Tel Aviv University, Fall 2004 Lecture 12 Lecturer: Oded Regev
Lattices in Computer Science ~ Average-case Hardness Scribe: Elad Verbin

Traditionally, lattices were used as tools in cryptanalysis, that is, as toddeeaking cryptographic
schemes. We have seen an example of such an application in a previous lecture. In 1996, Ajtai made a
surprising discovery: lattices can be usedaostructcryptographic scheme§]f His seminal work sparked
great interest in understanding the complexity of lattice problems and their relation to cryptography.

Ajtai’s discovery is interesting for another reason: the security of his cryptographic scheme is based on
theworst-case hardnes¥ lattice problems. What this means is that if one succeeds in breaking the crypto-
graphic scheme, even with some small probability, then one can alsoasghuestance of a certain lattice
problem. This remarkable property is what makes lattice-based cryptographic construction so attractive.
In contrast, virtually all other cryptographic constructions are based on agBrage-caseassumptions.

For example, in cryptographic constructions based on factoring, the assumption is that it is hard to factor
numbers chosen from a certain distribution. But how should we choose this distribution? Obviously, we
should not use numbers with small factors (such as even number), but perhaps there are other numbers that
we should avoid? In cryptographic constructions based on worst-case hardness, such questions do not even
arise.

Let us describe Ajtai’s result more precisely. The cryptographic construction givéhiglnown as a
family of one-way functiong\jtai proved that the security of this family can be based on the worst-case hard-
ness of thex“-approximate&sVP for some constant. In other words, the ability to invert a function chosen
from this family with non-negligible probability implies an ability to solaayinstance ofh.“-approximate
SVP. Shortly after, Goldreich et al4] improved on Ajtai’s result by constructing a stronger cryptographic
primitive known as a family otollision resistant hash functions (CRHRluch of the subsequent work
concentrated on decreasing the constdittereby improving the security assumptic8)5, 6]. In the most
recent work, the constant is essentiaily 1.

Shortly after [], on a different but related direction of research, Ajtai and Dw@kdonstructed a
public-key cryptosystemvhose security is based on the worst-case hardness of lattice problems. Several
improvements were given in subsequent wodks/]. We should mention that unlike the case of one-way
functions and CRHF, the security of all known lattice-based public-key cryptosystems is based on a special
case ofSVP known as uniqué&VP. The hardness of this problem is not understood so well, and it is an
open question whether one can base public-key cryptosystems on the (worst-case) hai$viess of

1 Our CRHF

In this lecture, we present a CRHF based on the worst-case hardn@gafapproximateSIVP. This
construction is a somewhat simplified version of the on&jn\\Ve remark that it is possible to improve the
security assumption t@(n)—approximateSlVP, as was done irg]. We will indicate how this can be done
in Sectiord. Let us first recall the definition &IVP.

DEFINITION 1 (SIVP,) Given abasisB € Z"*", find a set of: linearly independent vectors ifi(B) each
of length at mosy A\, (L(B)).

The transference theorem of Banaszczyk, which we saw in the last lecture, shows that a sofiltih, to
implies a solution to (the optimization variant &YP,,.,,. This is achieved by simply solvin§lVP., on
the dual lattice. Therefore our CRHF construction is also based on the worst-case hard@¢s$)ef
approximatesVP. We now give the formal definition of a CRHF.

)
n=1"

DEFINITION 2 A family of collision resistant hash functions (CRHF) is a sequeife} where each

F, is a family of functiong : {0, 1} — {0, 1}*("), with the following properties.

1. There exists an algorithm that given any> 1 outputs a random element &%, in time polynomial
inn.

2. Every functionf € F, is efficiently computable.

3. Foranyc > 0, there is no polynomial-time algorithm that with probability at Ie%sigiven arandom
f € F, outputsz, y such thatr # y and f(z) = f(y) (i.e., there is no polynomial-time algorithm
that with non-negligible probability finds a collision).

REMARK 1 We usually consider functions frof0, 1}™ to {0, 1}* for m > k so that collisions are guar-
anteed to exist. If no collisions exist, the last requirement is trivially void.

REMARK 2 The more standard notion offamily of one-way function€OWF) is defined similarly, where
instead of the last requirement we have the following:

3. Foranyc > 0, there is no polynomial-time algorithm that with probability at Ie%sigiven arandom
f € F, and the valuef(z) for a randomz € {0,1}™, outputsy suchf(z) = f(y) (i.e., there is
no polynomial-time algorithm that with non-negligible probability inverts the function on a random
input).

