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In this lecture we present the fastest known algorithm for solving the shortest vector problem, due to
Ajtai, Kumar, and Sivakumar [1]. This is a randomized algorithm that solves the shortest vector problem
exactly. Its running time i8°("™) times some polynomial in the length of the input wheris the dimension
of the lattice. The previous best algorithm runs in tigfgm1een) — nO) (times some polynomial in
the input length) and is due to Kannan [3]. In fact, his algorithm is still the fastest kdetarministic
algorithm.

1 The algorithm

We start by noting that it is enough to sols¥P for instances where the length of the shortest vector is in
some known range.

LEMmMA 1
Given an algorithm! that finds a shortest nonzero vector in lattices for wRich A1 < 3, we can find a
shortest nonzero vector in any lattice in time that is greater by a factor of ato$t

PROOF. Given any input basi$3 we can apply the LLL algorithm and obtain an estimatesuch that
~ k
M (L(B)) < A1 < 2"A1(L(B)). We now apply algorithnd on By, By , ..., By, wWhereB,, := 422 B,

~ >\1
Let vy, ..., v2, be the vectors returned and tgt denote the vect%vk. We output the shortest vector
among the vectors)), . .., v5,, that are contained id(B) \ {0}.
To prove the correctness of this algorithm, notice that there existEa{0,...,2n} for which2 <

M (L(By)) < 3. By our assumption oi, for thatk, vy, is the shortest vector iB;. Thereforew; is a
shortest nonzero vector iB and hence the algorithm outputs a shortest nonzero vecor in

The next lemma lies at the core of the algorithm. It says that in any set of points inside a ball of radius
R, one can find a subset of at m&&t‘centers’ such that any point has a center within distance at Rkt

LEMMA 2 (SEEVE)

Let R > 0 be some real. For any set of points . .., zy in B(0, R) we can find a subset C [N]| of size
at most” and a mapping : [N] — J such that for any € [N], |lz; — x| < £ The running time of
this procedure is polynomial in the input size.

PrRoOF. Consider the following procedure. We initializeto be the empty set and then, for eack-
1,..., N, do the following. If there exists g € J such that|z; — z;|| < & then definey(i) = j and
continue to the next Otherwise, add to J and define)(i) = 1.

We now show thatJ| < 5". First, notice that the distance between any two point$ is greater than
5. Hence, if we take balls of radiu% around each point il then these balls are disjoint. On the other
hand, their union is contained B(0, 2 R). Therefore, the number of balls (and hence algpis at most

R

vol(B(0,
vol(B(0,

We now describe th8VP algorithm.
Algorithm:

INPUT: A lattice basisB = (b1, ..., by,), with \{(L(B)) € [2,3)
OUTPUT: a shortest nonzero vectorh



1. Ry < n max; ||b;||
ChooseN = 28" log Ry pointszy, . ..,z uniformly in B(0, 2)
Computey; = z; mod P(B)fori=1,...,N
Let Z = {(z1,v1),.--, (zn,yN)}
R — Ry

2. while R > 6 do
{ Invariant 1: For all(z;,v;) € Z,y; — x; € L(B) }
{ Invariant 2: For al(z;,v;) € Z, ||lyil| < R }
Apply the sieving procedure to thevectors inZ
The resultis a sef of at most5” ‘centers’ and a mapping s.t. Vi.||y; — yp )|l < %
Remove fromZ all pairs(z;, y;) corresponding té € .J
Replace each remaining péit;, y;) in Z with (z;, yi — (Yn@) — Tn(s)))
R~ g +2

3. For any two pair$z;, y;), (x,y;) in Z consider the differenc@y; — ;) — (y; — x;)
and output the shortest nonzero vector among these differences

We now analyze this algorithm. First, notice that the number of iterations of Step 2 is at most, say,
2log Ry. Second, the running time of the sieving procedure is polynomial in the siZe ldénce, the total
running time is2°(™polylog Ry. Since the input size is at ledsig Ry, this running time i2°() times
some polynomial in the input size, as claimed.

Next, we show that the two invariants are maintained. The first invariant is satisfied when we begin Step
2 by the choice ofy; in Step 1, and is maintained in Step 2 since we only subtract fromectors of the
formy; — z; which are themselves lattice vectors. Next, let us consider the second invariant. It holds in the
first iteration becausg; € P(B) and hencd|y;|| < > ||b;|| < Ro. Moreover, it is maintained in Step 2
because

R
19i = ey = 2@l < 19i = Y | + llzne | < 5 +2-

The total number of pairs removed frafhduring Step 2 is at mo$t® - 2 log Ry. Hence, when we get
to Step 3,7 contains at leag®” — 2 - 57) log Ry pairs(z;, y;), which, by the second invariant, satisfy

lyi — zill < [lall + [Jaif] <6+2=8.

Moreover, by the first invariany; — x; € £(B) and hence, when we begin Step 3 we have a list of many
short lattice vectors. At first, it might seem that this already shows that we have a very good approximation
to theSVP (recall that\; € [2,3)). However, notice that so far we have not excluded the possibility that all
these vectors are the zero vector!

