
Tel Aviv University, Fall 2004
Lattices in Computer Science

Lecture 2
LLL Algorithm

Lecturer: Oded Regev
Scribe: Eyal Kaplan

In this lecture1 we describe an approximation algorithm to the Shortest Vector Problem (SVP).
This algorithm, developed in 1982 by A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovasz, usually called
the LLL algorithm, gives a (2√

3
)

n approximation ratio, where n is the dimension of the lattice. In
many of the applications, this algorithm is applied for a constant n; in such cases, we obtain a
constant approximation factor.

In 1801, Gauss gave an algorithm that can be viewed as an algorithm for solving SVP in two
dimensions. The LLL algorithm is, in some way, a generalization of Gauss’s algorithm to higher
dimensions. In 1987, Schnorr presented an improved algorithm for the SVP. This improved algo-
rithm obtains an approximation factor that is slightly subexponential, namely 2O(n(log log n)2/ log n).

The LLL algorithm has many applications in diverse fields of computer science. Some of these
will be described in the following lectures. Here is a brief description of some of these applications.

1. Factoring polynomials over the integers or the rational numbers. For example, given x2 − 1
factor it into x + 1 and x− 1.

2. Finding the minimal polynomial of an algebraic number given to a good enough approxima-
tion. For example, given 1.414213 output x2− 2 = 0 and given 0.645751 output x2 + 4x− 3 =
0.

3. Finding integer relations. A set of real numbers {x1, . . . , xn} is said to posses an integer
relation if there exist integers {a1, . . . , an} such that a1x1 + . . . + anxn = 0, with not all ai = 0.
As an example, try to find an integer relation among arctan(1) ≈ 0.785398, arctan(1

5) ≈
0.197395, and arctan(1

239) ≈ 0.004184. It turns that an integer relation exists:

arctan(1)− 4 arctan(1/5) + arctan(1/239) = 0

(this equality is known as Machin’s formula).

4. Integer Programming. This is a well-known NP-complete problem. Using LLL, one can
obtain a polynomial time solution to integer programming with a fixed number of variables.

5. Approximation to the Closest Vector Problem (CVP), as well as other lattice problems.

6. Various applications in cryptanalysis (i.e., breaking cryptographic protocols). For example,
there are many attacks on knapsack based cryptographic systems. Moreover, there are some
more recent attacks on some special cases of RSA such as the low public exponent attack.

For simplicity, we describe the LLL algorithm for full-rank lattices; it is easy to remove this
restriction. Moreover, our description only applies to the `2 norm. Extensions to other norms are
known.

Let us now turn to describe LLL. The exposition is divided into three stages.

1. Define an LLL reduced basis.

2. Present an algorithm to find such a basis.

3. Analyze its running time.

1Last updated: 2013/2/5

1

1 Reduced basis

We first recall the Gram-Schmidt orthogonalization process.

DEFINITION 1 Given n linearly independent vectors b1, . . . , bn ∈ Rn, the Gram-Schmidt orthogonal-

ization of b1, . . . , bn is defined by b̃i = bi −∑i−1
j=1 µi,jb̃j, where µi,j =

〈bi ,b̃j〉
〈b̃j,b̃j〉

.

DEFINITION 2 A basis B = {b1, . . . , bn} ∈ Rn is a δ-LLL Reduced Basis if the following holds:

1. ∀1 ≤ i ≤ n, j < i.|µi,j| ≤ 1
2 ,

2. ∀1 ≤ i < n. δ‖b̃i‖
2 ≤ ‖µi+1,i b̃i + b̃i+1‖

2.

REMARK 1 It is always possible to transform a basis to a reduced basis. Actually, this is what the
LLL algorithm does.

REMARK 2 It is helpful to consider the case δ = 3
4 . The algorithm works with any 1

4 < δ < 1.