It is easy to see that any CRHF is in particular a OWF. We remark that both are important primitives in
cryptography, but we will not expand on this topic.

Our CRHF is essentially the modular subset-sum function d{)eas defined next. It is parameterized
by two functionsm = m(n), ¢ = q(n).

DEFINITION 3 Foranyay,...,an, € Zy, definef,, ., asthe function fronf0, 1}™ to {0, 1}"1°84 given
by

m
fal,...7am(bl, ceey bm) = Z biai mod q.
=1
Then, we define the famil, as the set of functionf,,q,, forall as, ..., a,, € Z?.

This family clearly satisfies the first two properties of a CRHF. Our main theorem below shows that for
a certain choice of parameters, the existence of a “collision finder” (i.e., an algorithm that violates the third
property of a CRHF) implies a solution 8VP,3).

THEOREM4 Letq = 22" andm = 4n?. Assume that there exists a polynomial-time algorit@oiLi-
SIONFIND that given random elements, . .., a,, € Zjy findsby, ..., b, € {—1,0,1}, not all zero, such
that > " | bia; = 0 (mod ¢) with probability at least.~“ for some constant, > 0. Then there is a
polynomial-time algorithm that solvésVP,3) on any lattice.

Notice that for this choice of parameters,> n log ¢ so collisions are guaranteed to exist. The proof is
based on the idea of smoothing a lattice by Gaussian noise, which is described in the next section.

2 The Smoothing Parameter

Fors > 0 andz € R"™ definevs(x) = ps(x)/s™. This is the Gaussian probability density function with
parametes. As we have seen in the last lecture, a vector chosen randomly accordindpés length at
most+/ns with probability 1 — 2= In this section we are interested in understanding what happens
when we take the ‘uniform’ distribution on a lattice and add Gaussian noise to it. An illustration of this is
shown in Figuréll. The four plots show the distribution obtained with four different values ®fotice that

as we add more Gaussian noise, the distribution becomes closer to uniform. Our goal in this section is to

Figure 1:A lattice distribution with different amounts of Gaussian noise

analyze this formally and understand how lasgeas to be for this to happen. This will play a crucial role
in the proof of the main theorem.
To make the above formal, we ‘work modulo the parallelepiped’, as was described in Lecture 7. Namely,
the statement we wish to prove is that for large enoyghwe reduce the distribution; moduloP(B), we
obtain a distribution that is very close to uniform o{B). This is done in the following lemma.

LEMMA 5 Let A be a lattice with basis3. Then, the statistical distance between the uniform distribution
onP(B) and the distribution obtained by sampling fremand reducing the result moduf®(B) is at most

301/5(A*\ {0}).

PROOF. We need to calculate the statistical distance between the following two density functit{€39n

U(z) =

det(ay — det(d)

and

Y(2) = $ vo(a) = Sinps(x +A).

2’/ s.t.z’ mod P(B)=x
Using the Poisson summation formula and properties of the Fourier transform, we obtain

Y(): —det A* Z pl/s 27ri<w,a:)

weEA*

=det(A") [1+ Z p1/s(w) - e?ritw)
weAn\{0}

So,

1

AY,U) =1 /P UCRUETE

1
< — . — *
< §vol(P(B)) - max (Y (x) — det(A")

1 * Ti{w,T
= §det(A) - det(A)xg%)aé) Z p1/s(w) - e?rilw)
weA*\{0}

< %det(A) - det(A™) Z ‘P1/s(w)‘
weA*\{0}
= 305"\ o)

where the last inequality uses the triangle inequality.

The above lemma motivates the following definition.

DEFINITION 6 For anye > 0, we define themoothing parametef A with parameter as the smallest
such thatp /(A" \ {0}) < ¢ and denote it by (A).

To see why this is well-defined, notice that,(A*\ {0}) is a continuous and strictly decreasing function
of s with lims_. py /(A" \ {0}) = oo andlim;_.« p1/s(A* \ {0}) = 0. Using this definition, the lemma
can be restated as follows: for any> 7.(A), the statistical distance between the uniform distribution on
P(B) and the distribution obtained by sampling framand reducing the result moduf®(B) is at most
3¢. In the rest of this section, we relage(A) to other lattice parameters.

CLAIM 7 Foranye < 5 we havey.(A) >

1
100 (A"

PROOE Lets = ﬁ and lety € A* be of norm\;(A*). Then

A* > — e mly/ MNP o s T
p1/s(A"\{0}) > p1/s(y) =€ T
Using Banaszczyk’s transference theorem, we immediately obtain the following corollary.

