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Let us recall the promise problemGapCVPγ .

DEFINITION 1 GapCVPγ

YES instances: triples(B, v, d) such thatdist(v,L(B)) ≤ d
NO instances: triples(B, v, d) such thatdist(v,L(B)) > γd

whereB is a basis for a lattice inQn, v ∈ Qn is a vector, andd ∈ Q is some number.

It is easy to see thatGapCVPγ ∈ NP for anyγ ≥ 1. Indeed, a witness is a vectoru ∈ L(B) such that
‖v − u‖ ≤ d. This witness is of polynomial size (since the length of the vector is at most‖v‖ + d) and it
can be verified efficiently (simply check that‖v − u‖ ≤ d).

What about the complement ofGapCVPγ? In other words, for what values ofγ is GapCVPγ ∈ coNP?
In order to show such a containment, we need to give a witness thatdist(v,L(B)) > γd. Some thought
reveals that this is no longer a trivial task. After all, there is a huge number of lattice vectors that can
potentially be very close tov. Some of the early results in this direction [5, 2] showed thatGapCVPn ∈
coNP. These results are based on the use of dual lattices. Later, Goldreich and Goldwasser [4] showed
that GapCVP√

n/ log n
∈ coAM (we define the classAM later). More recently, Aharonov and Regev [1]

showed thatGapCVP√n ∈ coNP. All of these results also hold forGapSVP sinceGapSVP is not harder
thanGapCVP (this was shown rigorously in the previous class).

To summarize, we have thatGapCVP√
n/ log n

∈ NP ∩ coAM andGapCVP√n ∈ NP ∩ coNP. One

of the interesting implications of these results is the following. It is known thatGapCVPγ is NP-hard for
γ ≤ nO(1/ log log n) [3]. Can we hope to improve thisNP-hardness result to, say,γ =

√
n? The above

results imply that the answer is probablyno: if GapCVPγ is NP-hard forγ ≥
√

n/ log n (even under Cook
reductions) then the polynomial hierarchy collapses. The proof requires some care (especially for Cook
reductions) and is discussed in Section 2.

Finally, another interest in the above results arises from lattice-based cryptographic constructions. All
known constructions are based on the worst-case hardness of lattice problems such asGapSVPnc for some
constantc ≥ 1. Hence, the above results imply that these constructions are based on a problem inNP∩coNP
(like factoring).

1 The Goldreich-Goldwasser protocol

In this section we focus on the Goldreich-Goldwasser protocol.

THEOREM 1 GapCVP√
n/ log n

∈ coAM

REMARK 1 In fact, the proof implies a stronger result, namely, thatGapCVP√
n/ log n

is contained in a

complexity class known as Statistical Zero Knowledge, orSZK.

For simplicity, we will show thatGapCVP√n ∈ coAM. A slightly more careful analysis of the same

protocol yields a gap ofc
√

n/ log n for any constantc > 0. First, let us define the classAM .

DEFINITION 2 A promise problem is inAM if there exists a protocol with a constant number of rounds
between aBPPmachine Arthur and a computationally unbounded Merlin, and two constants0 ≤ a < b ≤ 1
such that

• for anyYES input, there exists a strategy for Merlin such that Arthur accepts with probability at least
b, and

• for anyNO input, and any strategy for Merlin, Arthur accepts with probability at mosta.
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In order to prove Theorem 1, we present a protocol that allows Arthur to verify that a point is far from
the lattice. Specifically, given(B, v, d), Arthur accepts with probability1 if dist(v,L(B)) ≥ √

nd and
rejects with some positive probability ifdist(v,L(B)) < d.

Informally, the protocol is as follows. Arthur first flips a fair coin. If it comes up heads, he randomly
chooses a ‘uniform’ point in the latticeL(B); if it comes up tails, he randomly chooses a ‘uniform’ point in
the shifted latticev + L(B). Let w denote the resulting point. Arthur randomly chooses a uniform pointx
from the ball of radius12

√
nd aroundw and then sendsx to Merlin. Merlin is supposed to tell Arthur if the

coin came up heads or not.
The correctness of this protocol follows from the following two observations (see Figure 1). Ifdist(v,L(B)) ≥√

nd then the two distributions are disjoint and the Merlin can answer correctly with probability1. On the
other hand, ifdist(v,L(B)) < d, then the overlay between the two distributions is too large and the prover
must make a mistake with some positive probability.

dist ≥
√

nd dist < d

Figure 1: Two distributions

This informal description hides two technical problems. First, we cannot really work with the pointx
since it is chosen from a continuous distribution (and hence cannot be represented precisely in any finite
number of bits). This is easy to take care of by working with an approximation ofx with some polynomial
number of bits. Another technical issue is the choice of a ‘random’ point fromL(B). This is an infinite
set and there is no uniform distribution on it. On possible solution is to take the uniform distribution on
points in the intersection ofL(B) with, say, some very large hypercube. This indeed solves the problem,
but introduces some unnecessary complications to the proof since one needs to argue that the probability to
fall close to the boundary of the hypercube is low. The solution we choose here is different and avoids this
problem altogether by working with distribution on the basic parallelepiped of the lattice. We describe this
solution in Subsection 1.3.

