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The well-known RSA public key cryptosystem is nowadays used in a wide variety of applications rang-
ing from web browsers to smart cards. Since its initial publication in 1977, many researchers have tried to
look for vulnerabilities in the system. Some clever attacks have been found. However, none of the known
attacks is devastating and the RSA system is still considered secure.

In this lecture we present one such attack, originally due dstatl and then greatly refined by Cop-
persmith. This attack can be mounted when RSA is used with a low public exponent. The attack is based
on an algorithm for finding small solutions to low degree polynomials, which is in turn based on the LLL
algorithm. This root finding algorithm is interesting on its own and is also used in other attacks on the RSA
system.

Let us describe a simple version of the RSA cryptosystem. N.et p - ¢ be the product of two
large primes of roughly the same size. ket be two integers satisfying- s = 1 (mod ¢(N)), where
@(N) = (p —1)(¢ — 1) is the order of the multiplicative groupy,. We call N the RSAmodulus r the
public exponentands the private exponentThe pair(V,r) is thepublic key As its name suggests, it is
public and is used to encrypt messages. The (i) is called thesecret keyr private key and is known
only to the recipient of encrypted messages. The secret key enables decryption of ciphertagtssafie
is an integetM € Zj,. To encryptM, one compute§’ = M" (mod N). To decrypt the ciphertext, the
legitimate receiver computé&s® (mod N). Indeed,C® = M"™* = M (mod N), where the last equality
follows by Euler’s theorem.

1 Low Public Exponent RSA

In many practical applications, the encryption process is performed by some limited device, such as a smart
card. In such cases, raisifd to a high power might be quite costly in terms of battery power, time, etc.
In an attempt to simplify the encryption process, one might be tempted to modify the RSA cryptosystem
by fixing the public exponent to be some small number,say3. So now the encryption process simply
involves raising a number to the pow&rwhich can be done using two multiplications.

At first it seems that this modification does not harm the security of the system. Indeed, it is not obvious
how to invert the function/® mod N without knowing the factorization aV. However, as we shall see
next, this modification allows for some clever attacks. Let us first recall the Chinese Remainder Theorem.

LEMMA 1 (CHINESE REMAINDER THEOREM)
Givenr equalitiest = a; (mod m;) such thatn,, ..., m, are pairwise relatively prime, there exists a
uniquex (mod m; - mg ---m,) that satisfies these equalities, and thisan be found efficiently.

To demonstrate the danger in using a low public exponent, consider the following scenario. Alice wishes
to send the same message to Bob, Charlie, and Dave. She encrypts her message with each of their public
keysNg, N, Np. The ciphertexts are

cg =m> mod N, cc =m?® mod N¢, andep = m® mod Np.

We now show that an eavesdropper that recetygsc, andcp can easily recovem. Without loss of
generality, we can assume ths, N, and Np are pairwise relatively prime (otherwise the eavesdropper
finds a non-trivial factor of one of the public keys and can decrypt the message directly). By using the
Chinese Remainder Theorem, the eavesdropper computes a nusumyr that: = m? mod NgNcNp.
Sincem < Np, Nc, Np, we havem?® < NgNcNp and hence = m? where this is an equality over the
integers. The message can now be easily recovered by computing the cubic rootaer the integers.

It seems that one can avoid this problem by never sending the same message to more than one person.
For instance, consider the following solution. Each person, as part of his public key, has someliihique



Instead of encrypting/, encryptM + 2% - ID, wherek is the length of the messagé in bits andI D is
the ID of the recipient. In this way we never send the same message to more than one person.

In the next section we prove that this modification suffers from a similar attack. In fact, we show a much
more general attack: assume the public key is of the fasmg) whereg is some polynomial inV/. To
encrypt a messagk/, we sendg(M) mod N whereg is the polynomial of the recipient. In the above
special case, we had M) = (M + 2FID)3.