COROLLARY 8 For anye < 1= We haven.(A) > 1), (A).

CLAIM 9 Foranye > 27" . (A) < ﬁ\/f)

PROOF: Lets = /n/A1(A*). Our goal is to prove that; /(A* \ {0}) < 27"*!. Then,

P1/S(A* \ {0}) = P(SA* \ {O}) < 2—n+1

where the inequality follows from a corollary we saw in the previous lecture togethenw(itA*) > /n.
(]

Using the easy direction of the transference theorem, we obtain the following corollary.
COROLLARY 10 Foranye > 27"+ 5 (A) < /nA,(A).

We remark that it can be shown that{A) < logn - A, (A) fore > n=1°8" (see Lemmds).

4

3 Proof of Theorem4

Our goal is to describe an algorithm that sol%¢P,,,3) on any given latticé\ using calls taCOLLISION-

FIND (as defined in Theored). The core of the algorithm is the proced#®iDV ECTORpresented below.

In this procedure and elsewhere in this section, we fixben~1°6™ and recall that we chooge= 22" and

m = 4n?. The output ofFINDV ECTORis some random short lattice vector. As we shall see later, by calling

FINDVECTORenough times, we can obtain a setwdhort linearly independent vectors, as required.
Roughly speakingrINDV ECTORWoOrks as follows. It first chooses vectorsey, . . ., z,, independently

from the Gaussian distribution; wheres is close to the smoothing parameter of the lattice. Since the

smoothing parameter is not much bigger thgn these vectors are short. Then, these vectors are reduced

moduloP(B) to obtainy, ..., y,. By Lemmab, each ofyi,...,y,, is distributed almost uniformly in

P(B). We now partitionP(B) into a very fine grid containing™ cells (see Figur2). Each cell naturally

corresponds to an element®} and we define; € Zj as the element corresponding to the cell containing

yi- Notice that each; is distributed almost uniformly iZ;. We can therefore appl£OLLISIONFIND to

ai, ..., a, and obtain & 1,0, 1}-combination of them that sums to zeroZij. We then notice that the

same combination applied tq, .. ., z,, is: (i) a short vector (since eaalj is short and the coefficients are

at mostl is absolute value) (ii) extremely close to a lattice vector (which must therefore be short as well).

The procedure outputs this close-by lattice vector.

Figure 2:Partitioning a basic parallelepiped inté parts

Procedure 1FINDVECTOR
Input: A lattice A given by an LLL-reduced basiB, and a parametey satisfying2n.(A) < 77 < 4n.(A).
Output: A (short) element of\, or a messageAlL.

1: For eachi € {1,...,m} do the following:

2: Choose a random vectaf from distributiony;;

3 Lety; = x; mod P(B)

4. Consider the sub-parallelepiped containipgLet a; be the element oZ; corresponding to it, and

let z; be its “lower-left” corner. In symbolsy; = [¢B~'y;| andz; = Ba;/q = B|¢B 'y;]/q.
5: RUnCOLLISIONFIND on (ay, ..., a.). If it fails then outputFaiL. Otherwise, we obtaiby, ..., b, €
{—1,0,1}, not all zero, such that_}" | b;a; = 0 (mod q)
6: Returnd " | bi(xi — yi + 2)

Later in this section, we will prove th&NDV ECTORsatisfies the following properties:

e When it is successful, its output is a lattice vector, and with probability exponentially cldsét$o
length is at mosO (n? - \,,(A))

e Itis successful with probability at least < /2
e The distribution of its output is ‘full-dimensional’, in the sense that the probability that the output

vector lies in any fixech — 1-dimensional hyperplane is at ma@s§.

5

Based on these properties, we can now describ8i¥ie,,,s) algorithm. Given some basis of a lattice
A, the algorithm starts by applying the LLL algorithm to obtain an LLL-reduced bBsisAssume for
simplicity that we know a valug as required byFINDVECTOR We can then appl{FINDVECTOR nc0+2
times (where: ™ is the success probability @oLLISIONFIND). Among all vectors returned, we look for
n linearly independent vectors. If such vectors are found, we output them; otherwise, we fail.

