
Tel Aviv University, Fall 2004
Lattices in Computer Science

Lecture 11
Transference Theorems
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In the last two lectures we have seen the concept of a dual lattice and Fourier analysis on lattices. In
this lecture we will prove an interesting theorem about the connection between a lattice and its dual. In the
process, we will develop tools that will prove valuable in the next lecture.

In 1993, Banaszczyk proved the following theorem:

THEOREM 1 (BANASZCZYK ’93 [2]) For any rank-n latticeΛ it holds that

1 ≤ λ1(Λ) · λn(Λ∗) ≤ n.

The lower boundλ1(Λ)·λn(Λ∗) ≥ 1 follows from the definition of a dual lattice and was already proven
in a previous lecture. Hence, in this lecture we concentrate on the upper bound.

REMARK 1

• Recall that from Minkowski’s bound we can obtain thatλ1(Λ) · λ1(Λ∗) ≤ n. Theorem1 is a consid-
erable strengthening of this bound.

• Considerably weaker bounds were known prior to the work of Banaszczyk. This includes an upper
bound of(n!)2 given by Mahler in 1939 [5], an upper bound ofn! given by Cassels in 1959 [3], and
an upper bound ofn2 given by Lagarias, Lenstra and Schnorr in 1990 [4].

• The upper bound given in Theorem1 is tight up to a constant. This follows immediately from the fact
that there exist self-dual lattices (i.e., lattices that are equal to their own dual) that satisfyλ1(Λ) =
Θ(
√

n). Indeed, for such a lattice

λ1(Λ) · λn(Λ∗) ≥ λ1(Λ) · λ1(Λ∗) = Ω(n).

The fact that such lattices exist is not trivial and was shown by Conway and Thompson.

• In [2], Banaszczyk proves some other transference theorems, such as the bound1 ≤ λi(Λ)·λn−i+1(Λ∗) ≤
n that holds for any1 ≤ i ≤ n. He also notes that by following the same proofs, one can improve the
upper bound to roughlyn/(2π).

One application of Theorem1 is the following.

COROLLARY 1 GapSVPn ∈ coNP

PROOF: Recall that the input toGapSVPn consists of a latticeΛ and a numberd. It is a YES instance
if λ1(Λ) ≤ d and aNO instance ifλ1(Λ) > nd. In order to show containment incoNP, we need to
show a verifier such that whenλ1(Λ) > nd there exists a witness that makes the verifier accept, and when
λ1(Λ) ≤ d no witness makes the verifier accept.

Our verifier expects as a witness a set ofn vectors. It checks that the given vectors are contained inΛ∗,
that they are linearly independent, and that they are all of length less than1/d. If all three conditions hold
then it accepts, otherwise it rejects. It is easy to see that this can be done in polynomial time.

It remains to prove that such a witness exists in the case of aNO instance, and does not exist in the case
of a YES instance. So first consider the caseλ1(Λ) > nd. By Theorem1, λn(Λ∗) < 1/d, so there are indeed
n such vectors. Now assume thatλ1(Λ) ≤ d. By Theorem1, λn(Λ∗) ≥ 1/d, so there are non such vectors.
2

Using a different transference theorem [2], one can also proveGapCVPn ∈ coNP. Let us mention that
both these results have since been improved, and it is now known thatGapSVP√n andGapCVP√n are in
coNP[1]. Interestingly, the proof of these containments, while not directly based on transference theorems,
uses techniques similar to those applied in the proof of Theorem1.
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1 The Covering Radius

DEFINITION 2 For a full-rank latticeΛ, define the covering radius ofΛ as

µ(Λ) = max
x∈Rn

dist(x, Λ).

In other words, the covering radius of a lattice is the minimalr such that any point in space is within
distance at mostr from the lattice.

EXAMPLE 1 µ(Zn) =
√

n
2 , and this is realized by the point(1

2 , . . . , 1
2).

CLAIM 3 µ(Λ) ≥ 1
2λn(Λ)

PROOF: By the definition ofλn, all lattice points inside the open ballB(0, λn) are contained in some
(n − 1)-dimensional hyperplane. Now take a pointx of distanceλn

2 from the origin perpendicular to this
hyperplane. Then, as illustrated in Fig.1, x must be at distance at leastλn

2 from any lattice point inside the
ball, as well as from any lattice point outside the ball. We thus obtainµ ≥ λn

2 , as required.

B(0, λn)
λn

λn

2

x

Figure 1:µ(Λ) ≥ 1
2λn(Λ)

2

Hence, to prove Theorem1 it suffices to showλ1(Λ) · µ(Λ∗) ≤ n
2 . In this lecture we prove something

slightly weaker:

THEOREM 4 λ1(Λ) · µ(Λ∗) ≤ n.

