≤ 2−n(h(p)−δ|log 1−p
p |)

or simply

2−n(h(p)+δ̂) ≤ Pr(x
n) ≤ 2−n(h(p)−δ̂)

where δ̂ was implicitly defined. Now let ε, δ > 0. Then for n large enough

1− ε ≤ Pr

{
Aδ

n

}
≤ 1∣∣Aδ

n

∣∣ ≤ 1

2−n(h(p)+δ̂)
= 2n(h(p)+δ̂)

∣∣Aδ
n

∣∣ ≥ 1− ε

2−n(h(p)−δ̂)
= (1− ε)2n(h(p)−δ̂)



Loosely speaking, there is a relatively small set of ∼ 2nh(p) typical sequences emitted

each attained with probability ∼ 2−nh(p), with total probability arbitrarily close to 1.

Now the way to compression is short! First, arrange the typical sequences in Aδ
n in some

order (e.g. lexicographic), i.e., construct a bijective mapping

I : Aδ
n 7→ {0, 1}dlog |Aδ

n|e

and consider the following block code:

E(xn) =

{
I(xn) xn ∈ Aδ

n

00 . . . 0 o.w.

D(y) = I−1(y)

R =
dlog |Aδ

n|e
n

≤ n(h(p) + δ̂) + 1

n
= h(p) + (δ̂ +

1

n
)

F = Pr

{
Aδ

n

}
≥ 1− ε

Thus any rate above the binary entropy h(p) is achievable! In fact, no rate below h(p) is

achievable as we shall momentarily see, which makes h(p) the optimal compression rate for

this source.

Remark I.2. Note that for 0 ≤ h(p) ≤ 1 and attains the lower bound for p = 0, 1 → no

bits are required to reliably describe a deterministic source. The upper bound is attained

for p = 1
2
→ a uniform source cannot be compressed.

Remark I.3. F=1 can be simply attained by using variable length coding - whenever

outside the typical set transmit the entire source block as a codeword, and add a flag bit

at the beginning of each codeword to indicates whether inside or outside the typical set.

This property of the existence of a (small) typical set with constant probability se-

quences that has probability close to 1, is called the Asymptotic Equipartition Property

(AEP). The AEP also holds for general DMS (and is true in fact for any stationary ergodic

source), where the size of the typical set is related to the entropy of the source.

Definition I.4. Let X be a DMS over an alphabet X with letter probability p(x). The

entropy of the source is defined as

H(X) = −
∑
x∈X

p(x) log p(x)

Notice that for the special case of a binary source with probability p we have that

H(X) = h(p).



Theorem I.1 (AEP). Let X be a DMS with entropy H = H(X), and let ε, δ > 0. For

any n large enough there exists a set Aε,δ
n ∈ X n satisfying

1− ε ≤Pr

(
Aε,δ

n

)
≤ 1

(1− ε)2n(H−δ) ≤
∣∣Aε,δ

n

∣∣ ≤ 2n(H+δ)

2−n(H+δ) ≤Pr(x
n) ≤ 2−n(H−δ) , ∀xn ∈ Aε,δ

n

Furthermore, let Bn ∈ X n be a sequence of sets with size |Bn| < 2n(H−δ). Then for any n

large enough Pr(Bn) < ε.

Proof. First part similar to the binary example. Second part is easily derived by looking

at the intersection of Bn with typical sets.

Theorem I.2 (Classical Source Coding). Let ε, δ > 0. For any n large enough there

exists a block code C with rate R < H(X) + δ and fidelity F > 1− ε. Conversely, for all n

large enough, any block code C with rate R < H(X)− δ has fidelity F < ε.

Proof. Achievability: Similar to the binary example. Converse: Any block code with

rate R < H − δ can describe no more than 2n(H−δ) source sequences. According to the

AEP, this size of a sequence set has a vanishing probabilistic volume, which results in a

vanishing fidelity.

II Quantum Compression

First described in [2] and with a simpler proof in [3]. The proofs consider only a Unitary

Decoder for the converse. A converse for the most general setting was given in [4].

Definition II.1. A (discrete memoryless) quantum source is a probability distribution over

a finite ensemble of pure states {|ai〉, pi}M
i=1, with a density matrix ρ =

∑M
i=1 pi|ai〉〈ai|.

The fundamental question of quantum compression is: How many qubits per source

state are required on the average to reliably represent the source? We shall define

what we mean by reliable in a moment.

