Tel Aviv University, Fall 2004 Lecture 11 Lecturer: Oded Regev
Lattices in Computer Science  Transference Theorems Scribe: Elad Verbin

In the last two lectures we have seen the concept of a dual lattice and Fourier analysis on lattices. In
this lecture we will prove an interesting theorem about the connection between a lattice and its dual. In the
process, we will develop tools that will prove valuable in the next lecture.

In 1993, Banaszczyk proved the following theorem:

THEOREM 1 (BANASzCZYK '93 [2]) For any ranks lattice A it holds that
1< AA) -\ (AY) < n.

The lower bound\; (A) - A\, (A*) > 1 follows from the definition of a dual lattice and was already proven
in a previous lecture. Hence, in this lecture we concentrate on the upper bound.

REMARK 1

¢ Recall that from Minkowski’s bound we can obtain thatA) - A1 (A*) < n. Theoreml is a consid-
erable strengthening of this bound.

e Considerably weaker bounds were known prior to the work of Banaszczyk. This includes an upper
bound of(n!)? given by Mahler in 19395], an upper bound of! given by Cassels in 1953], and
an upper bound af? given by Lagarias, Lenstra and Schnorr in 180 [

e The upper bound given in Theoréhis tight up to a constant. This follows immediately from the fact
that there exist self-dual lattices (i.e., lattices that are equal to their own dual) that satiafy =
©(y/n). Indeed, for such a lattice

AL(A) - A (A") > A1 (A) - M (AF) = Q(n).
The fact that such lattices exist is not trivial and was shown by Conway and Thompson.

¢ In[2], Banaszczyk proves some other transference theorems, such as thé Bouad\ )-\,, ;11 (A*) <
n that holds for anyl < i < n. He also notes that by following the same proofs, one can improve the
upper bound to roughly/(2m).

One application of Theoretiis the following.

COROLLARY 1 GapSVP,, € coNP

PrRoOF. Recall that the input t&apSVP,, consists of a lattice\ and a number. It is a YES instance

if A1(A) < d and aNo instance ifA;(A) > nd. In order to show containment icoNP, we need to
show a verifier such that when (A) > nd there exists a witness that makes the verifier accept, and when
A1 (A) < d no witness makes the verifier accept.

Our verifier expects as a witness a senofectors. It checks that the given vectors are contained jn
that they are linearly independent, and that they are all of length lesd fiwarf all three conditions hold
then it accepts, otherwise it rejects. It is easy to see that this can be done in polynomial time.

It remains to prove that such a withess exists in the casenafiastance, and does not exist in the case
of ayEsinstance. So first consider the cas¢A) > nd. By Theorenil, \,,(A*) < 1/d, so there are indeed
n such vectors. Now assume that A) < d. By Theorenil, \,,(A*) > 1/d, so there are na such vectors.

O

Using a different transference theore2j, [one can also provéapCVP,, € coNP. Let us mention that
both these results have since been improved, and it is now knowGihavP ., andGapCVP 5 arein
coNP[1]. Interestingly, the proof of these containments, while not directly based on transference theorems,
uses techniques similar to those applied in the proof of Thedtrem



1 The Covering Radius

DEFINITION 2 For a full-rank lattice A, define the covering radius df as

w(A) = max dist(x, A).
TER™

In other words, the covering radius of a lattice is the minimalich that any point in space is within
distance at most from the lattice.

EXAMPLE 1 p(Z") = ¥, and this is realized by the poit, ..., 1).
CLAIM 3 p(A) > A, (A)

PrRoOF. By the definition of),, all lattice points inside the open bah(0, A,,) are contained in some
(n — 1)-dimensional hyperplane. Now take a painof distancelz o+ from the origin perpendicular to this
hyperplane. Then, as illustrated in Fitj.x must be at distance at Ieagt from any lattice point inside the
ball, as well as from any lattice point outside the ball. We thus ohtain2z, as required.

Figure 1:u(A) > $A,(A)

O

Hence, to prove Theorefhit suffices to showA;(A) - p(A*) < . In this lecture we prove something
slightly weaker:

THEOREM4 A\ (A) - u(A*) <n

2 Proof of Theorem4

First, let us recall some of the things we saw in the previous lecture. Fos any) we definep,(z) =
e~mll=/slI* and for the special case= 1 we denotey = p;. As we saw in the previous class, the Fourier
transform ofp; is given by ps(x) = s"p;/s(z). Moreover, by a property of the Fourier transform, the
Fourier transform of the function mappingto ps(x + u) is s py /5() - e?m{w7) Hence, from the Poisson
summation formula we get

ps(A) = det(A*) 8" p1ys(A7) (1)
ps(A+u) =det(A*) 5" Y pryg(y) - 2700, (2)
yEAN*

We next prove several useful lemmas. Our first lemma showgjladta shifted lattice is upper bounded
by p; of the lattice itself.



LEMMA 5 Foranys > 0 and anyu € R” it holds that
ps(A+u) < ps(A).

As an example, consider the one-dimensional lathice £Z for somek > 0 and define

§ : e ﬂ'x+u .

rEKZ

Using the lemma with = 1 we obtain thajf;, is maximized whem = 0. See Figur for some illustrations.
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Figure 2: f(u) for £ = 0.5 (top left),0.75 (top right), 1.5 (bottom left), and3 (bottom right)

PrROOF. Using Eqg. @) and Eq. 1),

ps(A +u) = det(A*) Z p1/s(y e2mily-u)
yEN*
< det(A") Z p1/s(y
yeEA*
— det(A") - 5"+ py/o(A")
= ps(A)

where the inequality follows from the triangle inequality together with the faciithais a positive function.
O

Our second lemma upper boungs(for s > 1) by p; times a multiplicative factor.