2 Proof of Theorem4

First, let us recall some of the things we saw in the previous lecture. For anys > 0 we defineρs(x) =
e−π‖x/s‖2 and for the special cases = 1 we denoteρ ≡ ρ1. As we saw in the previous class, the Fourier
transform ofρs is given by ρ̂s(x) = snρ1/s(x). Moreover, by a property of the Fourier transform, the
Fourier transform of the function mappingx to ρs(x + u) is snρ1/s(x) · e2πi〈u,x〉. Hence, from the Poisson
summation formula we get

ρs(Λ) = det(Λ∗) · sn · ρ1/s(Λ
∗) (1)

ρs(Λ + u) = det(Λ∗) · sn ·
∑

y∈Λ∗
ρ1/s(y) · e2πi〈y,u〉. (2)

We next prove several useful lemmas. Our first lemma shows thatρs of a shifted lattice is upper bounded
by ρs of the lattice itself.
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LEMMA 5 For anys > 0 and anyu ∈ Rn it holds that

ρs(Λ + u) ≤ ρs(Λ).

As an example, consider the one-dimensional latticeΛ = kZ for somek > 0 and define

fk(u) =
∑

x∈kZ
e−π(x+u)2 .

Using the lemma withs = 1 we obtain thatfk is maximized whenu = 0. See Figure2 for some illustrations.
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Figure 2:fk(u) for k = 0.5 (top left),0.75 (top right),1.5 (bottom left), and3 (bottom right)

PROOF: Using Eq. (2) and Eq. (1),

ρs(Λ + u) = det(Λ∗) · sn ·
∑

y∈Λ∗
ρ1/s(y) · e2πi〈y,u〉

≤ det(Λ∗) · sn ·
∑

y∈Λ∗
ρ1/s(y)

= det(Λ∗) · sn · ρ1/s(Λ
∗)

= ρs(Λ)

where the inequality follows from the triangle inequality together with the fact thatρ1/s is a positive function.
2

Our second lemma upper boundsρs (for s ≥ 1) by ρ1 times a multiplicative factor.

LEMMA 6 For anys ≥ 1 and anyu ∈ Rn it holds that

ρs(Λ + u) ≤ snρ(Λ)

Before we present the proof, let us see two examples. Consider the lemma for the caseu = 0 and take
Λ to be a very sparse lattice, say,M · Zn for some largeM . Then it can be seen thatρ(Λ) ≈ 1 and also
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ρs(Λ) ≈ 1, since both sums are dominated by0 ∈ Λ. In this case the inequality holds, but is far from being
tight. Next, let us takeΛ to be a very dense lattice, sayε · Zn for some smallε > 0. Then

ρ(Λ) ≈ 1
εn

∫

Rn

ρ(x)dx =
1
εn

while

ρs(Λ) ≈ 1
εn

∫

Rn

ρs(x)dx =
sn

εn
.

Hence, in this case the lemma is close to being tight.
PROOF: By Lemma5 we know thatρs(Λ + u) ≤ ρs(Λ), so it is enough to prove thatρs(Λ) ≤ snρ(Λ).
Using Eq. (1) we can write

ρs(Λ) = det(Λ∗) · sn · ρ1/s(Λ
∗) = det(Λ∗) · sn ·

∑

y∈Λ∗
ρ1/s(y).

It is easy to see that for anys ≥ 1 and anyy it holds thatρ1/s(y) ≤ ρ(y) and so we get

ρs(Λ) ≤ det(Λ∗) · sn ·
∑

y∈Λ∗
ρ(y) = snρ(Λ)

where we have used (1) again.2

Our third lemma states that for any latticeΛ, almost all the contribution toρ(Λ) comes from a ball of
radius

√
n around the origin.

LEMMA 7 For anyu ∈ Rn it holds that

ρ
(
(Λ + u) \ B(0,

√
n)

) ≤ 2−nρ(Λ).

As before, let us consider two examples. First, consider the case thatu = 0 andΛ = MZn for some
very largeM . In this case, the left hand side is essentially 0 whileρ(Λ) is essentially1 so the lemma holds.
A more interesting example is whenΛ is a dense lattice, say,εZn for some smallε > 0. Then,

ρ(Λ) ≈ ε−n

∫

Rn

e−π‖x‖2dx = ε−n

while

ρ(Λ \ B(0,
√

n)) ≈ ε−n

∫

Rn\B(0,
√

n)
e−π‖x‖2dx.

