In the last two lectures we have seen the concept of a dual lattice and Fourier analysis on lattices. In this lecture we will prove an interesting theorem about the connection between a lattice and its dual. In the process, we will develop tools that will prove valuable in the next lecture.

In 1993, Banaszczyk proved the following theorem:

THEOREM 1 (BANASZCZYK '93 [2]) For any rank-n lattice  $\Lambda$  it holds that

 $1 \le \lambda_1(\Lambda) \cdot \lambda_n(\Lambda^*) \le n.$ 

The lower bound  $\lambda_1(\Lambda) \cdot \lambda_n(\Lambda^*) \ge 1$  follows from the definition of a dual lattice and was already proven in a previous lecture. Hence, in this lecture we concentrate on the upper bound.

**Remark** 1

- Recall that from Minkowski's bound we can obtain that λ<sub>1</sub>(Λ) · λ<sub>1</sub>(Λ\*) ≤ n. Theorem 1 is a considerable strengthening of this bound.
- Considerably weaker bounds were known prior to the work of Banaszczyk. This includes an upper bound of  $(n!)^2$  given by Mahler in 1939 [5], an upper bound of n! given by Cassels in 1959 [3], and an upper bound of  $n^2$  given by Lagarias, Lenstra and Schnorr in 1990 [4].
- The upper bound given in Theorem 1 is tight up to a constant. This follows immediately from the fact that there exist self-dual lattices (i.e., lattices that are equal to their own dual) that satisfy λ<sub>1</sub>(Λ) = Θ(√n). Indeed, for such a lattice

$$\lambda_1(\Lambda) \cdot \lambda_n(\Lambda^*) \ge \lambda_1(\Lambda) \cdot \lambda_1(\Lambda^*) = \Omega(n).$$

The fact that such lattices exist is not trivial and was shown by Conway and Thompson.

In [2], Banaszczyk proves some other transference theorems, such as the bound 1 ≤ λ<sub>i</sub>(Λ)·λ<sub>n-i+1</sub>(Λ\*) ≤ n that holds for any 1 ≤ i ≤ n. He also notes that by following the same proofs, one can improve the upper bound to roughly n/(2π).

One application of Theorem 1 is the following.

COROLLARY 1  $GapSVP_n \in coNP$ 

PROOF: Recall that the input to  $\mathsf{GapSVP}_n$  consists of a lattice  $\Lambda$  and a number d. It is a YES instance if  $\lambda_1(\Lambda) \leq d$  and a NO instance if  $\lambda_1(\Lambda) > nd$ . In order to show containment in **coNP**, we need to show a verifier such that when  $\lambda_1(\Lambda) > nd$  there exists a witness that makes the verifier accept, and when  $\lambda_1(\Lambda) \leq d$  no witness makes the verifier accept.

Our verifier expects as a witness a set of n vectors. It checks that the given vectors are contained in  $\Lambda^*$ , that they are linearly independent, and that they are all of length less than 1/d. If all three conditions hold then it accepts, otherwise it rejects. It is easy to see that this can be done in polynomial time.

It remains to prove that such a witness exists in the case of a NO instance, and does not exist in the case of a YES instance. So first consider the case  $\lambda_1(\Lambda) > nd$ . By Theorem 1,  $\lambda_n(\Lambda^*) < 1/d$ , so there are indeed n such vectors. Now assume that  $\lambda_1(\Lambda) \le d$ . By Theorem 1,  $\lambda_n(\Lambda^*) \ge 1/d$ , so there are no n such vectors.  $\Box$ 

Using a different transference theorem [2], one can also prove  $\mathsf{GapCVP}_n \in \mathbf{coNP}$ . Let us mention that both these results have since been improved, and it is now known that  $\mathsf{GapSVP}_{\sqrt{n}}$  and  $\mathsf{GapCVP}_{\sqrt{n}}$  are in  $\mathbf{coNP}$  [1]. Interestingly, the proof of these containments, while not directly based on transference theorems, uses techniques similar to those applied in the proof of Theorem 1.