In the next few subsections, we present the necessary preliminaries for the proof.

1.1 Statistical Distance

DEFINITION 3 The statistical distance between two distributionsX, Y on some setΩ is defined as
∆(X,Y ) = maxA⊆Ω |Pr(X ∈ A)− Pr(Y ∈ A)|.

One useful special case of this definition is the case whereX andY are discrete distributions over some
countable setΩ. In this case, we have

∆(X,Y ) =
1
2

∑

ω∈Ω

|Pr(X = ω)− Pr(Y = ω)|.
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Another useful special case is whenX andY are distributions onRn with density functionsf, g. In this
case, we have

∆(X, Y ) =
1
2

∫

Rn

|f(x)− g(x)| dx.

For any distributionsX, Y , ∆(X, Y ) obtains values between0 and1. It is 1 if and only if the supports
of X andY are disjoint1; it is 0 if and only if X andY are equivalent distributions. It is helpful to consider
the following interpretation of statistical distance. Assume we are given a sample that is taken fromX with
probability 1

2 or fromY with probability 1
2 . Our goal is to decide which distribution the sample comes from.

Then, it can be seen that our best strategy succeeds with probability1
2 + 1

2∆(X, Y ).
One important fact concerning the statistical distance is that cannot increase by the application of a

possibly randomized function. In symbols,∆(f(X), f(Y )) ≤ ∆(X, Y ) for any (possibly randomized)
functionf . This fact is easy to deduce from the above interpretation of∆.

1.2 Balls inn-dimensional Space

FACT 1 The volume of the unit ball inn dimensions is

Vn :=
πn/2

(n/2)!

where we definen! = n(n− 1)! for n ≥ 1 and 1
2 ! = 1

2

√
π.

It can be shown that
(n + 1

2)!
n!

≈ n!
(n− 1

2)!
≈ √

n.

LEMMA 2 For anyε > 0 and any vectorv of length‖v‖ ≤ ε, the relative volume of the intersection of two
unit balls whose centers are separated byv satisfies

vol(B(0, 1) ∩B(v, 1))
vol(B(0, 1))

≥ ε
(1− ε2)

n−1
2

3
√

n

PROOF: As shown in Figure 2, the above intersection contains a cylinder of heightε and radius
√

1− ε2

centered aroundv/2. Hence, the volume of the intersection satisfies:

ǫ

1

Figure 2: A cylinder in the intersection of two balls

vol(B(0, 1) ∩B(v, 1))
vol(B(0, 1))

>
εVn−1(

√
1− ε2)n−1

Vn
= ε(1− ε2)

n−1
2

π
n−1

2 /(n−1
2 )!

π
n
2 /(n

2 )!
≈ ε(1− ε2)

n−1
2

√
n/2√
π

1More precisely, in the continuous case, the intersection needs to be a set of measure zero.
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Notice that forε ≤ 2√
n

, the right hand side of the expression in Lemma 2 is at least some positive
constant independent ofn. This yields the following corollary.

COROLLARY 3 There exists a constantδ > 0 such that for anyd > 0 and anyy ∈ Rn such that‖y‖ ≤ d,

∆
(
U(B(0, 1

2

√
nd)), U(B(y, 1

2

√
nd))

)
< 1− δ,

whereU(·) denotes the uniform distribution on a set.

PROOF: This statistical distance is exactly the volume of the symmetric difference of two balls divided by
the sum of their volumes. According to the above lemma, this is bounded away from1. 2

REMARK 2 For any constantc and anyε ≤ c
√

log n, the right hand side of the expression in Lemma 2 is still
greater than some1/poly(n). Using this, one can obtain the improved resultGapCVP

c
√

n/ log n
∈ coAM.

1.3 Working with periodic distributions

In the informal description above, we talked about the ‘uniform distribution’ on the lattice. This is clearly
not defined. One possible solution is to restrict our attention to some large enough cube[−K,K]n. While
possible, this solution introduces some technical annoyances as one has to argue that the probability to fall
too close to the boundary of the cube (where the protocol might behave badly) is small.