REMARK 3 The second property in Definition 2 can be written as:

δ‖b̃i‖
2 ≤ ‖µi+1,i b̃i + b̃i+1‖

2
= µ2

i+1,i‖b̃i‖
2
+ ‖b̃i+1‖

2

where the second equality follows since b̃i and b̃i+1 are orthogonal. It follows that

‖b̃i+1‖
2 ≥ (δ− µ2

i+1,i)‖b̃i‖
2 ≥ (δ− 1

4
)‖b̃i‖

2

Put this way, the second property reads “b̃i+1 is not much shorter than b̃i”.

To better understand this definition, consider the orthonormal basis obtained by normalization
the Gram-Schmidt vectors b̃1, . . . , b̃n. In this basis, B can be written as

‖b̃1‖ ∗ · · · ∗
0 ‖b̃2‖ · · · ∗
...

. . .
...
∗

0 · · · ‖b̃n‖

where column i shows the coordinates of bi in this orthonormal basis. The first condition in the
definition of an LLL-reduced basis guarantees that the absolute value of any off-diagonal element
is at most half the value written in the diagonal element on the same row. This can be written as

‖b̃1‖ ≤ 1
2‖b̃1‖ · · · ≤ 1

2‖b̃1‖
0 ‖b̃2‖ · · · ≤ 1

2‖b̃2‖
...

. . .
...

≤ 1
2‖b̃n−1‖

0 · · · ‖b̃n‖

2

where ≤ 1
2‖b̃j‖ indicates that the absolute value of this coordinate is at most 1

2‖b̃j‖. For the second
property, consider the 2× 2 submatrix of the above matrix, with the upper left entry indexed at
(i, i). (

‖b̃i‖ µi+1,i‖b̃i‖
0 ‖b̃i+1‖

)
Then the second property requires that the second column of this matrix is almost as long as its
first column. Let us mention that in Schnorr’s improvement to the LLL algorithm, this second
property is replaced with some condition on k× k submatrices for some k > 2.

One important property of LLL-reduced basis is that its first vector is relatively short, as shown
in the next claim.

CLAIM 1 Let b1, . . . , bn ∈ Rn be a δ-LLL-reduced basis. Then ‖b1‖ ≤ (2√
4δ−1

)
n−1

λ1(L).

REMARK 4 For δ = 3
4 this gives ‖b1‖ ≤ 2(n−1)/2λ1(L).

PROOF: Since for any basis b1, . . . , bn, λ1(L) ≥ mini ‖b̃i‖, we get that

‖b̃n‖
2 ≥ (δ− 1

4
)‖b̃n−1‖

2 ≥ . . . ≥ (δ− 1
4
)n−1‖b̃1‖

2
= (δ− 1

4
)n−1‖b1‖2

where the last equality follows by the definition b̃1 = b1. Then, for any i,

‖b̃1‖ ≤
(

δ− 1
4

)−(i−1)/2
‖b̃i‖ ≤

(
δ− 1

4

)−(n−1)/2
‖b̃i‖.

Hence,

‖b1‖ ≤
(

δ− 1
4

)−(n−1)/2
min

i
‖b̃i‖ ≤

(
δ− 1

4

)−(n−1)/2
· λ1(L)

�

REMARK 5 LLL-reduced bases have many other good properties; some are mentioned in the
homework.

Claim 1 provides us with an approximation to the SVP problem. Assuming we can generate a
δ-LLL-reduced basis from our input basis, we can then return b1 as our answer. For δ = 3/4 we
obtain a 2(n−1)/2 approximation. In what follows, we describe how to transform an arbitrary basis
into a δ-LLL-reduced one.

2 The LLL Algorithm

INPUT: Lattice basis b1, . . . , bn ∈ Zn

OUTPUT: δ-LLL-reduced basis for L(B)
Start: compute b̃1, . . . , b̃n
Reduction Step:

for i = 2 to n do
for j = i− 1 to 1 do

bi ← bi − ci,jbj where ci,j = d〈bi, b̃j〉/〈b̃j, b̃j〉c

3

Swap Step:
if ∃i s.t. δ‖b̃i‖

2
> ‖µi+1,i b̃i + b̃i+1‖

2 then
bi ↔ bi+1
goto start

Output b1, . . . , bn

REMARK 6 We use d·c to denote rounding to the nearest integer, e.g., d3.3c = 3, d3.8c = 4.

