
Tel Aviv University, Fall 2004
Lattices in Computer Science

Lecture 8
2O(n)-time algorithm for SVP

Lecturer: Oded Regev
Scribe: Michael Khanevsky

In this lecture we present the fastest known algorithm for solving the shortest vector problem, due to
Ajtai, Kumar, and Sivakumar [1]. This is a randomized algorithm that solves the shortest vector problem
exactly. Its running time is2O(n) times some polynomial in the length of the input wheren is the dimension
of the lattice. The previous best algorithm runs in time2O(n log n) = nO(n) (times some polynomial in
the input length) and is due to Kannan [3]. In fact, his algorithm is still the fastest knowndeterministic
algorithm.

1 The algorithm

We start by noting that it is enough to solveSVP for instances where the length of the shortest vector is in
some known range.

LEMMA 1
Given an algorithmA that finds a shortest nonzero vector in lattices for which2 ≤ λ1 < 3, we can find a
shortest nonzero vector in any lattice in time that is greater by a factor of at mostO(n).

PROOF: Given any input basisB we can apply the LLL algorithm and obtain an estimateλ̃1 such that

λ1(L(B)) ≤ λ̃1 ≤ 2nλ1(L(B)). We now apply algorithmA on B0, B1 , . . . , B2n whereBk := (1.5)k

λ̃1
B.

Let v0, . . . , v2n be the vectors returned and letv′k denote the vector λ̃1

(1.5)k vk. We output the shortest vector

among the vectorsv′0, . . . , v
′
2n that are contained inL(B) \ {0}.

To prove the correctness of this algorithm, notice that there exists ak ∈ {0, . . . , 2n} for which 2 ≤
λ1(L(Bk)) < 3. By our assumption onA, for thatk, vk is the shortest vector inBk. Therefore,v′k is a
shortest nonzero vector inB and hence the algorithm outputs a shortest nonzero vector inB. 2

The next lemma lies at the core of the algorithm. It says that in any set of points inside a ball of radius
R, one can find a subset of at most5n ‘centers’ such that any point has a center within distance at mostR/2.

LEMMA 2 (SIEVE)
Let R > 0 be some real. For any set of pointsx1, . . . , xN in B(0, R) we can find a subsetJ ⊆ [N] of size
at most5n and a mappingη : [N] → J such that for anyi ∈ [N], ‖xi − xη(i)‖ ≤ R

2 . The running time of
this procedure is polynomial in the input size.

PROOF: Consider the following procedure. We initializeJ to be the empty set and then, for eachi =
1, . . . , N , do the following. If there exists aj ∈ J such that‖xi − xj‖ ≤ R

2 then defineη(i) = j and
continue to the nexti. Otherwise, addi to J and defineη(i) = i.

We now show that|J | ≤ 5n. First, notice that the distance between any two points inJ is greater than
R
2 . Hence, if we take balls of radiusR4 around each point inJ then these balls are disjoint. On the other
hand, their union is contained inB(0, 5

4R). Therefore, the number of balls (and hence also|J |) is at most

vol(B(0, 5
4R))

vol(B(0, 1
4R))

= 5n.

2

We now describe theSVP algorithm.

Algorithm:

INPUT: A lattice basisB = (b1, . . . , bn), with λ1(L(B)) ∈ [2, 3)
OUTPUT: a shortest nonzero vector inB

1

1. R0 ← n maxi ‖bi‖
ChooseN = 28n log R0 pointsx1, . . . , xN uniformly in B(0, 2)
Computeyi = xi mod P(B) for i = 1, . . . , N
Let Z = {(x1, y1), . . . , (xN , yN)}
R ← R0

2. while R > 6 do
{ Invariant 1: For all(xi, yi) ∈ Z, yi − xi ∈ L(B) }
{ Invariant 2: For all(xi, yi) ∈ Z, ‖yi‖ ≤ R }
Apply the sieving procedure to they vectors inZ
The result is a setJ of at most5n ‘centers’ and a mappingη s.t.∀i.‖yi − yη(i)‖ ≤ R

