- 1. Show how to encode two classical bits into one qubit such that any one bit can be recovered correctly with probability greater than 85%.
- 2. We have seen in class that Toffoli gates are universal for classical reversible computation. Prove that no set of two-bit and one-bit gates is universal for classical reversible computation.
- 3. Let f: {0,1}ⁿ → {0,1}^m, g: {0,1}^m → {0,1}ⁿ be such that g is a left-inverse of f (i.e., g(f(x)) = x for all x ∈ {0,1}ⁿ). Assume that both functions can be computed by a polynomial size classical circuit. Show that there exists a polynomial size classical reversible circuit (and hence also quantum circuit) that maps |x,0⟩ to |f(x),0⟩. Would you expect this to be possible without the assumption that g has a polynomial size circuit?
- 4. Describe a quantum algorithm that solves the following problem. Given a function $f : \mathbb{Z}_2^n \to \{0,1\}^m$ that satisfies $f(x) = f(y) \Leftrightarrow x y \in H$ for some subgroup H of \mathbb{Z}_2^n , find H.
- 5. For any function f: {0,1}ⁿ → {0,1} we define U_f as the unitary transformation mapping |x, y⟩ to |x, y + f(x)⟩ for each x ∈ {0,1}ⁿ and y ∈ {0,1}. Also define S_f as the unitary transformation mapping |x⟩ to (-1)^{f(x)}|x⟩ for each x ∈ {0,1}ⁿ. Show how to obtain S_f from U_f (using an auxiliary qubit). Can you obtain U_f from S_f?
- 6. (a) Let |u>, |v> be two states on n qubits each. Consider the circuit below, which uses a controlled swap gate. Find the probability of measuring |0> as a function of |(u|v)|. What does this quantity correspond to?

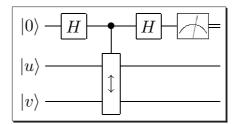


Figure 1: The swap test

- (b) Now assume there exists a quantum circuit U that transforms |0⟩ to |u⟩ and a quantum circuit V that transforms |0⟩ to |v⟩. Show how to generate the state (|0⟩|u⟩+|1⟩|v⟩)/√2 using U and V. Then, assume we apply H on the first qubit and measure it. Find the probability of measuring |0⟩ as a function of |⟨u|v⟩|.
- 7. Here we develop parts of the very useful *phase estimation* technique, due to Kitaev. Let U be a unitary transformation on n qubits and let $|v\rangle$ be an eigenvector of U with eigenvalue λ .
 - (a) Show that $|\lambda| = 1$, i.e., there exists some $\theta \in [0, 2\pi)$ such that $\lambda = e^{i\theta}$.
 - (b) Based on the circuit shown in Figure 2, describe how to estimate θ to within some additive error ε (with confidence, say, 90%). You can assume that you have a way to generate the state |v⟩. How many operations are needed (roughly) as a function of ε?

(c) Show that you can do the same even if you are given only one copy of $|v\rangle$ (and you are unable to generate more yourself).

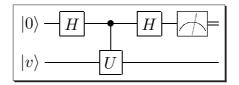


Figure 2: Phase estimation

- 8. (a) For $b \in \{0, 1\}$ define $|\psi_b\rangle$ as the two-qubit state $\frac{1}{\sqrt{2}}(|00\rangle + (-1)^b|11\rangle)$. Alice and Bob share the state $|\psi_b\rangle$ for some unknown *b*. Their goal is to determine *b*. Unfortunately, they are unable to communicate with each other. Convince yourself that Alice (or Bob) cannot determine *b* alone (no rigorous proof of this is required). Now, assume each of them is allowed to send one classical envelope to a common friend Charlie. Find a protocol that allows Charlie to determine *b* from the two envelopes he receives.
 - (b) For each k, l ∈ {0,1}²ⁿ, k ≠ l, b ∈ {0,1}, define |ψ_{k,l,b}⟩ as the state ¹/_{√2}(|k⟩ + (−1)^b|l⟩) on 2n qubits. Alice and Bob share the state |ψ_{k,l,b}⟩ for some unknown k, l, b (i.e., each has n qubits). Each of them can send one classical envelope to Charlie, who happens to know k and l but not b. Upon receiving the two envelopes, Charlie is asked to determine the bit b. Find a protocol that allows them to achieve this goal.