We deal with this crucial issue next. For this we use the randomization in the algorithm. We argue that
due to the randomization, the algorithm must produce some nonzero vectors. Intuitively, instead of directly
analyzing the loop in Step 2, we regard it as a black box, and argue that since it does not ‘know’ exactly the
randomization performed in Step 1, it must sometimes output nonzero vectors. In fact, the analysis shows
that in Step 3 we obtain a shortest nonzero vector and not just an approximation of it.

Let v be a shortest nonzero vectordi{B), so|jv| € [2,3). DenoteC; = B(0,2) N B(v,2), Cy =
B(0,2) N B(—wv,2), as illustrated in the following figure.
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PROOF. The equality is obvious. To prove the inequality, notice tiatontains a cylinder of heigh}t and
radius,/15/16 centered around/2. So,
vol(Cy) > vol(B,,_1(0,/15/16))/2

whereB,,_; indicates am — 1-dimensional ball. On the other harld(0, 2) is contained in a cylinder of
height4 and radiu2, so
vol(B(0,2)) < 4vol(B,,—1(0,2)).

Hence,

vol(B(0,2)) =  8vol(B,-1(0,2) 8
for large enough. O
Define a bijectionr on B(0, 2) that maps’; to Cs, C to Cy, andB(0, 2) \ (Cy U Cs) to itself:

Oy B0 VITID) 1 (15) 5
64 B

r+v x€Cy
T(z) = z—v zeC
x otherwise

Sincev € L(B), we have that for any € B(0,2), x mod P(B) = 7(x) mod P(B). Moreover, ifx is
chosen uniformly fronB(0, 2) thent(x) is also uniform orB(0, 2).

Consider now the following modification to Step 1 of the algorithm. After choosing eackie toss a
fair coin and if it comes up heads, we replagevith 7(x;). We refer to this operation as ‘tossimg. Since
this modified algorithm is only used for the analysis, we do not need to worry about its running time (so
there is no problem with the fact that computingnvolveswv, a shortest nonzero vector). Sincger;) and
x; are identically distributed, andmod P(B) = 7(z) mod P(B), the modified algorithm behaves exactly
as the original algorithm. So, in the sequel, we analyze it instead.

Our next crucial observation is that we can postpone the tossingtofthe first time in which it has
an effect on the algorithm. More precisely, we modify the algorithm once again: we no longer toss any
in Step 1; instead, in Step 2, right after we call the sieving procedure, we tassfatli € J. Moreover,
in the beginning of Step 3, we toss all remaining This does not affect the algorithm since the operation
y; = z; mod P(B) in Step 1 is independent of the tossing:ef and elsewherey; is not used before it is
tossed.

Let us call a point; ‘green’ if z; € Cy U Cs.

CLAIM 4 With high probability, there are at leagf” ! log Ry green points in the initial set, ..., zx.

PROOF. By Claim 3, eachr; is green with probability at leagt:= 272". Hence, the expected number of
green points ip/N and the variance of this number is at mpaf (since the variance of a Bernoulli trial is
p(1 — p) < p). By Chebyshev’s inequality, the probability that there are less piéf2 points is at most
4/pN which is exponentially smalld

Consider now the situation at the beginning of Step 3 (before tossing;th&y the above claim, the
number of green points i is at leas{26" ! —2-5") log Ry > 2°". For each such poing; — ; is a lattice
point insideB (0, 8). We now show that this implies that there are many repetitions amongc;.
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CLAIM 5 |B(0,8) N L(B)| < 24"

PROOF. The distance between any two lattice points is at leas€(B)) > 2. Hence if we put a ball of
radius1 around each point iBB(0,8) N £(B), the balls are disjoint. On the other hand, these balls are
contained inB(0,9). Hence,

_ vol(B(0,9))

— = 9" <2,
S WIB0,1)

[B(0,8) N L(B)|

Hence, there exists a lattice vectorand at leasp>" /24" = 2" indicesi for whichy; — z; = w and
x; is green. After we toss all vectors in Step 3, for each sugh — z; remainsw with probability 1/2 or
otherwise becomes one of+ v, w — v. Therefore, with very high probability, in Step 3 we find a pair of
indicesi, j for which (y; — x;) — (y; — z;) = v, as required.

2 Final notes

In an earlier paper, Kumar and Sivakumar [4] presented a randomized algorithapgnaximateshe SVP
to within n¢ for some constant. Its running time is similar to the above algorithm, namef){™) times
some polynomial in the input length. Although this result is a clearly weaker than the one above, their proof
is intriguing as it builds heavily on Ajtai’'s worst-case to average-case reduction. It also has the advantage of
being somewhat simpler.

In a more recent paper, Ajtai, Kumar, and Sivakumar presented an algorithm for solviGy Pheith
a running time similar to the abo\#/P algorithm [2]. Their algorithm is randomized and is based on the
SVP algorithm.

Finally, we mention two interesting open questions:

e Can the dependence of the running timerome improved?

e Isit possible to derandomize tIS&P algorithm?
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