Before presenting the attack, let us mention that low public exponent RSA is still considered secure
when used carefully. Namely, the current wisdom says that one should use a moderate public exponent,
sayr = 2'6 + 1 and pad the message with some random bits. Finally, we also mention that much stronger
attacks are known on low private exponenitsing different techniques.

2 The Attack

THEOREM 2

Let Ny,..., Ny be pairwise relatively prime integers, and €}, = min; N;. Letg;, € Zn;,[z] bek
polynomials of maximum degreé Suppose there exists a unigié < N,,;, such thatg;(M) = C;
(mod N;) foralli = 1,... k. Then, ift > d, one can efficiently find! given(N;, g;, C;)F_;.

The main tool in the proof is the following theorem, whose proof is given in the next section.

THEOREM 3
Let N be an integer andl € Zy[x] a monic polynomial of degreé (i.e., the coefficient of? is1). Then
we can efficiently find alt: € 7 such thatz| < B andf(z) =0 (mod N) for B = N/¢,

REMARK 1 This theorem is quite powerful, and is used in other attacks on the RSA system.

REMARK 2 Notice that the factorization oV is unknown. Otherwise, there are much better root finding
algorithms.

PrROOF (of Theorem 2) Definé; = g;—C; for 1 <i < k. Then we are looking fok/ such that;(M) = 0
(mod N;) fori = 1,..., k. We can assume without loss of generality, thathalare monic (otherwise
multiply them by the inverse mod; of their leading coefficients; if this coefficient is not invertible, then
we have a factor ofV; and we're done). We can also assume without loss of generality thiat aie of
degreed (by multiplying by’ for somej).

Next, we use the Chinese Remainder Theorem to combine the polyndmiat a polynomialh.
Namely, we define

h(z) = Zk:Tlhl(:U) (mod Ny - Ng--- Ng)
=1
where thel;’s are chosen using the Chinese Remainder Theorem to satisfy that far @aglmod V;) = 1
and for eachi # j, T; (mod N;) = 0. Then the polynomiak(z) is
1. of degreed,
2. monic, since itsc? coefficient isl modulo anynN;, and

We can now apply Theorem 3 to find, since

5
N
=

M < Npin < (N1 - Ny Ni)# < (Ny - Ny -

and this completes the prodfl



3 Finding Roots of Low Degree Polynomials

In this section we prove Theorem 3. We do this in several steps. First, we prove the theorBm=for
O(N?/(dd+1))) where the© hides a constant that depends only éin Then, we improve it taB =

@(NTIA), and mention how it can be improved & = N'/¢. For simplicity, one can think ofl as
being a small constant, say—= 3.
Our goal is to find solutions to f(z) = 0 (mod N) such thatz| < B. Write

f(;c) = ;de -+ adfl.’l}dil +...+a1x + ap.

Note that if it so happens that the coefficients of the polynorfisatisfy

- Bile N
Vz-O,...,d.\azB|<d+1 1)

then|f(z)| < Z?:o la; BY| < N for |x| < B. Hence, any small solutiopr| < B to the modular equation
f(x) =0 (mod N) is also a solution tg () = 0 over the integers. Such solutions can be found efficiently
using standard techniques (for example, we can find all real roots since there are @bifrtbstm and then
throw all the non-integer ones).

However, there is no reason for (1) to hold in general. The main idea is that even if (1) does not hold for
£, itmight hold for some integer multiple gfreduced moduldV. Intuitively, each multiple off ‘reshuffles’
the coefficients and since there are roughlyossible multiples to consider, we might expect one of them
to yield a polynomial all of whose coefficients are small.