By the properties mentioned above, we see that amongthe applications ofFINDVECTOR made
by our algorithm, the expected number of successful calls is at4€#8t Using standard arguments, we
obtain that with very high probability, the number of successful calls is at Ieast;%@y, Moreover, we see
that with high probability all these vectors are lattice vectors of length at @ost - \,,(A)). Finally, we
claim that these vectors containlinearly independent vectors with very high probability. Indeed, as long
as the dimension of the space spanned by the current vectors is less deuh new vector increases it by
one with probability at leasi.1. Hence, with very high probability, we findlinearly independent vectors.

It remains to explain how to find a parametgin the required range. Recall that the length of the
longest vector in an LLL-reduced basis give8"aapproximation ta\,,. Together with Corollarie8 and
10, we obtain an/22" approximation toj.(A). We can therefore apply the algorithm described above with
n+ g log n guesses off. One of them is guaranteed to be in the required range.

In the rest of this section, we show tHaiNDV ECTORsatisfies the properties mentioned above.

CLaiMm 11 If FINDVECTORdoOeS not fall, its output is a lattice vector.

PROOF. AssumingFINDV ECTORIs successful, its output is the vecler;” | bi(x; — yi + 2). Eachz; — y;
is a lattice vector by the definition gf. Moreover,

i biz; = B i bia;/q
i—1 i—1

is a lattice vector because’” | b;a;/q is an integer vectof]

The following claim shows that wheRINDVECTOR is successful, its output is a short vector. By
combining the bound below with Corolla@yd and our choice ofn, we obtain a bound aP(n? - \,,(A)) on
the length of the output.

CLAIM 12 If 7 > n-(A), the probability thatFINDV ECTOROutputs a vector of length||v|| > 2m - /n -7,
is at mos2 ("),

PROOF Using the triangle inequality and the fact tihate {—1,0, 1} we get that

m m m
< bil - Ml =i+ zll <D Ml + > 2 — wall-
i=1 =1 i=1

We bound the two terms separately. First, eacls chosen independently from the distributian As we
saw in the previous lecture, the probability that|| > 7 - /n is at mos2 ("), So the contribution of the
first term is at mostn+/nij except with probabilityn - 272" = 2-0(n),

We now consider the second term. By the definition;pbothy; andz; are in the same sub-parallelepiped,
S0||z; — il < % -diam(P(B)). This quantity is extremely small: indeed, by our choice ahd Corollary
8 we obtain

H ibz(l‘z —¥i +)
i=1

lzi — il < 272 L on. An(A) < 27 .y 2" . n-(A) <7
where we used tha? is LLL-reduced and therefore

diam(P(B)) < n-2"- A\, (A).

CLAM 13 If 7 > n-(A), algorithmFINDV ECTOR succeeds with probability at Iea%t- n=°,

PrROOF. By definition, CoLLISIONFIND succeeds on a uniformly random input with probability at least
n~c. So it would suffice to show that the input we provideQoLLISIONFIND is “almost uniform”, i.e.,
that the statistical distance between thduple (a1, ..., a,,) and the uniform distribution om-tuples of
elements irZy is negligible.

To show this, notice that by Lemr#athe statistical distance between the distribution of eaemnd the
uniform distribution orP(B) is at most%pl/ﬁ(A* \ {0}). By our assumption of), this quantity is at most
1e, which is negligible.

Now consider the functiorf : P(B) — Zj given by f(y) = |¢qB~ 1y € Zg. Then we can write
a; = f(y;). Moreover, it is easy to see that on input a uniform pgiim P(B), f(y) is a uniform element
of Z; . These two observations, combined with the fact that statistical distance cannot increase by applying a
function, imply that the statistical distance betwegand the uniform distribution oAy is negligible. Since
thea,; are chosen independently, the distance betweemtheple(a;, . . ., a,,) and the uniform distribution
on(Zg)™ is at mostn times larger, which is still negligible. To summarize, we have the following sequence
of inequalities:

A((ar, .- am), (U(Zy))™) < ZA(% U(Zy)) =
i=1

= m- A(f(v mod P(B)), [(U(P(B))) <
< m - A(v; mod P(B),U(P(B))) <

<m-e.

Sincem - € = 4n? - n~'°8" is a negligible function, we are dongl

It remains to prove that the output BINDV ECTORIs full-dimensional. (Notice that so far we haven’t
even excluded the possibility that its output is constantly the zero vector!) We cannot make any assumptions
on the behavior o€oLLISIONFIND, and we need to argue that even if it ‘acts maliciously’, the vectors given
by FINDVECTORare full-dimensional. Essentially, the idea is the following. We note@atLISIONFIND
is only given thea;. From this, it can deduce thg and also they; to within a good approximation. But,
as we show later, it still has lots of uncertainty about the vectarsonditioned on any fixed value fay,
the distribution ofz; is full-dimensional. So no matter wh&oLLISIONFIND does, the distribution of the
output vector is full-dimensional.