Consider a quantum source A = {|ai〉, pi}M
i=1 over a d-dimensional Hilbert space Hd,

represented by its density matrix ρ. A general encoder for the source is a mapping from

input states to density matrices:

|ai〉 → Ωi



where the density matrices Ωi are over a k-dimensional Hilbert space Hk (the dimension is

reduced = compression). A general decoder is a mapping

Ωi → ωi

where ωi are density matrices over Hd again.

How reliable is the reconstruction? The input |ai〉 in reconstituted as the mixed state

ωi whose probability to pass a yes/no test as being |ai〉 is given by 〈ai|ωi|ai〉.

Definition II.2. The fidelity of the coding scheme is defined as

F =
M∑
i=1

pi〈ai|ωi|ai〉

For example, if the coding scheme does nothing then ωi = |ai〉〈ai| and then F = 1. In

general we have 0 ≤ F ≤ 1.

Similarly to the classical setting, we can consider blocks of source states by aggregating

n source’s inputs together. The equivalent source An has Mn states in the Hilbert space

Hdn , and is represented by the density matrix ρ⊗n. The probabilities of the different states

are merely multiplications of probabilities of states in A, and are denoted p
(n)
i . Coding and

Fidelity are defined in a similar manner for An. In coding An we use log k qubits per block,

and so compression rate of the scheme is given by

R =
log k

n
[qubits/state]

Example II.1. Consider a binary source A with states {|0〉, |+〉} with probabilities {p, 1−
p}. The source A2 has eight states

{|00〉, |0+〉, |+ 0〉, |+ +〉}

with probabilities

{p(2)
i } = {p2, p(1− p), (1− p)p, (1− p)2}

Example II.2. Consider a binary source A with states {|0〉, |+〉} with uniform probabilities

{1
2
, 1

2
}. Thinking classically, it seems there is no way to compress the source even when

looking at blocks, since all the blocks have the same probability. However, there is a

significant difference from the classical setting. For instance, when guessing the output of

a classical binary uniform source, the best fidelity possible is F = 1
2
. However, for the

quantum source in question, our best guess would obviously be the vector |0〉 + |+〉 (with

normalization), which will provide a much higher fidelity of F = cos2 π
8
≈ 0.8536.

Let us then look at the source A in the basis |0′〉 = |0〉+ |+〉 and |1′〉 = |0〉 − |+〉 (with

normalization). We can think of |0′〉 as spanning a “likely” 1-dimensional subspace for the



source’s states, and of |1′〉 as spanning an “unlikely” 1-dimensional subspace. Extending

that notion, we can look at An in the orthogonal basis B = {|0′〉, |1′〉}⊗n. Express

|0〉 = cos
π

8
|0′〉+ sin

π

8
|1′〉

|+〉 = cos
π

8
|0′〉 − sin

π

8
|1′〉

Then for any source state |ψ〉 = |ψ1〉|ψ2〉 . . . |ψn〉 (where each qubit is in either |0〉 or |+〉)
we have that

|ψ〉 =
(

cos
π

8
|0′〉 ± sin

π

8
|1′〉

)
. . .

(
cos

π

8
|0′〉 ± sin

π

8
|1′〉

)
=

∑
φ∈{0′,1′}n

±
(
sin

π

8

)n1(φ) (
cos

π

8

)n−n1(φ)

|φ〉

where n1(φ) is the number of 1′ in φ. Therefore, the projection of any source state |ψ〉
on a basis vector |φ〉 ∈ B is

|〈ψ|φ〉|2 =
(
sin2 π

8

)n1(φ) (
cos2 π

8

)n−n1(φ)

= λn1(φ)(1− λ)n−n1(φ)

where we set λ = sin2 π
8

and 1 − λ = cos2 π
8
. But this is precisely the probability of a

classical binary sequence with n1(φ) ones, produced by a DMS with probabilities (1−λ, λ)!

Loosely speaking, as we have seen in the classical setting, there exists ∼ 2nh(λ) typical

sequences with total probability close to 1. This means that there exists ∼ 2nh(λ) vectors

in B that span a typical subspace with the property that the source states are projected

into it with probability close to 1. This suggests a simple encoding scheme that projects

An into the typical subspace, thus reliably describing the source using ∼ nh(λ) qubits per

block, resulting in a compression rate of R ∼ h(λ).

