Homework 4 Due 2006/2/2

Oded Regev & Amnon Ta-Shma Dept. of Computer Science Tel Aviv University

- 1. You are given the promise that exactly one out of the four values O_1, O_2, O_3, O_4 is one. Show that with two queries you can find with success probability one, the index i such that $O_i = 1$.
- 2. Let $f: \{0,1\}^N \to \{0,1\}$ be a *symmetric* function. Prove that if there exists a degree k multi-variate polynomial $p: \mathbb{R}^N \to \mathbb{R}$ that ε -approximates f, then there exists a degree k *symmetric*, multi-variate polynomial $p': \mathbb{R}^N \to \mathbb{R}$ that ε -approximates f.
 - Let $p: \mathbb{R}^N \to \mathbb{R}$ be a degree k symmetric polynomial. Prove that there exists a degree k univariate polynomial $q: \mathbb{R} \to \mathbb{R}$ such that for every $x_1, \ldots, x_N \in \{0, 1\}$, $p(x_1, \ldots, x_N) = q(\sum x_i)$.
 - Prove that $deg(OR_N) = N$ and conclude that $Q_E(OR_N) \ge \frac{N}{2}$.
 - Prove that for any symmetric, non-trivial function $f: \{0,1\}^N \to \{0,1\}$ we have $\deg(f) \geq \frac{N}{2}$ and conclude that $Q_E(f) \geq \frac{N}{4}$.
- 3. A quantum black-box algorithm solves the OR function with one-sided unbounded error, if
 - On input $O_1 = O_2 = \ldots = O_N = 0$ there is some positive probability of answering 0.
 - Whenever the answer is zero, $OR(O_1, \ldots, O_N) = 0$.

Let us denote by $Q_1(OR)$ the minimal number of queries such an algorithm should make. Prove that $Q_1(OR) \ge \frac{N}{2}$.

- 4. (a) We are given O_1, \ldots, O_N with the promise that there are exactly R elements with $O_i = 1$. Show an algorithm that finds (with a constant probability) such an i using only $O(\sqrt{\frac{N}{R}})$ queries.
 - (b) Now we are given $O:[N] \to [N]$ with the promise that O is two-to-one (i.e., for every i there is exactly one other element having the same value O_i). Devise a quantum black-box algorithm that finds (with a constant probability) a collision (a pair $\{i,j\}$ such that $O_i = O_j$) using only $O(N^{1/3})$ queries.
 - (c) Compare with Simon's algorithm.
 - (d) Compare with classical algorithms.
- 5. Let $R_0(f)$ denote the query complexity of a probabilistic black-box algorithm that for every input $x \in \{0,1\}^N$ outputs 'quit' with probability at most half and f(x) otherwise (such an algorithm is called a zero-error algorithm).

The majority function $MAJ(x_1, x_2, x_3)$ returns 1 if two or three of its inputs are 1, and zero otherwise. The recursive-majority function is defined recursively as follows:

$$f(x_1, x_2, x_3) = MAJ(x_1, x_2, x_3)$$

$$f(x_1, \dots, x_{3^n}) = f(f(x_1, \dots, x_{3^{n-1}}), f(x_{3^{n-1}+1}, \dots, x_{2\cdot 3^{n-1}}), f(x_{2\cdot 3^{n-1}+1}, \dots, x_{3^n}))$$

We also denote $N = 3^n$.

Prove that $R_0(f) \le O(N^{\log_3 8 - 1}) \approx O(N^{0.892})$.

- 6. (the deterministic communication complexity of the median) Alice holds n elements x_1, \ldots, x_n each from [m] and Bob holds n elements y_1, \ldots, y_n also from [m]. Their goal is to compute the median element of $\{x_1, \ldots, x_n, y_1, \ldots, y_n\}$. More generally, they both know some $1 \le k \le 2n$, and their goal is to compute the k'th largest element in the set $\{x_1, \ldots, x_n, y_1, \ldots, y_n\}$.
 - Show a deterministic protocol using only $O(\log(m) \cdot \log(n))$ communication bits.
 - Improve that to show a deterministic protocol using only $O(\log(m) + \log(n))$ communication bits.
- 7. (Order finding as phase estimation) We saw in class the order finding problem:

Input: n and an element $x \in \mathbb{Z}_n^*$.

Output: The minimal r such that $x^r = 1 \pmod{n}$.

The algorithm we saw in class (a few weeks ago) can be described as follows. We define $U_x(y) = |xy(\bmod n)\rangle$ and apply the following circuit:

Figure 1: Order finding

The circuit is then followed by the continued fraction algorithm. As you see this circuit is almost identical to the phase estimation circuit for U_x . We now want to analyze the above circuit using phase estimation.

- Define $W = Span\{|x^0\rangle, |x^1\rangle, \dots, |x^{r-1}\rangle\}$. Prove the W is invariant under U_x (i.e., $U_xW = W$) and that U_x is unitary over W.
- Find the matrix M describing the unitary transformation U_x in the basis $\{|x^0\rangle, |x^1\rangle, \dots, |x^{r-1}\rangle\}$ of W.
- Prove that the eigenvectors of M are v_0, \ldots, v_{r-1} where $v_k = \frac{1}{\sqrt{r}} \sum_{j=0}^{r-1} w_r^{kj} |x^j\rangle$, and where w_r is a primitive r'th root of unity. (This follows from a general principle, but if you don't know it you can do a direct check). What are the eigenvalues?
- Prove that $|1\rangle = |x^0\rangle$ is the sum of all the eigenvectors $|v_k\rangle$. (This again follows from a general principle, and again if you don't know it simply do a direct check).
- Analyze the circuit above.