## **1** The Covering Radius

DEFINITION 2 For a full-rank lattice  $\Lambda$ , define the covering radius of  $\Lambda$  as

$$\mu(\Lambda) = \max_{x \in \mathbb{R}^n} \operatorname{dist}(x, \Lambda)$$

In other words, the covering radius of a lattice is the minimal r such that any point in space is within distance at most r from the lattice.

EXAMPLE 1  $\mu(\mathbb{Z}^n) = \frac{\sqrt{n}}{2}$ , and this is realized by the point  $(\frac{1}{2}, \dots, \frac{1}{2})$ .

Claim 3  $\mu(\Lambda) \geq \frac{1}{2}\lambda_n(\Lambda)$ 

PROOF: By the definition of  $\lambda_n$ , all lattice points inside the open ball  $\mathcal{B}(0, \lambda_n)$  are contained in some (n-1)-dimensional hyperplane. Now take a point x of distance  $\frac{\lambda_n}{2}$  from the origin perpendicular to this hyperplane. Then, as illustrated in Fig. 1, x must be at distance at least  $\frac{\lambda_n}{2}$  from any lattice point inside the ball, as well as from any lattice point outside the ball. We thus obtain  $\mu \geq \frac{\lambda_n}{2}$ , as required.



Figure 1:  $\mu(\Lambda) \ge \frac{1}{2}\lambda_n(\Lambda)$ 

Hence, to prove Theorem 1 it suffices to show  $\lambda_1(\Lambda) \cdot \mu(\Lambda^*) \leq \frac{n}{2}$ . In this lecture we prove something slightly weaker:

Theorem 4  $\lambda_1(\Lambda) \cdot \mu(\Lambda^*) \leq n$ .

## 2 Proof of Theorem 4

First, let us recall some of the things we saw in the previous lecture. For any s > 0 we define  $\rho_s(x) = e^{-\pi ||x/s||^2}$  and for the special case s = 1 we denote  $\rho \equiv \rho_1$ . As we saw in the previous class, the Fourier transform of  $\rho_s$  is given by  $\hat{\rho_s}(x) = s^n \rho_{1/s}(x)$ . Moreover, by a property of the Fourier transform, the Fourier transform of the function mapping x to  $\rho_s(x + u)$  is  $s^n \rho_{1/s}(x) \cdot e^{2\pi i \langle u, x \rangle}$ . Hence, from the Poisson summation formula we get

$$\rho_s(\Lambda) = \det(\Lambda^*) \cdot s^n \cdot \rho_{1/s}(\Lambda^*) \tag{1}$$

$$\rho_s(\Lambda + u) = \det(\Lambda^*) \cdot s^n \cdot \sum_{y \in \Lambda^*} \rho_{1/s}(y) \cdot e^{2\pi i \langle y, u \rangle}.$$
(2)

We next prove several useful lemmas. Our first lemma shows that  $\rho_s$  of a shifted lattice is upper bounded by  $\rho_s$  of the lattice itself.

LEMMA 5 For any s > 0 and any  $u \in \mathbb{R}^n$  it holds that

$$\rho_s(\Lambda + u) \le \rho_s(\Lambda).$$

As an example, consider the one-dimensional lattice  $\Lambda=k\mathbb{Z}$  for some k>0 and define

$$f_k(u) = \sum_{x \in k\mathbb{Z}} e^{-\pi(x+u)^2}$$

Using the lemma with s = 1 we obtain that  $f_k$  is maximized when u = 0. See Figure 2 for some illustrations.