Instead, our solution will be to work with only one period of the distribution. To demonstrate this
approach, let us first consider the one-dimensional case. Assume we want to represent the distribution
intuitively described as follows: choose a random point from2πZ and add to it a number chosen uniformly
from [−0.1, 0.1]. The first solution above would require us to take some large segment, say,[−1000, 1000],
and to restrict our distribution on it. Instead, we take one period of the distribution, say the segment[0, 2π],
and consider the distribution on it. Hence, we obtain the uniform distribution on[0, 0.1] ∪ [2π − 0.1, 2π].
Notice that we could take another period, say the segment[−2π, 0], and work with it instead. Crucially, the
transformation from one representation to another can be performed efficiently (in this case, by subtracting
or adding2π).

A similar idea works for higher dimensions. If we want to represent a periodic distribution on a lattice,
we consider it as a distribution on some period, say,P(B) for some basisB. As before, we have several
possible representation, depending on the choice of basisB. The transformation from a representation using
B1 to one usingB2 can be done efficiently by reducing points moduloP(B2). Mathematically speaking,
the objects we work with are distributions on the quotientRn/L(B), andP(B) is its set of representatives.

We emphasize that it is much easier to imagine ‘periodic distributions’ onRn. However, technically, it
is much easier to work with distributions onP(B).

Restricted to
P ((0, 1), (1, 0))

Restricted to
P ((0, 1), (1, 1))

Periodic distr. on Z2
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1.4 The protocol

We now prove Theorem 1. First, recall the following definition.

DEFINITION 4 For x ∈ Rn, x mod P(B) is the uniquey ∈ P(B) such thatx− y ∈ L(B).

TheAM protocol:

1. Arthur selectsσ ∈ {0, 1} uniformly and a random pointt in the ballB(0, 1
2

√
nd). He then sends

x = (σv + t) mod P(B) to Merlin.

2. Merlin checks ifdist(x,L(B)) < dist(x, v + L(B)). If so, he responds withτ = 0; otherwise, he
responds withτ = 1.

3. Arthur accepts if and only ifτ = σ.

REMARK 3 For simplicity, we ignore issues of finite precision; these can be dealt with by standard tech-
niques. One issue that we do want to address is how to choose a point from the ballB(0, R) uniformly
at random. One option is to use known algorithms for sampling (almost) uniformly from arbitrary convex
bodies, and apply them to the case of a ball. A simpler solution is the following. Taken independent
samplesv1, . . . , vn ∈ R from the standard normal distribution and letv be the vector(v1, . . . , vn) ∈ Rn.
Thenv is distributed according to the standardn-dimensional Gaussian distribution, which is rotationally
invariant. Now, chooser from the distribution on[0, R] whose probability density function is proportional
to rn−1 (this corresponds to then− 1-dimensional surface area of a sphere of radiusr). The vector r

‖v‖v is
distributed uniformly inB(0, R).

CLAIM 4 (COMPLETENESS) If dist(v,L(B)) >
√

nd then Arthur accepts with probability 1.

PROOF: Assumeσ = 0. Then

dist(x,L(B)) = dist(t,L(B)) ≤ ‖t‖ ≤ 1
2
√

nd.

On the other hand,

dist(x, v + L(B)) = dist(t, v + L(B)) = dist(t− v,L(B)) ≥ dist(v,L(B))− ‖t‖ >
1
2
√

nd.

Hence, Merlin answers correctly and Arthur accepts. The caseσ = 1 is similar.2

CLAIM 5 (SOUNDNESS) If dist(v,L(B)) ≤ d then Arthur rejects with some constant probability.

PROOF: Let y be the difference betweenv and its closest lattice point. Soy is such thatv − y ∈ L(B)
and‖y‖ ≤ d. Let η0 be the uniform distribution onB(0, 1

2

√
nd) and letη1 be the uniform distribution on

B(y, 1
2

√
nd). Notice that the point Arthur sends can be equivalently seen as a point chosen fromησ reduced

moduloP(B). Accordingly to Corollary 3,∆(η0, η1) is smaller than1− δ. Hence,

∆(η0 mod P(B), η1 mod P(B)) ≤ ∆(η0, η1) < 1− δ

and Arthur rejects with probability at leastδ. 2
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2 NP-hardness

In this section we show that, based on the following theorem of [1],GapCVP√n is unlikely to beNP-hard,
even under Cook reductions.

THEOREM 6 GapCVP√n ∈ NP∩ coNP

A similar proof shows that, based on Theorem 1,GapCVP√
n/ log n

is unlikely to beNP-hard. However,

for simplicity, we show this only for a
√

n gap.
First, let us consider the simpler case of Karp reductions. If a problem incoNPis NP-hard under a Karp

reduction (i.e., there is a many-to-one reduction from SAT to our problem) then the following easy claim
shows thatNP⊆ coNP(and hence the polynomial hierarchy collapses).