More formally, the idea is to find a polynomialthat has property (1) and has the same roots d$hen
we can find all the roots of directly and hence also all the small roots fof In order to find such g,
consider the following set of polynomials:

Z = {N, Na:,NxZ,...,Nxdfl,f(:c)}.
Notice that any integer combination of these polynomials has the same roptmadulo N. Hence, it is

enough to find an integer combination of these polynomials that satisfies property (1). This naturally leads
us to consider the lattice

N 0 .- 0 ag
0 BN . 0 Bay
Li=| 0o o0 :
S BN Bl lg,
0 e 0 B (d+1)x (d+1)
Each column corresponds to one polynomiaEin Theith row,7 = 0, ..., d, corresponds to the coefficient

of 2 multiplied by B°.
We would like to show that we can find a short vector in this lattice. So first, let us calciaigt®, ),

det(£1)=N-BN-...-BIN.B? = N¢. pl+2t.Fd — yd. gdld+1)/2

Using LLL, we find an integer combination of the column§.e., a lattice vector) whose length satisfies

1 /
vl < O (£1)) < O((det(£1))77) = 0 (N- Bdf)
N d+1
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where theO() hides a constant that depends onlydosnd the second inequality follows from Minkowski’s

2
theorem. This is less thaﬁ\r’—1 if we take B < ¢;(d) N 4@+1) for a small enough; (d) that depends only on
d. In particular, each of’s coordinates is less thaﬁq. Hence, if we take the corresponding combination
of the polynomials inZ;, we obtain a polynomial

9(x) = baz? + bg_1z™ + ..+ bz + by

suchthati =0,...,d, |b;B| < %, andg has the same roots gs Now we can find the small roots gf
over the integers using standard methods. This completes the description of the basic idea.

Next, we would like to improve the bound. The main idea is to notice that we can consider a larger
set of polynomials. Consider the set of polynomials

Zy = {N,N:c,...,Na:dfl} U {f(x),:vf(a;),...,a:dilf(x)}.

For any integer combinatiomof these polynomials, the roots gfcontain all the roots of . * Consider the
lattice

N 0 0 0 agp 0 . 0
0 BN . : : Bag :
0 0 : 0
BYIN Bi-lg, : : Bi1q,
£2 = . .
0 B Bla, 4
Bd+l
: : .. .. .. . BQd—Qad_l
0O 0 ... . 0 0 0 B2d-1

(2d) x (2d)

As before, using LLL we obtain a vectorwhose length satisfies

o]l < O((det(ﬁz))%) — O((Nd _ Bd(2d—1))%> 5 (N- B:‘l/%/?) |

Hence, choosing < cz(d)Nﬁ for somecsy(d) makes this smaller tha%. Let g be the integer combi-
nation of the polynomials iX5 that corresponds to. This is a degre2d — 1 polynomial whose coefficients
satisfy that for alt = 0,...,2d — 1, |b;B?| < 2%. We can now find the small roots gfby considering it as
a polynomial over the integers.
We now sketch how further improvements to the bouthdan be achieved. For some> 2, consider
the set of polynomials
Z3 = {N"=Lf(z)al |0<j<d, 0<i<h}.

For h = 2 this is exactlyZ,. Notice that for any integer combinatignof these polynomials and any
such thatf(z) = 0 (mod N) it holds thatg(x) = 0 (mod N"~1). Following a similar argument, one can
obtainB = N'/4=< for any constant > 0 by settingh to be a large enough constant. Takingo be a
slowly growing function ofN yields a bound of the fornv'/¢/C for some constant'. Using this, it is
easy to find all roots in a slightly larger range, day= 10N'/¢, by partitioning this range intd0C' smaller
ranges and using the previous algorithm on each of them.

!Notice thatg might have more roots thafi(for example is always a root of: f(x)). This does not raise any difficulty since
we anyway find all roots of.



REMARK 3 Our proof also gives an answer to the following purely mathematical question: how many roots
modulo N can a degre€ polynomial have in the rangec {—B,...,0,..., B}? The first proof gives an

upper bound ofl for B = ¢ (d)N @0 and the second gives an upper bounfldbf 1 for B = cz(d)Nﬁ.

REMARK 4 It seems that this technique cannot be improved much bejpordN'/?. Consider, for exam-
ple, N = p? andf(z) = 22. Then in the rangér| < Nz*¢ this polynomial has roughlve roots so we
cannot hope to output all of them.
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