Let us make some important observations on this procedure. It is easy to see that the swap
step takes care of the second property of an LLL-reduced basis. Indeed, if the algorithm ever
terminates, then its output must satisfy the second property. The reduction step takes care of
the first property. In order to see this, first notice that throughout the reduction step, the Gram-
Schmidt basis does not change (hence the vectors b̃1, . . . , b̃n need not be recomputed). This holds
since we only perform column operations of the form bi ← bi + abj for i > j and a ∈ Z. Such
operations to not change the Gram-Schmidt orthogonalization. In the ith iteration of the outer
loop, the reduction step makes sure that the projection of bi on b̃j for any j < i is at most 1

2‖b̃j‖.
It does so by subtracting from column i the right integer multiple of column j such that the jth
coordinate becomes at most 1

2‖b̃j‖ in absolute value. Notice that it is crucial that the inner loop
goes from i− 1 down to 1.

To demonstrate the reduction step, let us write B in the orthonormal basis obtained by normal-
izing the Gram-Schmidt vectors. Consider, for example, the ith iteration of the outer loop and the
j = 2 iteration of the inner loop. Then at this point, the matrix B looks like

‖b̃1‖ ≤ 1
2‖b̃1‖ ≤ 1

2‖b̃1‖ · · · ∗ ∗ · · ·
0 ‖b̃2‖ ≤ 1

2‖b̃2‖ · · · ∗ ∗ · · ·
0 ‖b̃3‖ · · · ≤ 1

2‖b̃3‖ ∗ · · ·
...

. . .
...

≤ 1
2‖b̃i−1‖ ∗

0 · · · ‖b̃i‖ ∗ · · ·
0 ‖b̃i+1‖ · · ·

...
...

. . .

At this iteration, we subtract some integer multiple of the second column from column i to make
the second entry in the ith column at most 1

2‖b̃2‖ in absolute value. Similarly, in the last iteration
of the inner loop, we subtract some integer multiple of the first column from column i.

LEMMA 3 (CORRECTNESS) If the LLL procedure described above ever terminates, then its output is a
δ-LLL-reduced basis for the lattice spanned by the input basis b1, . . . , bn.

PROOF: We need to prove that the output of the LLL algorithm is a basis forL(B) that satisfies both
properties of a δ-LLL-reduced basis. The second property of a δ-LLL-reduced basis is enforced by
the check during the swap step. The reason that the output of the algorithm is indeed a basis for
L(B), is that we only perform column operations of the form bi ← bi + abj for i 6= j, and a ∈ Z.

We next show that after the reduction step, b1, . . . , bn satisfy |µi,j| ≤ 1
2 , for all i > j. First, notice

that throughout the reduction step, the Gram-Schmidt basis does not change. Now, consider some

4

i > j, and consider the jth iteration of the inner loop in the ith iteration of the outer loop. Then
|µi,j| can be written as

|µi,j| =
∣∣∣ 〈bi − ci,j · bj, b̃j〉

〈b̃j, b̃j〉

∣∣∣ = ∣∣∣ 〈bi, b̃j〉
〈b̃j, b̃j〉

−
⌈ 〈bi, b̃j〉
〈b̃j, b̃j〉

⌋
·
〈bj, b̃j〉
〈b̃j, b̃j〉

∣∣∣ ≤ 1
2

where the first equality follows from the definition of the reduction step and the last inequality
follows from the fact that 〈bj, b̃j〉 = 〈b̃j, b̃j〉. �

3 Analyzing the Running Time

Our analysis consists of two steps. First, we bound the number of iterations. Second, we bound
the running time of a single iteration.