The derivations in the example above are implicitly related to the density matrix ρ of

the source. The states |0′〉, |1′〉 are just the eigenstates of ρ, and its eigenvalues are just the

same (1− λ, λ) as above, i.e.,

ρ = (1− λ)|0′〉〈0′|+ λ|1′〉〈1′|

This clarifies the following definition.

Definition II.3. The Von-Neumann entropy of a quantum source with density matrix ρ is

defined as

S(ρ)
4
= −

∑
λi log λi = −tr ρ log ρ

where λi are the eigenvalues of ρ.

The Von-Neumann entropy is generally smaller than the Shannon entropy (of the gen-

erating probability distribution), and equal to it only for orthogonal states.



Theorem II.1 (Quantum Source Coding). Let ε, δ > 0. For all n sufficiently large,

there exists a block coding scheme attaining a compression rate R < S(ρ) + δ and a fi-

delity F > 1 − ε. Conversely, For all n sufficiently large, any block coding scheme with a

compression rate R < S(ρ)− δ attains a fidelity F < ε.

Proof. Achievability: The eigenvalues of the density matrix satisfy λi ≥ 0 and
∑
λi = 1,

and thus constitute a probability distribution. Therefore, in terms of a density matrix we

can think of the source A as an essentially classical source A′, producing the eigenstates

|λi〉 of ρ with probability λi. The Shannon entropy of A‘ is equal to the Von-Neumann

entropy of A, i.e., H(A′) = S(ρ).

Similarly, the source An can be though of as an essentially classical source A′
n, pro-

ducing orthonormal eigenstates of ρ⊗n that are tensor products the eigenstates |λi〉, with

probabilities that are multiplications of the corresponding λi’s. For any ε, δ > 0, we have

(by the AEP) that for n large enough there are no more than 2n(S(ρ)+δ) typical eigenstates

of ρ⊗n whose total probability (sum of eigenvalues) exceeds 1− ε
2
. We denote the subspace

spanned by these eigenstates by Λ = Λ(n, ε, δ), and call it the Typical Subspace. Following

that, the quantum compression scheme works as follows:

Encoder: (works on An)

1. Makes a measurement that projects the input state into either Λ or Λ⊥.

2. If the measurement indicates that the state was projected into Λ⊥, substitutes the

state with a predefined state |0〉 ∈ Λ.

3. Applies a unitary operator U that does the following:

|φ〉 ∈ Λ
U−→ |ψ〉|0rem〉 ,

where |ψ〉 is a state with n(S(ρ) + δ) qubits, and |0rem〉 = |0〉 ⊗ . . . ⊗ |0〉 are the

remaining qubits.

4. The first n(S(ρ) + δ) are sent or stored.

Decoder:

1. Adds |0rem〉 ancilla qubits.

2. Applies U † to |ψ〉|0rem〉 to retrieve |φ〉 ∈ Λ.

The rate of the proposed scheme is R = S(ρ) + δ as required, so let us now evaluate its

fidelity. Let |ai〉 denote an input state of An, and express it as



|ai〉 = αi|`i〉+ βi|mi〉 , |`i〉 ∈ Λ , |mi〉 ∈ Λ⊥

Then the density matrix associated with the decoder’s output is

ωi = |αi|2|`i〉〈`i|+ |βi|2|0〉〈0|

The per state fidelity can be bounded then by

〈ai|ωi|ai〉 = |αi|2|〈ai|`i〉|2 + |βi|2|〈ai|0〉|2 ≥ |αi|2|〈ai|`i〉|2 = |αi|4 ≥ 2|αi|2 − 1

Defining Λ also as the projector onto the typical subspace, the scheme fidelity is bounded

correspondingly

F =
∑

p
(n)
i 〈ai|ωi|ai〉 ≥ 2

∑
p

(n)
i |αi|2 − 1 = 2

∑
p

(n)
i 〈ai|Λ|ai〉 − 1 = 2

∑
tr

(
p

(n)
i |ai〉〈ai|Λ

)
− 1

= 2 trρ⊗nΛ− 1 ≥ 2(1− ε

2
)− 1 = 1− ε

as desired.

The complexity of the scheme lies mainly in the unitary operation U . This is es-

sentially a classical computation which orders typical sequences, and can be performed

using classical coding techniques such as enumerative coding [5], performed in a reversible

quantum-mechanical manner. Coding techniques using O(n3) elementary 2-3 quantum

gates were first introduced in [6], and an improved algorithm with quasi-linear complexity

O(n(log4 n) log log n) was described in [7].