CLAIM 7 If a promise problemΠ = (ΠYES, ΠNO) is in coNPand isNP-hard under Karp reductions, then
NP⊆ coNP.

PROOF: Take any languageL in NP. By assumption, there exists an efficient procedureR that maps any
x ∈ L to R(x) ∈ ΠYES and anyx /∈ L to R(x) ∈ ΠNO. SinceΠ ∈ coNP, we have anNP verifierV such
that for anyy ∈ ΠNO there exists aw such thatV (y, w) accepts, and for anyy ∈ ΠYES and anyw, V (y, w)
rejects. Consider the verifierU(x, ω) given byV (R(x), ω). Notice that for allx /∈ L there exists aw such
thatU(x,w) accepts and moreover, for allx ∈ L and allw U(x,w) rejects. Hence,L ∈ coNP. 2

The case of Cook reductions requires some more care. For starters, there is nothing special about a
problem incoNP that is NP-hard under Cook reductions (for example,coSAT is such a problem). Instead,
we would like to show that if a problem inNP∩ coNP is NP-hard under Cook reductions, the polynomial
hierarchy collapses. This implication is not too difficult to show fortotal problems (i.e., languages). How-
ever, we are dealing withpromiseproblems and for such problems this implication is not known to hold
(although still quite believable). In a nutshell, the difficulty arises because a Cook reduction might perform
queries that are neither aYES instance nor aNO instance and for such queries we have no witness.

This issue can be resolved by using the fact that not onlyGapCVP√n ∈ NP but alsoCVP ∈ NP. In
other words, no promise is needed in order to show that a point is close to the lattice. In the following, we
show that any problem with the above properties is unlikely to be NP-hard.

LEMMA 2 Let Π = (ΠYES, ΠNO) be a promise problem and letΠMAYBE denote all instances outside
ΠYES∪ΠNO. Assume thatΠ is in coNPand that the (non-promise) problemΠ′ = (ΠYES∪ΠMAYBE , ΠNO)
is in NP. Then, ifΠ is NP-hard under Cook reductions thenNP ⊆ coNP and the polynomial hierarchy
collapses.

PROOF: Take any languageL in NP. By assumption, there exists a Cook reduction fromL to Π. That
is, there exists a polynomial time procedureT that solvesL given access to an oracle forΠ. The oracle
answersYES on queries inΠYES andNO on queries inΠNO. Notice, however, that its answers on queries
from ΠMAYBE are arbitrary and should not affect the output ofT .

SinceΠ ∈ coNP, there exists a verifierV1 and a witnessw1(x) for everyx ∈ ΠNO such thatV1 accepts
(x,w1(x)). Moreover,V1 rejects(x,w) for any x ∈ ΠYES and anyw. Similarly, sinceΠ′ ∈ NP, there
exists a verifierV2 and a witnessw2(x) for everyx ∈ ΠYES ∪ ΠMAYBE such thatV2 accepts(x,w2(x)).
Moreover,V2 rejects(x,w) for anyx ∈ ΠNO and anyw.

We now show thatL is in coNPby constructing anNP verifier. LetΦ be an input toL and letx1, . . . , xk

be the set of oracle queries whichT performs on inputΦ. Our witness consists ofk pairs, one for eachxi.
For xi ∈ ΠNO we include the pair(NO, w1(xi)) and for xi ∈ ΠYES ∪ ΠMAYBE we include the pair
(YES, w2(xi)). The verifier simulatesT ; for each queryxi that T performs, the verifier reads the pair
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corresponding toxi in the witness. If the pair is of the form(YES, w) then the verifier checks thatV2(xi, w)
accepts and then returnsYES to T . Similarly, if the pair is of the form(NO, w) then the verifier checks that
V1(xi, w) accepts and then returnsNO to T . If any of the calls toV1 or V2 rejects, then the verifier rejects.
Finally, if T decides thatΦ ∈ L, the verifier rejects and otherwise it accepts.

The completeness follows easily. More specifically, ifΦ /∈ L then the witness described above will
cause the verifier to accept. In order to prove soundness, assume thatΦ ∈ L and let us show that the verifier
rejects. Notice that for each queryxi ∈ ΠNO the witness must include a pair of the form(NO, w) because
otherwiseV2 would reject. Similarly, for each queryxi ∈ ΠYES the witness must include a pair of the form
(YES, w) because otherwiseV1 would reject. This implies thatT receives the correct answers for all of its
queries insideΠNO ∪ ΠYES and must therefore output the correct answer, i.e., thatΦ ∈ L and then the
verifier rejects.2
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