To argue this formally, it is helpful to imagine that the vectorsare chosemfter we call COLLISION-
FIND. This is done by introducing the following ‘virtual’ proceduFeNDVECTOR. We use the notation
D, , to denote the probability obtained by conditioningon the outcome: satisfyingz mod P(B) = v.
More precisely, for any € A + y,

Vs(x) _ ps('r)
vs(Ay) ps(A+y)

We only useFINDV ECTOR in our analysis and therefore it doesn’t matter that we don’t have an efficient way
to sample fromD, ,. The important thing is that its output distribution is identical to thatiefDVECTOR

We complete the analysis with the following lemma. It shows thatsfor +/2n.(A) and anyn —
1-dimensional hyperplané/, the probability that a vectar chosen fromD;, , is in H is at most0.9.
This implies that the same holds for the output distributioFofoVECTOR (and hence also for that of
FINDVECTOR). Indeed, consider Stéh Not all b; are zero, so assume for simplicity that= 1. Then for
the output of the procedure to be in some- 1-dimensional hyperplan#, the vectorz; must also be in
some hyperplane (namel§f + v — z1 — >, bi(z; — y; + 2)), which happens with probability at most
0.9.

Pr[D,, =x] =

Procedure 2FINDVECTOR
Input: A lattice A given by an LLL-reduced basiB, and a parameter satisfying2n.(A) < 77 < 4n.(A).
Output: A (short) element ofA, or a messagealL.
Foreach € {1,...,m} do the following:
Choosey; according to the distribution; mod P(B)
Definea; = |¢B~'y;] andz; = Ba;/q = BlqB v /q.
RunCoOLLISIONFIND on (ay, ..., as). Ifit fails then outputrFaiL. Otherwise, we obtaiby, ..., b, €
{—1,0,1}, not all zero, such that_;" | bja; = 0
For eachi € {1,...,m}, chooser; from the distributionDj ,,
Returnd"", b;(z; — yi + 2;)

LEMMA 14 For s > v/21.(A), anyy and anyn — 1-dimensional hyperplan&, Pr,.p, [z € H] < 0.9.
PROOF. Letu € R™ be a unit vector and € R be such thaf{ = {z € R" | (x,u) = c}. Without loss of
generality, we can assume that (1,0, ...,0) so(z,u) = x;. Clearly, it is enough to show that

] —

Eop,,le ™5] < 0.9,

The left hand side can be written as

Ps() —m(H1=5)2 1 —r|| 22 —m(EL=C)2
—— " € s = e s e s .
2 ps(A+y) ps(A+y) 2

xeA—l-y zEA+yY

We now analyze this expression. Using the Poisson summation formula and the factthatA),
ps(A +y) =det A* - Z p1/s(w 2T w:y) >detA*-s"-(1—¢).
weA*

To analyze the sum, we define

T17Cy2
)

|22, (

g(z):=e

_ o @it (@—o)?+aittar)

[V

_T c —

27 e

(V2(@1—30)* +ad+-+a7)

w‘*

(&

»

From this we can see that the Fourier transform & given by

T 62 . wi\2 2
G(w) = e 22 . 627r7,w1(—%c) . Sn—l . i . _7"5 (() Fwy - Fw?)
g(w) 7
and in particular,
. s" ()2 w4 tuwd) _ S
w) < —-e V2 2 < —. w).
gw)l < = < 75 Pua@)
We can now apply the Poisson summation formula and obtain
STL
A +y) = det A* 2T wY) < et A* <detA*“—(1+4¢
g(A+y) Z Z 19(w)] #1Te)
weA weA
where the last inequality follows from> \/inE(A). Combining the two bounds, we obtain
z—c A*s™(1 2
Epup,,le ™7)% < det A"s™(1 +¢)/v2 <0.9.

det A*sn(1 — ¢)

4 Possible Improvements and Some Remarks

The reduction we presented here shows how to sBIV®,,,3) using a collision finder. The best known

reduction B] achieves a solution t‘éIVPO(n), where the) hides polylogarithmic factors. This improvement
is obtained by adding three more ideas to our reduction:

1. Use the bound.(A) < logn - A, (A) fore =n~ logn described below in Lemmi#s. This improves
the approximation factor t@(n?-%).

