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The well-known RSA public key cryptosystem is nowadays used in a wide variety of applications rang-
ing from web browsers to smart cards. Since its initial publication in 1977, many researchers have tried to
look for vulnerabilities in the system. Some clever attacks have been found. However, none of the known
attacks is devastating and the RSA system is still considered secure.

In this lecture we present one such attack, originally due to Håstad and then greatly refined by Cop-
persmith. This attack can be mounted when RSA is used with a low public exponent. The attack is based
on an algorithm for finding small solutions to low degree polynomials, which is in turn based on the LLL
algorithm. This root finding algorithm is interesting on its own and is also used in other attacks on the RSA
system.

Let us describe a simple version of the RSA cryptosystem. LetN = p · q be the product of two
large primes of roughly the same size. Letr, s be two integers satisfyingr · s = 1 (mod ϕ(N)), where
ϕ(N) = (p − 1)(q − 1) is the order of the multiplicative groupZ∗N . We callN the RSAmodulus, r the
public exponent, ands theprivate exponent. The pair(N, r) is thepublic key. As its name suggests, it is
public and is used to encrypt messages. The pair(N, s) is called thesecret keyor private key, and is known
only to the recipient of encrypted messages. The secret key enables decryption of ciphertexts. Amessage
is an integerM ∈ Z∗N . To encryptM , one computesC = M r (mod N). To decrypt the ciphertext, the
legitimate receiver computesCs (mod N). Indeed,Cs = M r·s = M (mod N), where the last equality
follows by Euler’s theorem.

1 Low Public Exponent RSA

In many practical applications, the encryption process is performed by some limited device, such as a smart
card. In such cases, raisingM to a high power might be quite costly in terms of battery power, time, etc.
In an attempt to simplify the encryption process, one might be tempted to modify the RSA cryptosystem
by fixing the public exponent to be some small number, sayr = 3. So now the encryption process simply
involves raising a number to the power3, which can be done using two multiplications.

At first it seems that this modification does not harm the security of the system. Indeed, it is not obvious
how to invert the functionM3 mod N without knowing the factorization ofN . However, as we shall see
next, this modification allows for some clever attacks. Let us first recall the Chinese Remainder Theorem.

LEMMA 1 (CHINESE REMAINDER THEOREM)
Given r equalitiesx ≡ ai (mod mi) such thatm1, . . . , mr are pairwise relatively prime, there exists a
uniquex (mod m1 ·m2 · · ·mr) that satisfies these equalities, and thisx can be found efficiently.

To demonstrate the danger in using a low public exponent, consider the following scenario. Alice wishes
to send the same message to Bob, Charlie, and Dave. She encrypts her message with each of their public
keysNB, NC , ND. The ciphertexts are

cB = m3 mod NB, cC = m3 mod NC , andcD = m3 mod ND.

We now show that an eavesdropper that receivescB, cC , andcD can easily recoverm. Without loss of
generality, we can assume thatNB, NC , andND are pairwise relatively prime (otherwise the eavesdropper
finds a non-trivial factor of one of the public keys and can decrypt the message directly). By using the
Chinese Remainder Theorem, the eavesdropper computes a numberc such thatc = m3 mod NBNCND.
Sincem < NB, NC , ND, we havem3 < NBNCND and hencec = m3 where this is an equality over the
integers. The messagem can now be easily recovered by computing the cubic root ofc over the integers.

It seems that one can avoid this problem by never sending the same message to more than one person.
For instance, consider the following solution. Each person, as part of his public key, has some uniqueID.
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Instead of encryptingM , encryptM + 2k · ID, wherek is the length of the messageM in bits andID is
the ID of the recipient. In this way we never send the same message to more than one person.

In the next section we prove that this modification suffers from a similar attack. In fact, we show a much
more general attack: assume the public key is of the form(N, g) whereg is some polynomial inM . To
encrypt a messageM , we sendg(M) mod N whereg is the polynomial of the recipient. In the above
special case, we hadg(M) = (M + 2kID)3.

Before presenting the attack, let us mention that low public exponent RSA is still considered secure
when used carefully. Namely, the current wisdom says that one should use a moderate public exponent,
sayr = 216 + 1 and pad the message with some random bits. Finally, we also mention that much stronger
attacks are known on low private exponents using different techniques.