We show that the overall running time of the algorithm is polynomial in the input size. A
rough lower bound on the latter is given by M := max{n, log(maxi ‖bi‖)} (because each of the n
vectors requires at least one bit to represents and a vector of norm r requires at least log r bits to
represent). In the following, we show that the running time of the algorithm is polynomial in M.

LEMMA 4 The number of iterations is polynomial in M.

PROOF: Our first step is to define a function mapping a lattice basis to some positive number. This
function can be thought of as a ‘potential function’.

DEFINITION 5 Let B = {b1, . . . , bn} be a lattice basis. The potential of B, denoted DB, is defined by

n

∏
i=1
‖b̃i‖

n−i+1
=

n

∏
i=1
‖b̃1‖‖b̃2‖ · · · ‖b̃i‖ =

n

∏
i=1
DB,i

where DB,i := det Λi and Λi is defined as the lattice spanned by b1, . . . , bi

REMARK 7 Notice that more weight is given to the first vectors.

Our aim is to show that the initial value of DB is not too large, and that it decays quickly. Since
‖b̃i‖ ≤ ‖bi‖, the initial value of DB can be bounded from above by (maxi ‖bi‖)n(n+1)/2. Note that
the logarithm of this value is polynomial in M.

During the reduction step, DB does not change, because the Gram-Schmidt basis does not
change. Now consider the swap step. Suppose that bi is swapped with bi+1. For all k 6= i, Λk does
not change, and so DB,k does not change; only DB,i changes. Let Λ′i, D′B,i denote the new values of
Λi and DB,i, respectively. We have that

D′B,i

DB,i
=

det Λ′i
det Λi

=
detL(b1, . . . , bi−1, bi+1)

detL(b1, . . . , bi)

=
(∏i−1

j=1 ‖b̃j‖)‖µi+1,i b̃i + b̃i+1‖

∏i
j=1 ‖b̃j‖

=
‖µi+1,i b̃i + b̃i+1‖

‖b̃i‖
<
√

δ

5

where the last inequality follows from the condition in the swap step.
As shown above, in each iteration, DB decreases by a multiplicative factor,

√
δ. Let DB,0 be the

initial value of DB. Since DB is a nonzero integer, and in particular at least 1, this means that we
can bound from above the number of iterations by

log 1√
δ

DB,0 =
logDB,0

log 1√
δ

≤ 1
log 1√

δ

· n(n + 1)
2

log(max
i
‖bi‖).

For any constant δ < 1, this is polynomial in M. �

REMARK 8 A somewhat tedious calculation shows that even for δ = 1
4 + (3

4)
n

n−1 , which is closer to
1 than any constant, the running time is polynomial. For such δ the approximation factor is (2√

3
)n.

This approximation factor is essentially the best one can obtain with the LLL algorithm. For better
approximation factors, one needs to apply Schnorr’s algorithm.

LEMMA 6 The running time of each iteration is polynomial in M.

PROOF: It is not difficult to see that in each iteration we perform only a polynomial number
of arithmetic operations (i.e., additions, multiplications, etc.). Hence, in the rest of the proof,
it is enough to show that the numbers that arise in each iteration can be represented using a
polynomial number of bits.

To demonstrate why this is necessary, consider a repeated squaring algorithm that given a
number x, squares it n times. Even though the number of arithmetic operations is only n, the
number of bits required to represent the resulting numbers quickly grows to 2O(n). Hence, the
actual running time of the algorithm (measured in bit operations) is exponential in n.

We establish the bound on numbers arising during an iteration using two claims. The first
concerns the Gram-Schmidt vectors b̃1, . . . , b̃n, which are somewhat simpler to bound, as they do
not change during the reduction step. The second concerns the basis vectors b1, . . . , bn.

CLAIM 2 The Gram-Schmidt vectors b̃1, . . . , b̃n can be computed in polynomial time in M. Moreover, for
every 1 ≤ i ≤ n, we have that D2

Bb̃i ∈ Zn and that ‖b̃i‖ ≤ D2
B.

