Fall 2009

- 1. Consider the lattice $\mathcal{L}(b_1, b_2, b_3)$ where $b_1 = (2, 0, 0)^T$, $b_2 = (0, 2, 0)^T$, and $b_3 = (1, 1, 1)^T$. Find the successive minima in the l_1 norm and in the l_{∞} norm. What are the vectors that achieve these minima?
- 2. Let $\Lambda = \mathcal{L}(b_1, \ldots, b_n)$ be some rank n lattice and let $\tilde{b}_1, \ldots, \tilde{b}_n$ be the Gram-Schmidt orthogonalization of b_1, \ldots, b_n .
 - (a) Show that it is *not* true in general that $\lambda_n(\Lambda) \ge \max_i \|\tilde{b}_i\|$.
 - (b) Show that for any $j = 1, ..., n, \lambda_i(\Lambda) \ge \min_{i=1,...,n} \|\tilde{b}_i\|$.
- (a) Show that any unimodular matrix $U \in \mathbb{Z}^{n \times n}$ can be transformed to the identity matrix 3. by the following three basic column operations: $a_i \leftrightarrow a_j, a_i \leftarrow -a_i$, and $a_i \leftarrow a_i + ka_j$ for some integer k. Hint: Euclid's algorithm
 - (b) Show that for any unimodular matrix $U \in \mathbb{Z}^{n \times n}$, U^{-1} is also a unimodular matrix in $\mathbb{Z}^{n \times n}$.
 - (c) Show that two lattice bases $B_1, B_2 \in \mathbb{R}^{m \times n}$ are equivalent (i.e., $\mathcal{L}(B_1) = \mathcal{L}(B_2)$) if and only if one can be obtained from the other by a sequence of three basic column operations: $b_i \leftrightarrow b_j$, $b_i \leftarrow -b_i$, and $b_i \leftarrow b_i + kb_j$ for some integer k.
 - (d) Describe a procedure that given any set of vectors $b_1, \ldots, b_n \in \mathbb{Z}^m$, finds a basis for the lattice $\mathcal{L}(b_1,\ldots,b_n)$ (notice that these vectors are not necessarily linearly independent and that in particular, n might be greater than m). There is no need to analyze the running time. Deduce that any set of vectors in \mathbb{Z}^m spans a lattice.
 - (e) Show that any finite set of vectors in \mathbb{Q}^m spans a lattice. Show that this is not necessarily true for vectors in \mathbb{R}^m .
- 4. Find an analogue of Minkowski's First Theorem for the l_1 and l_{∞} norms.
- 5. Give an efficient algorithm for each of the following tasks.
 - (a) Given two bases $B_1, B_2 \in \mathbb{Z}^{m \times n}$, check if $\mathcal{L}(B_1) \subseteq \mathcal{L}(B_2)$, i.e., $\mathcal{L}(B_1)$ is a sublattice of $\mathcal{L}(B_2)$.
 - (b) Given a basis B, check if $\mathcal{L}(B)$ is a cyclic lattice, where a lattice Λ is called cyclic if for every lattice vector $x \in \Lambda$, any cyclic rotation of the coordinates of x is also in Λ. For example, the lattice $\mathcal{L}(b_1, b_2, b_3)$ where $b_1 = (2, 0, 0)^T$, $b_2 = (0, 2, 0)^T$, and $b_3 = (1, 1, 1)^T$ is cyclic.