LEMMA 6 Foranys > 1 and anyu € R" it holds that
ps(A+u) < s"p(A)

Before we present the proof, let us see two examples. Consider the lemma for the-ed@send take
A to be a very sparse lattice, say, - Z"™ for some largel/. Then it can be seen thatA) ~ 1 and also

3



ps(A) = 1, since both sums are dominated(by A. In this case the inequality holds, but is far from being
tight. Next, let us take\ to be a very dense lattice, say Z" for some smalt > 0. Then

e Jpn en
while
1 s™
sA ~ — s dr = —
ps(A) En/np(x)x o

Hence, in this case the lemma is close to being tight.
PROOF By Lemma5 we know thatps(A + u) < ps(A), so it is enough to prove that(A) < s"p(A).
Using Eq. [) we can write

ps(A) = det(A) - 5" - py/o(A) = det(A*) - 5™ - > piysly)-
yEN*

Itis easy to see that for any> 1 and anyy it holds thatp, ;;(y) < p(y) and so we get

ps(A) < det(A*)-s"- Y p(y) = s"p(A)
yEeEA*

where we have used)again.O

Our third lemma states that for any lattide almost all the contribution tp(A) comes from a ball of
radius,/n around the origin.

LEMMA 7 For anyu € R" it holds that
p((A+u) \ B(0,Vn)) <27"p(A).

As before, let us consider two examples. First, consider the case thal andA = MZ" for some
very largeM. In this case, the left hand side is essentially O whil&) is essentiallyl so the lemma holds.
A more interesting example is whehis a dense lattice, sayZ" for some smalk > 0. Then,

p(A) = 5‘”/ L

while
12

p(A\ B(0,/n)) ~ 8_"/ eI g,

R™\B(0,v/n)
In this case, the lemma tells us that the latter integral is at 2104t Let us verify this by computing the
integral. Instead of computing it directly (which is not too difficult), we compute it by using a nice trick,
which will later be used in the proof of Lemr¥a The idea is to consider the integrf, e~"l1*/2I*dz. On

one hand, by a change of variable, we see that

/ o—llz/20% g, _ on



On the other hand,

/ o—lle/2I? g > / el /21 g
Re R\ B(0,/n)

3 2 _ 2
einlal® | o—rlall? g,

/R"\B(Oax/ﬁ)

3 _ 2
471'71 . e TFHLUH dx

v

e

/R"\B(Om/ﬁ)

We obtain the required bound by combining the two inequalities and u%th> 4.

PrROOF. The proof idea is similar to that used in bounding the integral above. Namely, we notice that lattice
points that are far from the origin contribute gg(A) much more than they contribute tg(A). But by
Lemmal6, p2(A) can only be larger thap; (A) by 2™ and so we obtain a bound on the number of such
points. More specifically, we consider the expressigf\ + «). On one hand, using Lemriiawe see that

p2(A +u) < 2"p(A).
On the other hand,

pa(A+u) > po((A+u) \ B(O,Vn)) = > e~ mlv/2I?
yeAtustlly[=vn

_ 3 rllyl? . —mllyl?

yeA+u st lyl>vn

o 3 o—ll?

yEAu s.t.|y||>vn

p((A+u) \ B(0,v/n)).
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We complete the proof by noting that™ > 4. O

One useful corollary of Lemm&.is the following.

COROLLARY 8 LetA be a lattice satisfying;(A) > /n. Then,
p(A\{0}) <277/(1—27") <2.27",
PROOF. By applying Lemm&/ with » = 0 we obtain
p(A\ B(0,V/n)) < 27" p(A).
By our assumption) \ B(0, v/n) = A\ {0} so we obtain
(AN {0}) < 277p(A) = 27 (1 + p(A\ {0})).

The corollary follows by rearranging terms.

Our last lemma says thatif (A) > /n, thenp(A*+u) is nearly constant as a functionf Intuitively,
this happens becaugg is dense and sp(A* + ) is not affected much by the shiit A similar behavior
can be seen in Figui2wherefj 5 is essentially constant.

LEMMA 9 LetA be a lattice satisfying(A) > y/n. Then, for any € R,

p(A* +u) € (1£274M) det(A).



PrROOF. Using the Poisson summation formula (EB))(we can write

p(A" +u) = det(A) - D ply) - 270,
yeA

In the sum here, the poigt= 0 contributesl, and the contribution of all other points is at mpsi \ {0})
in absolute value. So we obtain that

p(A* +u) € (1£p(A\ {0})) det(A).

But by Corollary8, p(A \ {0}) < 27(") so we are done:]

We finally present the proof of Theoredn
ProOF (of Theorend) Assume by contradiction that there exists a latticir which A1 (A) - u(A*) > n.
By scalingA, we can assume without loss of generality that batf\) > /n andu(A*) > /n.

On one hand, Lemmn@, together with the bound oky (A), implies thatp(A* + ) is essentially constant
as a function ofu. On the other handy(A*) > /n implies that there exists a poiate R™ for which
dist(v, A*) > /n. This is the same as saying that all points\ih— v are at distance more thayin from
the origin. Using Lemm3,

p(A" —v) = p((A" = v) \ B(0,v/n)) < 27"p(AY).

But this contradicts the fact that A* + u) is almost constant as a functionwfO
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