REMARK 9 Notice that these two properties of the Gram-Schmidt vectors imply that they can be
represented in space polynomial in M. Indeed, the bound on the norm implies that each coor-
dinate of b̃i contains a number of absolute value at most D2

B. Moreover, since D2
Bb̃i ∈ Zn we

know that the denominators cannot be larger than D2
B. Hence, each coordinate requires at most

O(logDB) bits to represent and there are n2 of them. Since the initial value of logDB is poly-
nomial in M and later on it can only decrease, we obtain that the Gram-Schmidt vectors can be
represented in space polynomial in M.

PROOF: The calculation of the Gram-Schmidt basis may be performed as follows. Since b̃i − bi ∈
span(b1, . . . , bi−1), we can write b̃i = bi + ∑i−1

j=1 ajbj, for some a1, . . . , ai−1 ∈ R. We are looking for
a1, . . . , ai−1 such that b̃i is orthogonal to each of b1, . . . , bi−1. For any 1 ≤ l ≤ i− 1, 〈b̃i, bl〉 = 0 can
be written as

〈b̃i, bl〉 = 〈bi +
i−1

∑
j=1

ajbj, bl〉 = 〈bi, bl〉+ a1〈b1, bl〉+ a2〈b2, bl〉+ . . . + ai−1〈bi−1, bl〉 = 0.

6

Hence, we obtain the following system of i− 1 linear equations in i− 1 variables:

a1〈b1, b1〉+ a2〈b2, b1〉+ . . . + ai−1〈bi−1, b1〉 = −〈bi, b1〉
a1〈b1, b2〉+ a2〈b2, b2〉+ . . . + ai−1〈bi−1, b2〉 = −〈bi, b2〉

...
a1〈b1, bi−1〉+ a2〈b2, bi−1〉+ . . . + ai−1〈bi−1, bi−1〉 = −〈bi, bi−1〉.

It is possible to solve such a system in polynomial time.
For the second part of the claim, notice that using Cramer’s rule we can write

aj =
det(some integer matrix)

det

 〈b1, b1〉 . . . 〈bi−1, b1〉
...

. . .
...

〈b1, bi−1〉 . . . 〈bi−1, bi−1〉

=

some integer
det BT

i−1Bi−1
=

some integer
(det Λi−1)2 .

Hence b̃i = bi + ∑i−1
j=1 ajbj for some rational numbers aj whose denominator is (det Λi−1)

2. This
implies that D2

B,i b̃i and in particular also D2
Bb̃i are integer vectors.

Now we show that the norm of the b̃i’s is not too large. By Definition 5,

DB,i = (
i−1

∏
j=1
‖b̃j‖) · ‖b̃i‖

and so

‖b̃i‖ =
DB,i

∏i−1
j=1 ‖b̃j‖

≤ DB,i

i−1

∏
j=1
D2

B,j ≤ D2
B

where the first inequality follows since ‖b̃j‖ ≥ 1
D2

B,j
. �

In the next claim we show that the basis vectors bi do not become too large. This is necessary
since these basis vectors change during the reduction step (and in fact, it is possible for vectors to
become longer by the reduction step). We first bound the length of each bi after the ith iteration of
the outer loop is done (i.e., once vector bi is reduced). We then bound the length of bi during the ith
iteration of the outer loop. For this we use the observation that to vector bi we only add vectors bj
for j < i; these vectors are already reduced and hence our first bound applies.

CLAIM 3 All vectors bi appearing during an iteration can be represented using poly(M) bits.