In this case, the lemma tells us that the latter integral is at most2−n. Let us verify this by computing the
integral. Instead of computing it directly (which is not too difficult), we compute it by using a nice trick,
which will later be used in the proof of Lemma7. The idea is to consider the integral

∫
Rn e−π‖x/2‖2dx. On

one hand, by a change of variable, we see that
∫

Rn

e−π‖x/2‖2dx = 2n.
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On the other hand,
∫

Rn

e−π‖x/2‖2dx ≥
∫

Rn\B(0,
√

n)
e−π‖x/2‖2dx

=
∫

Rn\B(0,
√

n)
e

3
4
π‖x‖2 · e−π‖x‖2dx

≥ e
3
4
πn ·

∫

Rn\B(0,
√

n)
e−π‖x‖2dx.

We obtain the required bound by combining the two inequalities and usinge
3
4
π > 4.

PROOF: The proof idea is similar to that used in bounding the integral above. Namely, we notice that lattice
points that are far from the origin contribute toρ2(Λ) much more than they contribute toρ1(Λ). But by
Lemma6, ρ2(Λ) can only be larger thanρ1(Λ) by 2n and so we obtain a bound on the number of such
points. More specifically, we consider the expressionρ2(Λ + u). On one hand, using Lemma6, we see that

ρ2(Λ + u) ≤ 2nρ(Λ).

On the other hand,

ρ2(Λ + u) ≥ ρ2

(
(Λ + u) \ B(0,

√
n)

)
=

∑

y∈Λ+u s.t.‖y‖≥√n

e−π‖y/2‖2

=
∑

y∈Λ+u s.t.‖y‖≥√n

e
3
4
π‖y‖2 · e−π‖y‖2

≥ e
3
4
πn ·

∑

y∈Λ+u s.t.‖y‖≥√n

e−π‖y‖2

= e
3
4
πn · ρ(

(Λ + u) \ B(0,
√

n)
)
.

We complete the proof by noting thate
3
4
π > 4. 2

One useful corollary of Lemma7 is the following.

COROLLARY 8 LetΛ be a lattice satisfyingλ1(Λ) >
√

n. Then,

ρ(Λ \ {0}) ≤ 2−n/(1− 2−n) ≤ 2 · 2−n.

PROOF: By applying Lemma7 with u = 0 we obtain

ρ
(
Λ \ B(0,

√
n)

) ≤ 2−nρ(Λ).

By our assumption,Λ \ B(0,
√

n) = Λ \ {0} so we obtain

ρ(Λ \ {0}) ≤ 2−nρ(Λ) = 2−n
(
1 + ρ(Λ \ {0})).

The corollary follows by rearranging terms.2

Our last lemma says that ifλ1(Λ) >
√

n, thenρ(Λ∗+u) is nearly constant as a function ofu. Intuitively,
this happens becauseΛ∗ is dense and soρ(Λ∗ + u) is not affected much by the shiftu. A similar behavior
can be seen in Figure2 wheref0.5 is essentially constant.

LEMMA 9 LetΛ be a lattice satisfyingλ1(Λ) >
√

n. Then, for anyu ∈ Rn,

ρ(Λ∗ + u) ∈ (1± 2−Ω(n)) det(Λ).
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PROOF: Using the Poisson summation formula (Eq. (2)) we can write

ρ(Λ∗ + u) = det(Λ) ·
∑

y∈Λ

ρ(y) · e2πi〈y,u〉.

In the sum here, the pointy = 0 contributes1, and the contribution of all other points is at mostρ(Λ \ {0})
in absolute value. So we obtain that

ρ(Λ∗ + u) ∈ (
1± ρ(Λ \ {0})) det(Λ).

But by Corollary8, ρ(Λ \ {0}) ≤ 2−Ω(n) so we are done.2

We finally present the proof of Theorem4.
PROOF:(of Theorem4) Assume by contradiction that there exists a latticeΛ for whichλ1(Λ) · µ(Λ∗) > n.
By scalingΛ, we can assume without loss of generality that bothλ1(Λ) >

√
n andµ(Λ∗) >

√
n.

On one hand, Lemma9, together with the bound onλ1(Λ), implies thatρ(Λ∗+u) is essentially constant
as a function ofu. On the other hand,µ(Λ∗) >

√
n implies that there exists a pointv ∈ Rn for which

dist(v, Λ∗) >
√

n. This is the same as saying that all points inΛ∗ − v are at distance more than
√

n from
the origin. Using Lemma7,

ρ(Λ∗ − v) = ρ
(
(Λ∗ − v) \ B(0,

√
n)

)
< 2−nρ(Λ∗).

But this contradicts the fact thatρ(Λ∗ + u) is almost constant as a function ofu. 2
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