Figure 2:  $f_k(u)$  for k = 0.5 (top left), 0.75 (top right), 1.5 (bottom left), and 3 (bottom right)

PROOF: Using Eq. (2) and Eq. (1),

$$\rho_s(\Lambda + u) = \det(\Lambda^*) \cdot s^n \cdot \sum_{y \in \Lambda^*} \rho_{1/s}(y) \cdot e^{2\pi i \langle y, u \rangle}$$
$$\leq \det(\Lambda^*) \cdot s^n \cdot \sum_{y \in \Lambda^*} \rho_{1/s}(y)$$
$$= \det(\Lambda^*) \cdot s^n \cdot \rho_{1/s}(\Lambda^*)$$
$$= \rho_s(\Lambda)$$

where the inequality follows from the triangle inequality together with the fact that  $\rho_{1/s}$  is a positive function.

Our second lemma upper bounds  $\rho_s$  (for  $s \ge 1$ ) by  $\rho_1$  times a multiplicative factor.

LEMMA 6 For any  $s \ge 1$  and any  $u \in \mathbb{R}^n$  it holds that

$$\rho_s(\Lambda + u) \le s^n \rho(\Lambda)$$

Before we present the proof, let us see two examples. Consider the lemma for the case u = 0 and take  $\Lambda$  to be a very sparse lattice, say,  $M \cdot \mathbb{Z}^n$  for some large M. Then it can be seen that  $\rho(\Lambda) \approx 1$  and also

 $\rho_s(\Lambda) \approx 1$ , since both sums are dominated by  $0 \in \Lambda$ . In this case the inequality holds, but is far from being tight. Next, let us take  $\Lambda$  to be a very dense lattice, say  $\varepsilon \cdot \mathbb{Z}^n$  for some small  $\varepsilon > 0$ . Then

$$\rho(\Lambda) \approx \frac{1}{\varepsilon^n} \int_{\mathbb{R}^n} \rho(x) dx = \frac{1}{\varepsilon^n}$$

while

$$\rho_s(\Lambda) \approx \frac{1}{\varepsilon^n} \int_{\mathbb{R}^n} \rho_s(x) dx = \frac{s^n}{\varepsilon^n}.$$

Hence, in this case the lemma is close to being tight.

PROOF: By Lemma 5 we know that  $\rho_s(\Lambda + u) \leq \rho_s(\Lambda)$ , so it is enough to prove that  $\rho_s(\Lambda) \leq s^n \rho(\Lambda)$ . Using Eq. (1) we can write

$$\rho_s(\Lambda) = \det(\Lambda^*) \cdot s^n \cdot \rho_{1/s}(\Lambda^*) = \det(\Lambda^*) \cdot s^n \cdot \sum_{y \in \Lambda^*} \rho_{1/s}(y).$$

It is easy to see that for any  $s \ge 1$  and any y it holds that  $\rho_{1/s}(y) \le \rho(y)$  and so we get

$$\rho_s(\Lambda) \le \det(\Lambda^*) \cdot s^n \cdot \sum_{y \in \Lambda^*} \rho(y) = s^n \rho(\Lambda)$$

where we have used (1) again.  $\Box$ 

Our third lemma states that for any lattice  $\Lambda$ , almost all the contribution to  $\rho(\Lambda)$  comes from a ball of radius  $\sqrt{n}$  around the origin.

LEMMA 7 For any  $u \in \mathbb{R}^n$  it holds that

$$\rho((\Lambda + u) \setminus \mathcal{B}(0, \sqrt{n})) \le 2^{-n} \rho(\Lambda)$$

As before, let us consider two examples. First, consider the case that u = 0 and  $\Lambda = M\mathbb{Z}^n$  for some very large M. In this case, the left hand side is essentially 0 while  $\rho(\Lambda)$  is essentially 1 so the lemma holds. A more interesting example is when  $\Lambda$  is a dense lattice, say,  $\varepsilon \mathbb{Z}^n$  for some small  $\varepsilon > 0$ . Then,

$$\rho(\Lambda) \approx \varepsilon^{-n} \int_{\mathbb{R}^n} e^{-\pi ||x||^2} dx = \varepsilon^{-n}$$

while

$$\rho(\Lambda \setminus \mathcal{B}(0,\sqrt{n})) \approx \varepsilon^{-n} \int_{\mathbb{R}^n \setminus \mathcal{B}(0,\sqrt{n})} e^{-\pi \|x\|^2} dx.$$