2
Remove fromZ all pairs(xi, yi) corresponding toi ∈ J
Replace each remaining pair(xi, yi) in Z with (xi, yi − (yη(i) − xη(i)))
R ← R

2 + 2

3. For any two pairs(xi, yi), (xj , yj) in Z consider the difference(yi − xi)− (yj − xj)
and output the shortest nonzero vector among these differences

We now analyze this algorithm. First, notice that the number of iterations of Step 2 is at most, say,
2 log R0. Second, the running time of the sieving procedure is polynomial in the size ofZ. Hence, the total
running time is2O(n)poly log R0. Since the input size is at leastlog R0, this running time is2O(n) times
some polynomial in the input size, as claimed.

Next, we show that the two invariants are maintained. The first invariant is satisfied when we begin Step
2 by the choice ofyi in Step 1, and is maintained in Step 2 since we only subtract fromyi vectors of the
form yj − xj which are themselves lattice vectors. Next, let us consider the second invariant. It holds in the
first iteration becauseyi ∈ P(B) and hence‖yi‖ ≤

∑ ‖bi‖ ≤ R0. Moreover, it is maintained in Step 2
because

‖yi − (yη(i) − xη(i))‖ ≤ ‖yi − yη(i)‖+ ‖xη(i)‖ ≤
R

2
+ 2.

The total number of pairs removed fromZ during Step 2 is at most5n · 2 log R0. Hence, when we get
to Step 3,Z contains at least(28n − 2 · 5n) log R0 pairs(xi, yi), which, by the second invariant, satisfy

‖yi − xi‖ ≤ ‖yi‖+ ‖xi‖ ≤ 6 + 2 = 8.

Moreover, by the first invariant,yi − xi ∈ L(B) and hence, when we begin Step 3 we have a list of many
short lattice vectors. At first, it might seem that this already shows that we have a very good approximation
to theSVP (recall thatλ1 ∈ [2, 3)). However, notice that so far we have not excluded the possibility that all
these vectors are the zero vector!

We deal with this crucial issue next. For this we use the randomization in the algorithm. We argue that
due to the randomization, the algorithm must produce some nonzero vectors. Intuitively, instead of directly
analyzing the loop in Step 2, we regard it as a black box, and argue that since it does not ‘know’ exactly the
randomization performed in Step 1, it must sometimes output nonzero vectors. In fact, the analysis shows
that in Step 3 we obtain a shortest nonzero vector and not just an approximation of it.

Let v be a shortest nonzero vector inL(B), so‖v‖ ∈ [2, 3). DenoteC1 = B(0, 2) ∩ B(v, 2), C2 =
B(0, 2) ∩B(−v, 2), as illustrated in the following figure.

CLAIM 3
vol(C1)

vol(B(0, 2))
=

vol(C2)
vol(B(0, 2))

≥ 2−2n

2

−v v0

C2 C1

PROOF: The equality is obvious. To prove the inequality, notice thatC1 contains a cylinder of height12 and
radius

√
15/16 centered aroundv/2. So,

vol(C1) ≥ vol(Bn−1(0,
√

15/16))/2

whereBn−1 indicates ann − 1-dimensional ball. On the other hand,B(0, 2) is contained in a cylinder of
height4 and radius2, so

vol(B(0, 2)) ≤ 4vol(Bn−1(0, 2)).

Hence,
vol(C1)

vol(B(0, 2))
≥ vol(Bn−1(0,

√
15/16))

8vol(Bn−1(0, 2)
=

1
8

(
15
64

)(n−1)/2

≥ 2−2n

for large enoughn. 2

Define a bijectionτ onB(0, 2) that mapsC1 to C2, C2 to C1, andB(0, 2) \ (C1 ∪ C2) to itself:

τ(x) =

x + v x ∈ C2

x− v x ∈ C1

x otherwise

Sincev ∈ L(B), we have that for anyx ∈ B(0, 2), x mod P(B) = τ(x) mod P(B). Moreover, ifx is
chosen uniformly fromB(0, 2) thenτ(x) is also uniform onB(0, 2).