Converse: We shall only prove the converse for a unitary decoder, meaning that we

assume the decoder adds ancilla and performs a unitary operation. This means that the

density matrices ωi are all embedded in a common subspace Γ of dimension k = 2n(S(ρ)−δ).

Therefore, ω1 has an orthonormal basis |ξ1〉, . . . , |ξk〉 in Γ. Defining Πi = |ai〉〈ai| we can

write

ω1 =
k∑

j=1

qj|ξj〉〈ξj| , qj ≥ 0

and so the per state fidelity is

〈a1|ω1|a1〉 =
k∑

j=1

qj〈a1|ξj〉〈ξj|a1〉 ≤
k∑

j=1

|〈a1|ξj〉|2 = trΠ1Γ

This is true for any ωi and thus the average fidelity is bounded by

F ≤
∑

p
(n)
i trΠiΓ = trρ⊗nΓ



Now, introducing the basis {|ei〉}dn

i=1 of the eigenstates of ρ⊗n with eigenvalues {µi}dn

i=1,

we can rewrite the above as

F ≤
dn∑
i=1

µi tr|ei〉〈ei|Γ =
∑

µi〈ei|Γ|ei〉

But 0 ≤ 〈ei|Γ|ei〉 ≤ 1 and
∑
〈ei|Γ|ei〉 = trΓ = k, and therefore the fidelity F is bounded

above by the sum of the kth largest eigenvalues of ρ⊗n. However, since k = 2n(S(ρ)−δ)

we know from the AEP that for n large enough this sum is smaller than ε, proving the

converse.

Remark II.1. Note that only the density matrix related to the source is important in

terms of compression, and not the actual states emitted by the source. This means for

instance that a coding scheme for one source performs the same for any other source with

the same density matrix. This justifies the definition of a quantum source simply as a

density matrix.

Remark II.2. It can be shown that the converse holds for arbitrary decoders [4], so there is

no gain using a non-unitary decoder in terms of compression rates. However, improvement

in fidelity for a given coding scheme may be obtained by more general decoders [4].

Remark II.3. Notice that in the proof of the converse we have made no assumptions

regarding the encoding process. This means that even if the encoder knows the actual

quantum state being coded, this knowledge cannot be used to decrease the achievable

compression rate. The setting where the encoder is aware of the input quantum states is

called visible coding while the setting where it has no such knowledge is called blind coding.

The following is a generalized definition of a quantum source.

Definition II.4. A (discrete memoryless) mixed quantum source is a probability distribu-

tion over a finite ensemble of density matrices {ρi, pi}M
i=1.

The fidelity of a coding scheme for a mixed quantum source is measured in terms of the

average Bures-Uhlmann fidelity between density matrices. In this case it is easily seen that

a rate higher than S(
∑
piρi) is generally attainable. For instance, consider the case where

p1 = 1 and pi = 0 for all i > 1. In this case, the encoder does not need to send any qubits

to the decoder and a perfect fidelity is attainable, thus a rate R = 0 is attainable, which is

different from S(ρ1). The best compression possible for this setting in general is nevertheless

still an open problem. It is known that the Holevo bound S(
∑
piρi)−

∑
piS(ρi) is a lower

bound [8], and also that in this case there is a possibility of a compression gain for the

visible setting w.r.t. the blind setting [9].



III Universal Classical Compression

Consider the case where the probability distribution of the DMS X is unknown, but the

source is known to have entropy H(X) < HU . As it turns out, a compression rate of H

can still be guaranteed for this entire family of sources.

Definition III.1. For a binary alphabet X = {0, 1}, define the type T n
p to be the set of

all binary strings of length n whose empirical distribution is (1− p, p), i.e.,

T n
p =

{
xn ∈ X n :

∑
xi = np

}
This definition is easily extended to non-binary alphabets, where p is replaced by a probability

distribution.

It is easily seen that there are precisely n+1 different types. For a non-binary alphabet,

the number of types can be bounded from above by (n + 1)|X |−1. The important point is

that the number of types is polynomial in n.

The size of a type is easily bounded from above by the following simple argument. for

every xn ∈ X n we have that Pr(x
n) = 2−nh(p) and therefore

1 ≥ Pr(T
n
p ) =

∑
xn∈Xn

Pr(x
n) =

∑
xn∈Xn

2−nh(p) = |T n
p |2−nh(p)

and therefore

|T n
p | ≤ 2nh(p)

It can also be shown that |T n
p | ≥ (n + 1)−|X |2nh(p) by similar arguments or by using the

Stirling approximation.