In this case, the lemma tells us that the latter integral is at most  $2^{-n}$ . Let us verify this by computing the integral. Instead of computing it directly (which is not too difficult), we compute it by using a nice trick, which will later be used in the proof of Lemma 7. The idea is to consider the integral  $\int_{\mathbb{R}^n} e^{-\pi ||x/2||^2} dx$ . On one hand, by a change of variable, we see that

$$\int_{\mathbb{R}^n} e^{-\pi \|x/2\|^2} dx = 2^n.$$

On the other hand,

$$\begin{split} \int_{\mathbb{R}^n} e^{-\pi \|x/2\|^2} dx &\geq \int_{\mathbb{R}^n \setminus \mathcal{B}(0,\sqrt{n})} e^{-\pi \|x/2\|^2} dx \\ &= \int_{\mathbb{R}^n \setminus \mathcal{B}(0,\sqrt{n})} e^{\frac{3}{4}\pi \|x\|^2} \cdot e^{-\pi \|x\|^2} dx \\ &\geq e^{\frac{3}{4}\pi n} \cdot \int_{\mathbb{R}^n \setminus \mathcal{B}(0,\sqrt{n})} e^{-\pi \|x\|^2} dx. \end{split}$$

We obtain the required bound by combining the two inequalities and using  $e^{\frac{3}{4}\pi} > 4$ . PROOF: The proof idea is similar to that used in bounding the integral above. Namely, we notice that lattice points that are far from the origin contribute to  $\rho_2(\Lambda)$  much more than they contribute to  $\rho_1(\Lambda)$ . But by Lemma 6,  $\rho_2(\Lambda)$  can only be larger than  $\rho_1(\Lambda)$  by  $2^n$  and so we obtain a bound on the number of such

$$\rho_2(\Lambda + u) \le 2^n \rho(\Lambda).$$

points. More specifically, we consider the expression  $\rho_2(\Lambda + u)$ . On one hand, using Lemma 6, we see that

On the other hand,

$$\rho_{2}(\Lambda+u) \geq \rho_{2}\left((\Lambda+u) \setminus \mathcal{B}(0,\sqrt{n})\right) = \sum_{\substack{y \in \Lambda+u \text{ s.t. } \|y\| \geq \sqrt{n}}} e^{-\pi \|y\|^{2}}$$
$$= \sum_{\substack{y \in \Lambda+u \text{ s.t. } \|y\| \geq \sqrt{n}}} e^{\frac{3}{4}\pi \|y\|^{2}} \cdot e^{-\pi \|y\|^{2}}$$
$$\geq e^{\frac{3}{4}\pi n} \cdot \sum_{\substack{y \in \Lambda+u \text{ s.t. } \|y\| \geq \sqrt{n}}} e^{-\pi \|y\|^{2}}$$
$$= e^{\frac{3}{4}\pi n} \cdot \rho\left((\Lambda+u) \setminus \mathcal{B}(0,\sqrt{n})\right).$$

We complete the proof by noting that  $e^{\frac{3}{4}\pi} > 4$ .  $\Box$ 

One useful corollary of Lemma 7 is the following.

COROLLARY 8 Let  $\Lambda$  be a lattice satisfying  $\lambda_1(\Lambda) > \sqrt{n}$ . Then,

$$\rho(\Lambda \setminus \{0\}) \le 2^{-n} / (1 - 2^{-n}) \le 2 \cdot 2^{-n}.$$

**PROOF:** By applying Lemma 7 with u = 0 we obtain

$$\rho(\Lambda \setminus \mathcal{B}(0,\sqrt{n})) \le 2^{-n}\rho(\Lambda).$$

By our assumption,  $\Lambda \setminus \mathcal{B}(0, \sqrt{n}) = \Lambda \setminus \{0\}$  so we obtain

$$\rho(\Lambda \setminus \{0\}) \le 2^{-n} \rho(\Lambda) = 2^{-n} (1 + \rho(\Lambda \setminus \{0\})).$$