2 The Attack
THEOREM 2
Let N1, . . . , Nk be pairwise relatively prime integers, and letNmin = mini Ni. Let gi ∈ ZNi [x] be k
polynomials of maximum degreed. Suppose there exists a uniqueM < Nmin such thatgi(M) = Ci

(mod Ni) for all i = 1, . . . , k. Then, ifk ≥ d, one can efficiently findM given(Ni, gi, Ci)k
i=1.

The main tool in the proof is the following theorem, whose proof is given in the next section.

THEOREM 3
Let N be an integer andf ∈ ZN [x] a monic polynomial of degreed (i.e., the coefficient ofxd is 1). Then
we can efficiently find allx ∈ Z such that|x| ≤ B andf(x) = 0 (mod N) for B = N1/d.

REMARK 1 This theorem is quite powerful, and is used in other attacks on the RSA system.

REMARK 2 Notice that the factorization ofN is unknown. Otherwise, there are much better root finding
algorithms.

PROOF: (of Theorem 2) Definehi = gi−Ci for 1 ≤ i ≤ k. Then we are looking forM such thathi(M) = 0
(mod Ni) for i = 1, . . . , k. We can assume without loss of generality, that allhi are monic (otherwise
multiply them by the inverse modNi of their leading coefficients; if this coefficient is not invertible, then
we have a factor ofNi and we’re done). We can also assume without loss of generality that allhi are of
degreed (by multiplying byxj for somej).

Next, we use the Chinese Remainder Theorem to combine the polynomialshi into a polynomialh.
Namely, we define

h(x) =
k∑

i=1

Tihi(x) (mod N1 ·N2 · · ·Nk)

where theTi’s are chosen using the Chinese Remainder Theorem to satisfy that for eachi, Ti (mod Ni) = 1
and for eachi 6= j, Ti (mod Nj) = 0. Then the polynomialh(x) is

1. of degreed,

2. monic, since itsxd coefficient is1 modulo anyNi, and

3. h(M) = 0 (mod N1 ·N2 · · ·Nk).

We can now apply Theorem 3 to findM , since

M < Nmin ≤ (N1 ·N2 · · ·Nk)
1
k ≤ (N1 ·N2 · · ·Nk)

1
d

and this completes the proof.2
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3 Finding Roots of Low Degree Polynomials

In this section we prove Theorem 3. We do this in several steps. First, we prove the theorem forB =
Θ(N2/(d(d+1))) where theΘ hides a constant that depends only ond. Then, we improve it toB =
Θ(N

1
2d−1 ), and mention how it can be improved toB = N1/d. For simplicity, one can think ofd as

being a small constant, say,d = 3.
Our goal is to find solutionsx to f(x) = 0 (mod N) such that|x| ≤ B. Write

f(x) = xd + ad−1x
d−1 + . . . + a1x + a0.

Note that if it so happens that the coefficients of the polynomialf satisfy

∀i = 0, . . . , d. |aiB
i| < N

d + 1
(1)

then|f(x)| ≤ ∑d
i=0 |aiB

i| < N for |x| ≤ B. Hence, any small solution|x| ≤ B to the modular equation
f(x) = 0 (mod N) is also a solution tof(x) = 0 over the integers. Such solutions can be found efficiently
using standard techniques (for example, we can find all real roots since there are at mostd of them and then
throw all the non-integer ones).

However, there is no reason for (1) to hold in general. The main idea is that even if (1) does not hold for
f , it might hold for some integer multiple off reduced moduloN . Intuitively, each multiple off ‘reshuffles’
the coefficients and since there are roughlyN possible multiples to consider, we might expect one of them
to yield a polynomial all of whose coefficients are small.

More formally, the idea is to find a polynomialg that has property (1) and has the same roots asf . Then
we can find all the roots ofg directly and hence also all the small roots off . In order to find such ag,
consider the following set of polynomials:

Z1 =
{

N,Nx, Nx2, . . . , Nxd−1, f(x)
}

.

Notice that any integer combination of these polynomials has the same roots asf moduloN . Hence, it is
enough to find an integer combination of these polynomials that satisfies property (1). This naturally leads
us to consider the lattice

L1 =




N 0 · · · 0 a0

0 BN
... 0 Ba1

0 0
... ...

...
...

...
... Bd−1N Bd−1ad−1

0 · · · · · · 0 Bd




(d+1)×(d+1)

.