Example III.1. Continuing the classical binary source example, we assume now that all

we know is that H(X) < HU . Let ε, δ > 0, and let

p0 = max{p : h(p) ≤ HU + δ , p ≤ 1

2
}

Now define the sets

Bδ
0(HU) =

dnp0e⋃
k=0

T n
k
n

, Bδ
1(HU) =

n⋃
k=n−bnp0c

T n
k
n

, Bδ(HU) = Bδ
0(HU) ∪Bδ

1(HU)

Obviously, the set Bδ(HU) contains all the typical sets Aδ
n of any binary source withH(X) <

HU . Therefore, a block code the encodes only the sequences in Bδ(HU) will faithfully

reconstruct any source in that family. The size of Bδ(HU) is bounded using the fact that

there are no more than n+ 1 types, and the type with maximal size corresponds to p0:

|Bδ(HU)| ≤ (n+ 1)
∣∣∣T n

dnp0e
n

∣∣∣ ≤ (n+ 1)2n(HU+δ) = 2n(HU+δ+
log (n+1)

n
)



and so the rate of HU bits per source letter can be approached arbitrarily close. In the

non-binary case the same method holds since there is only a polynomial number of types.

Remark III.1. In the classical setting, it is actually possible to do much better, and

approach the entropy of each source in the family. For the family of binary sources, this can

be done by counting the number of ones in a length n sequence, sending this number using

log n bits, and then sending the index of the sequence inside its type (arranged according

to, say, a lexicographical order). Since the size of the type is ≤ 2nh(pemp) where pemp is the

empirical fraction of ones in the sequence, and as the log n bits used to identify the type

are negligible w.r.t. n, we approach a compression rate of h(pemp) bits per letter. Since

pemp → p in the limit of large blocks, the entropy of the source is approached. Much more

efficient algorithms exists [10] which work “on the fly” and approach the compression limit.

These algorithms also apply to sources with memory and even to “individual” sources with

no underlying probabilistic mechanism (for such sources the known Lempel-Ziv compression

scheme [10] was shown to asymptotically “beat” the best finite-state compression scheme

of any order).

IV Universal Quantum Compression

The extension of the universal scheme for compression of classical sources with bounded

entropy is not straightforward [11]. Consider a family of quantum sources with a density

matrix ρ and a Von-Neumann entropy S(ρ) < SU . Can we guarantee a compression rate

of SU qubits per state for any source in this family?

Instead of projecting into a single typical subspace, one should use a subspace con-

taining the union of all possible typical subspaces for all the sources with entropy

S(ρ) < SU , to guarantee fidelity approaching one for all the sources in the family. What is

the dimension of the minimal subspace containing the union of all those typical subspaces?

Example IV.1. Let us first consider a family of binary quantum sources A with a common

density matrix ρ and eigenvalues λ, 1−λ, satisfying S(ρ) < SU . This problem is equivalent

to the classical setting by looking at the classical family of sources A′ emitting eigenstates

of ρ with probability (λ, 1−λ) and possessing a Shannon entropy h(λ) < SU . These family

of sources can be compressed to SU bits per letter by the method of types as in the previous

subsection. In the quantum setting this means we project on a subspace of eigenstates of

ρ⊗n that correspond to types with a bounded entropy, and since the number of types is

polynomial in n we can attain a compression rate of SU qubits per state.

The above procedure can be used for a broader family of quantum sources sharing the

same eigenstate structure, i.e., sources whose density matrices commute. But this is still

far from what we aim for.



Let us discuss the general binary quantum setting, where the only restriction on the

sources is S(ρ) < SU . This discussion is easily generalized to sources over larger alphabets.