Consider now the following modification to Step 1 of the algorithm. After choosing eachxi, we toss a
fair coin and if it comes up heads, we replacexi with τ(xi). We refer to this operation as ‘tossingxi’. Since
this modified algorithm is only used for the analysis, we do not need to worry about its running time (so
there is no problem with the fact that computingτ involvesv, a shortest nonzero vector). Sinceτ(xi) and
xi are identically distributed, andx mod P(B) = τ(x) mod P(B), the modified algorithm behaves exactly
as the original algorithm. So, in the sequel, we analyze it instead.

Our next crucial observation is that we can postpone the tossing ofxi to the first time in which it has
an effect on the algorithm. More precisely, we modify the algorithm once again: we no longer toss anyxi

in Step 1; instead, in Step 2, right after we call the sieving procedure, we toss allxi for i ∈ J . Moreover,
in the beginning of Step 3, we toss all remainingxi. This does not affect the algorithm since the operation
yi = xi mod P(B) in Step 1 is independent of the tossing ofxi, and elsewhere,xi is not used before it is
tossed.

Let us call a pointxi ‘green’ if xi ∈ C1 ∪ C2.

CLAIM 4 With high probability, there are at least26n−1 log R0 green points in the initial setx1, . . . , xN .

PROOF: By Claim 3, eachxi is green with probability at leastp := 2−2n. Hence, the expected number of
green points ispN and the variance of this number is at mostpN (since the variance of a Bernoulli trial is
p(1 − p) < p). By Chebyshev’s inequality, the probability that there are less thanpN/2 points is at most
4/pN which is exponentially small.2

Consider now the situation at the beginning of Step 3 (before tossing thexi). By the above claim, the
number of green points inZ is at least(26n−1−2 ·5n) log R0 > 25n. For each such point,yi−xi is a lattice
point insideB(0, 8). We now show that this implies that there are many repetitions amongyi − xi.

3

CLAIM 5 |B(0, 8) ∩ L(B)| < 24n

PROOF: The distance between any two lattice points is at leastλ1(L(B)) ≥ 2. Hence if we put a ball of
radius1 around each point inB(0, 8) ∩ L(B), the balls are disjoint. On the other hand, these balls are
contained inB(0, 9). Hence,

|B(0, 8) ∩ L(B)| ≤ vol(B(0, 9))
vol(B(0, 1))

= 9n < 24n.

2

Hence, there exists a lattice vectorw and at least25n/24n = 2n indicesi for which yi − xi = w and
xi is green. After we toss all vectors in Step 3, for each suchi, yi − xi remainsw with probability1/2 or
otherwise becomes one ofw + v, w − v. Therefore, with very high probability, in Step 3 we find a pair of
indicesi, j for which (yi − xi)− (yj − xj) = v, as required.

2 Final notes

In an earlier paper, Kumar and Sivakumar [4] presented a randomized algorithm thatapproximatestheSVP
to within nc for some constantc. Its running time is similar to the above algorithm, namely,2O(n) times
some polynomial in the input length. Although this result is a clearly weaker than the one above, their proof
is intriguing as it builds heavily on Ajtai’s worst-case to average-case reduction. It also has the advantage of
being somewhat simpler.

In a more recent paper, Ajtai, Kumar, and Sivakumar presented an algorithm for solving theCVP with
a running time similar to the aboveSVP algorithm [2]. Their algorithm is randomized and is based on the
SVP algorithm.

Finally, we mention two interesting open questions:

• Can the dependence of the running time onn be improved?

• Is it possible to derandomize theSVP algorithm?

References

[1] M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector problem. In
Proc. 33rd ACM Symp. on Theory of Computing, pages 601–610, 2001.

[2] M. Ajtai, R. Kumar, and D. Sivakumar. Sampling short lattice vectors and the closest lattice vector
problem. InAnnual IEEE Conference on Computational Complexity, volume 17, 2002.

[3] R. Kannan. Minkowski’s convex body theorem and integer programming.Math. Oper. Res., 12(3):415–
440, 1987.

[4] R. Kumar and D. Sivakumar. On polynomial approximation to the shortest lattice vector length. In
Proc. 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 126–127, 2001.

4