Each column corresponds to one polynomial inZ1. Theith row,i = 0, . . . , d, corresponds to the coefficient
of xi multiplied byBi.

We would like to show that we can find a short vector in this lattice. So first, let us calculatedet(L1),

det(L1) = N ·BN · . . . ·Bd−1N ·Bd = Nd ·B1+2+...+d = Nd ·Bd(d+1)/2.

Using LLL, we find an integer combination of the columnsv (i.e., a lattice vector) whose length satisfies

‖v‖ ≤ O(λ1(L1)) ≤ O
(
(det(L1))

1
d+1

)
= O

(
N · Bd/2

N
1

d+1

)
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where theO() hides a constant that depends only ond and the second inequality follows from Minkowski’s

theorem. This is less thanNd+1 if we takeB ≤ c1(d)N
2

d(d+1) for a small enoughc1(d) that depends only on

d. In particular, each ofv’s coordinates is less thanNd+1 . Hence, if we take the corresponding combination
of the polynomials inZ1, we obtain a polynomial

g(x) = bdx
d + bd−1x

d−1 + . . . + b1x + b0

such that∀i = 0, . . . , d, |biB
i| < N

d+1 , andg has the same roots asf . Now we can find the small roots ofg
over the integers using standard methods. This completes the description of the basic idea.

Next, we would like to improve the boundB. The main idea is to notice that we can consider a larger
set of polynomials. Consider the set of polynomials

Z2 =
{

N, Nx, . . . , Nxd−1
} ⋃{

f(x), xf(x), . . . , xd−1f(x)
}

.

For any integer combinationg of these polynomials, the roots ofg contain all the roots off . 1 Consider the
lattice

L2 =




N 0 0 0 a0 0 . . . 0

0 BN
...

...
... Ba0

...
...

... 0
... 0

...
...

... 0
...

...
... Bd−1N Bd−1ad−1

...
... Bd−1a0

...
...

... 0 Bd Bdad−1
...

...
...

...
... ... ... Bd+1 ...

...
...

...
... ... ... ... ... B2d−2ad−1

0 0 . . . . . . 0 0 0 B2d−1




(2d)×(2d)

As before, using LLL we obtain a vectorv whose length satisfies

‖v‖ ≤ O
(
(det(L2))

1
2d

)
= O

(
(Nd ·Bd(2d−1))

1
2d

)
= O

(
N · Bd−1/2

√
N

)
.

Hence, choosingB ≤ c2(d)N
1

2d−1 for somec2(d) makes this smaller thanN2d . Let g be the integer combi-
nation of the polynomials inZ2 that corresponds tov. This is a degree2d−1 polynomial whose coefficients
satisfy that for alli = 0, . . . , 2d− 1, |biB

i| < N
2d . We can now find the small roots ofg by considering it as

a polynomial over the integers.
We now sketch how further improvements to the boundB can be achieved. For someh ≥ 2, consider

the set of polynomials
Z3 = {Nh−i−1f(x)ixj | 0 ≤ j < d, 0 ≤ i < h}.

For h = 2 this is exactlyZ2. Notice that for any integer combinationg of these polynomials and anyx
such thatf(x) = 0 (mod N) it holds thatg(x) = 0 (mod Nh−1). Following a similar argument, one can
obtainB = N1/d−ε for any constantε > 0 by settingh to be a large enough constant. Takingh to be a
slowly growing function ofN yields a bound of the formN1/d/C for some constantC. Using this, it is
easy to find all roots in a slightly larger range, sayB = 10N1/d, by partitioning this range into10C smaller
ranges and using the previous algorithm on each of them.

1Notice thatg might have more roots thanf (for example,0 is always a root ofxf(x)). This does not raise any difficulty since
we anyway find all roots ofg.
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REMARK 3 Our proof also gives an answer to the following purely mathematical question: how many roots
moduloN can a degreed polynomial have in the rangex ∈ {−B, . . . , 0, . . . , B}? The first proof gives an

upper bound ofd for B = c1(d)N
2

d(d+1) and the second gives an upper bound of2d−1 for B = c2(d)N
1

2d−1 .

REMARK 4 It seems that this technique cannot be improved much beyondB = N1/d. Consider, for exam-
ple, N = p2 andf(x) = x2. Then in the range|x| < N

1
2
+ε this polynomial has roughlyN ε roots so we

cannot hope to output all of them.
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