The corollary follows by rearranging terms.  $\Box$ 

Our last lemma says that if  $\lambda_1(\Lambda) > \sqrt{n}$ , then  $\rho(\Lambda^* + u)$  is nearly constant as a function of u. Intuitively, this happens because  $\Lambda^*$  is dense and so  $\rho(\Lambda^* + u)$  is not affected much by the shift u. A similar behavior can be seen in Figure 2 where  $f_{0.5}$  is essentially constant.

LEMMA 9 Let  $\Lambda$  be a lattice satisfying  $\lambda_1(\Lambda) > \sqrt{n}$ . Then, for any  $u \in \mathbb{R}^n$ ,

$$\rho(\Lambda^* + u) \in (1 \pm 2^{-\Omega(n)}) \det(\Lambda).$$

PROOF: Using the Poisson summation formula (Eq. (2)) we can write

$$\rho(\Lambda^* + u) = \det(\Lambda) \cdot \sum_{y \in \Lambda} \rho(y) \cdot e^{2\pi i \langle y, u \rangle}.$$

In the sum here, the point y = 0 contributes 1, and the contribution of all other points is at most  $\rho(\Lambda \setminus \{0\})$  in absolute value. So we obtain that

$$\rho(\Lambda^* + u) \in (1 \pm \rho(\Lambda \setminus \{0\})) \det(\Lambda).$$

But by Corollary 8,  $\rho(\Lambda \setminus \{0\}) \leq 2^{-\Omega(n)}$  so we are done.  $\Box$ 

We finally present the proof of Theorem 4.

PROOF: (of Theorem 4) Assume by contradiction that there exists a lattice  $\Lambda$  for which  $\lambda_1(\Lambda) \cdot \mu(\Lambda^*) > n$ . By scaling  $\Lambda$ , we can assume without loss of generality that both  $\lambda_1(\Lambda) > \sqrt{n}$  and  $\mu(\Lambda^*) > \sqrt{n}$ .

On one hand, Lemma 9, together with the bound on  $\lambda_1(\Lambda)$ , implies that  $\rho(\Lambda^* + u)$  is essentially constant as a function of u. On the other hand,  $\mu(\Lambda^*) > \sqrt{n}$  implies that there exists a point  $v \in \mathbb{R}^n$  for which  $\operatorname{dist}(v, \Lambda^*) > \sqrt{n}$ . This is the same as saying that all points in  $\Lambda^* - v$  are at distance more than  $\sqrt{n}$  from the origin. Using Lemma 7,

$$\rho(\Lambda^* - v) = \rho((\Lambda^* - v) \setminus \mathcal{B}(0, \sqrt{n})) < 2^{-n} \rho(\Lambda^*).$$

But this contradicts the fact that  $\rho(\Lambda^* + u)$  is almost constant as a function of u.  $\Box$ 

## References

- [1] D. Aharonov and O. Regev. Lattice problems in NP intersect coNP. In *Proc. 45th Annual IEEE Symp.* on Foundations of Computer Science (FOCS), pages 362–371, 2004.
- [2] W. Banaszczyk. New bounds in some transference theorems in the geometry of numbers. *Mathematis-che Annalen*, 296(4):625–635, 1993.
- [3] J. Cassels. An Introduction to the Geometry of Numbers. Springer, Berlin, Gttingen Heidelberg, 1959.
- [4] J. C. Lagarias, H. W. Lenstra, Jr., and C.-P. Schnorr. Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice. *Combinatorica*, 10(4):333–348, 1990.
- [5] K. Mahler. Ein Übertragungsprinzip für konvexe Körper. Časopis Pěst. Mat. Fys., 68:93–102, 1939.