PROOF: First, we show that after the reduction step, the length of the bi’s is not too large. For each
1 ≤ i ≤ n,

‖bi‖2 = ‖b̃i‖2 +
i−1

∑
j=1

µ2
i,j‖b̃j‖2 ≤ D4

B +
n
4
· D4

B ≤ nD4
B

The first equality holds because b̃1, . . . , b̃n are orthogonal. The first inequality follows from the
bound on b̃1, . . . , b̃n proven in Claim 2, and using the fact that |µi,j| ≤ 1

2 .
Our bound on the norm implies that each coordinate contains an integer of size at most

√
nD2

B.
For an integer vector, this means that it can be represented in log(

√
nD2

B) bits. Our bi’s remain
integer vectors throughout the procedure – they are such as inputs, and we change their values

7

by adding integers. This means that after the reduction step, we can represent the bi’s in poly(M)
space.

Lastly, we need to show that during the reduction step, the bi’s are not too large. Consider a
vector bi, that is manipulated in the inner loop of the reduction step.

|ci,j| =
∣∣∣⌈ 〈bi, b̃j〉
〈b̃j, b̃j〉

⌋∣∣∣ ≤ ‖bi‖‖b̃j‖
‖b̃j‖2

+ 1 =
‖bi‖
‖b̃j‖

+ 1 ≤ ‖bi‖
1/D2

B
+ 1 ≤ 2D2

B‖bi‖

where the first inequality follows by applying Cauchy-Schwartz and using the definition of the
rounding operator, and the second inequality uses Claim 2. Therefore,

‖bi − ci,jbj‖ ≤ ‖bi‖+ |ci,j|‖bj‖
≤ (1 + 2D2

B‖bj‖)‖bi‖
≤ (1 + 2D2

B
√

nD2
B)‖bi‖

≤ (4nDB)
4‖bi‖

where the first inequality follows by the triangle inequality, the second inequality by plugging in
the bound for |ci,j|, and the third inequality by plugging in the bound on the length of ‖bj‖ after
the reduction step. Indeed, during the reduction step of bi, vectors bj, for j < i, have already
finished their reduction step, so we can use this bound. After at most n iterations of the inner
loop, the norm of bi has increased by a factor of at most (4nDB)

4n. This is of course representable
in poly(M) size. �

By Claims 2 and 3 we have, that it is possible to represent the numbers in a polynomial number
of bits. This, together with the fact that in each iteration we perform a polynomial number of
arithmetic operations, proves the lemma. �

REMARK 10 The only place where we used that |µi,j| ≤ 1
2 for all j < i was in the proof of Claim 3.

For the rest of the proof, the weaker condition that |µi+1,i| ≤ 1
2 for all i is enough. This suggests that

we might improve the running time by performing the reduction step only on pairs of consecutive
vectors so as to obtain the weaker condition. The number of iterations in this modified algorithm
is still polynomial, since all of our arguments above hold. However, it is not clear if this modified
algorithm still runs in polynomial time because Claim 3 does not seem to hold.

We combine Lemma 4 with Lemma 6 to conclude that the running time of the LLL algorithm
is polynomial in the input size. This completes our analysis of LLL.

Open questions

The worst-case behavior of LLL and its generalization BKZ are reasonably well understood [1],
and it turns out that the analysis above is tight in the worst-case. However, according to extensive
experiments done by Gama and Nguyen [2], for “typical” lattices, the LLL algorithm (and its gen-
eralizations) appear to behave much better than the worst-case analysis suggests. Although the
dependence on the dimension is still exponential, the base of the exponent is much smaller than
the (δ− 1/4)−1/2 we obtained above. Explaining this phenomenon, even heuristically, is still an
open question. Another outstanding open question is to improve on LLL and its generalizations
for special families of lattices (e.g., rotations of Zn or so-called ideal lattices).

8

References

[1] M. Ajtai. Optimal lower bounds for the korkine-zolotareff parameters of a lattice and for
Schnorr’s algorithm for the shortest vector problem. Theory of Computing, 4(2):21–51, 2008.

[2] N. Gama and P. Q. Nguyen. Predicting lattice reduction. In EUROCRYPT, pages 31–51, 2008.

9

	Reduced basis
	The LLL Algorithm
	Analyzing the Running Time