Let B0 be some orthonormal basis of H2. Any other orthonormal basis B can be

obtained from B0 by applying some unitary transformation U to the basis vectors. Now,

think of such a B as the eigenbasis of some density matrix ρ, and let T n(B) be the set of

2n(Su+δ) eigenstates of ρ⊗n which span the subspace used for compressing all the sources

that share this eigenbasis and have entropy S(ρ) < SU (just as depicted in the previous

example). We immediately see that the elements in T (B) can be obtained from those in

T (B0) by a unitary transformation. This is informally stated as

T (B) = T (UB0) = U⊗nT (B0)

for some unitary matrix U . Now define the subspace

Γ = span
{
U⊗nφ : U unitary ,φ ∈ T (B0)

}
Compression by projecting on the subspace Γ will reliably represent any source with entropy

S(ρ) < SU . Therefore, it is the dimension of Γ that we now seek. To that end we shall use

the following relaxation:

Γ ⊆ span
{
A⊗nφ : A ∈ C2×2 ,φ ∈ T (B0)

}
For any fixed φ define

Γφ = span
{
A⊗nφ : A ∈ C2×2

}
and so

dim Γ ≤
∑

φ∈T (B0)

dim Γφ

We shall now prove that

dim Γφ ≤ (n+ 1)4

and since |T (B0)| ≤ 2n(h(SU )+δ) we shall conclude that

dim Γ ≤ (n+ 1)4 2n(h(SU )+δ)

which means a compression rate of SU qubits per state is asymptotically achievable for the

entire family of sources, as required.

To prove that above, we introduce a new definition and prove a Lemma.

Definition IV.1. Let L be some linear vector space. The symmetric subspace of L⊗n is

the space SYM(L) of vectors which are invariant under any permutation of the positions

in the tensor product.



Example IV.2. The symmetric subspace of H⊗3
2 is spanned by the four vectors

|000〉, |001〉+ |010〉+ |100〉, |011〉+ |101〉+ |110〉, |111〉

Notice that these vectors correspond to binary types.

Lemma IV.1. Let d = dimL. Then

dimSYM(L) =

(
n+ d− 1

d

)
and SYM(L) is also spanned by all the vectors of the form ψ⊗n.

Proof. For simplicity we shall prove the above only for d = 2, the proof is rather easily

extended. As we have seen in the example preceding the lemma, a basis for the symmetric

subspace corresponds to vectors which are sums over types. These vectors are all orthogonal

and so the dimension of the symmetric subspace is simply the number of types, which in

the binary case is just n+ 1 as required.

Now, from the definition of the symmetric subspace it is straightforward that ψ⊗n ∈
SYM(L) for any ψ ∈ L. We now show that every element in the symmetric subspace can

be expressed as a linear combination of such vectors. Denote by {|t0〉, . . . , |tn〉} the “type

vectors” that span SYM(L) as in the example, i.e., |tk〉 is the sum of all vectors with k

ones. Any |φ〉 ∈ SYM(L) can be expressed as

|φ〉 =
n∑

j=0

aj|tj〉

Now for some set of scalars {αi}n
i=0, consider vectors of the form

|ψi〉⊗n = (|0〉+ αi|1〉)⊗n =
∑

φ∈{0,1}n

α
n1(φ)
i |φ〉 =

n∑
k=0

αk
i |tk〉

Let us try to represent |φ〉 using the vectors |ψi〉⊗n:

|φ〉 =
n∑

j=0

aj|tj〉 =
n∑

i=0

bi|ψi〉⊗n =
n∑

i=0

bi

n∑
k=0

αk
i |tk〉 =

n∑
k=0

|tk〉
n∑

i=0

biα
k
i

which has the following matrix representation

1 1 · · · 1

α0 α1 · · · αn

α2
0 α2

1 · · · α2
n

...
...

...

αn
0 αn

1 · · · αn
n




b0

b1
...

bn

 =


a0

a1

...

an


But the matrix is just the Van-Der-Monde matrix, which is always invertible if none of the

αi’s are equal, so the representation is feasible which completes our proof.



Following the lemma, we can write

Γφ = span
{
A⊗nφ : A ∈ C2×2

}
= span

{
Bφ : B ∈ SYM(C2×2)

}
Define a linear map L from SYM(C2×2) to Γφ by

L(B) = Bφ , ∀B ∈ SYM(C2×2)

This map is onto Γφ, and since a linear map cannot increase dimension we have that

dim Γφ ≤ dimSYM(C2×2)

But since dim(C2×2) = d = 4 we have from the lemma that

dimSYM(C2×2) =

(
n+ d− 1

d− 1

)
≤ (n+ 1)d2

= (n+ 1)4

and thus

dim Γφ ≤ dimSYM(C2×2) ≤ (n+ 1)4

which yields

dim Γ ≤ (n+ 1)4 2n(h(SU )+δ)

as required.

There are better universal quantum compression techniques that imitate the classical

ones and compress the source to its entropy, without prior knowledge of the latter [12].
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