2. It can be shown that the summands)af” ; b;(z; — y; + z;) add up like random vectors, i.e., with
cancellations. Therefore, the total norm is proportional/te and notm. This means that one can
improve the bound in Clairi2 to O(y/m - /n - 7j). Together with the previous improvement, this
gives an approximation factor 6f(n'-5).

3. The last idea is to use dterative algorithm In other words, instead of obtaining an approximate
solution toSIVP in one go, we obtain it in steps: starting with a set of long vectors, we repeatedly
make it shorter by replacing long vectors with shorter ones. This allows us to choose a smaller value
of ¢, say,q = n'°, which in turn allows us to choose = é(n). This smaller value ofn makes the
length of the resulting basis ony(n) - A,,(A). SeeB] for more details.

Let us also mention two modifications to the basic reduction. First, notice that it is eno@gh. if

LISIONFIND returns coefficients,, ..., b, that are “small”, and not necessarily {p-1,0, 1}. So finding
small solutions to random modular equations is as hard as worst-case lattice problems. Another possible
modification is to partition the basic parallelepiped ipt@s- - - - p,, parts for some primegy, ..., p, (in-

stead ofg™ parts). This naturally gives rise to the grotdp, x --- x Z,, = Z;,..,,,. Hence, we see that
finding small solutions to a random equationZ; (for an appropriatéV) is also as hard as worst-case
lattice problems.

Finally, we note that the basic reduction presented in the previous section-{adaptiven the sense
that all oracle queries can be made simultaneously. In contrast, in an adaptive reduction, oracle queries
depend on answers from previous oracle queries and therefore cannot be made simultaneously. If we apply
the iterative technique outlined above in order to gain an extiain the approximation factor, then the
reduction becomes adaptive.

4.1 A Tighter Bound on the Smoothing Parameter
LEMMA 15 Lete = n~'°8", Then for any lattice\, 1. (A) < logn - A, (A).

This lemma is essentially tight: consider, for instance, the lattiee Z". Then clearly\,(A) = 1. On
the other hand, the dual lattice is al&b and we can therefore lower boupg, (A* \ {0}) by (say)e ™.
To make this quantity at most s should be at lea$?(log n) and hence).(A) > Q(logn).
PROOE Letwy,...,v, be a set oh linearly independent vectors ik of length at most\,,(A) (such a set
exists by the definition of,,). Takes = logn - A,(A). Our goal is to show thas; /,(A* \ {0}) is smaller
thane. The idea is to show that for ea¢halmost all the contribution tp, ;,(A*) comes from vectors in*
that are orthogonal to;. Since this holds for all, we will conclude that almost all contribution must come
from the origin. The origin’s contribution is, hencep; ,;(A*) is essentiallyl andp; ,s(A* \ {0}) is very
small.

Fori=1,...,nandj € Z we define

Sij={y e A | (vi,y) = j}.

If we recall the definition of the dual lattice, we see that for anthe union ofS; ; over allj € Z is A*.
Moreover, ifS; ; is not empty, then it is a translation 8f and we can write

Sij = Sio+w+ ju;

whereu; = v;/||v;||? is a vector of length /||v;|| > 1/A,(A) in the direction ofv; andw is some vector
orthogonal tav;. Using these properties, we see tha;if is not empty, then

—||jsus|?
p1/s(Sij) =e lgsuall p1/s(Sio + w)
< 6—7T||j8uiH2p1/s(Si70>

21002
< e TR (i)

where the first inequality follows from a lemma in the previous lecture. Hence,

pl/s A \SZO Zpl/s ,J
J#0

< pl/s(si,O) Z 6771']'2 log?n
J#0
< p1/s(Si0) - n-2losn < nfmognpl/s(A*)-

Sinceuy, ..., v, are linearly independent,

n

AT\ {0} = U(/Yk \ Si0)

=1
and therefore
p1/s(A"\ {0}) < Z p1/s(A"\ Sio)
i=1
<. —2logn | A*
=n-n pl/s()
n 2B (L py (A {0}).

We obtain the result by rearrangirng.

References

[1] M. Ajtai. Generating hard instances of lattice problemsPtac. of 28th STOCpages 99-108, 1996.
Available from ECCC.

[2] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equivalerrrecin
29th ACM Symp. on Theory of Computing (STQi2ges 284-293, 1997.

[3] J. Caiand A. Nerurkar. An improved worst-case to ity average-case connection for lattice problems. In
Proc. of 38th FOCSpages 468—477, 1997.

[4] O. Goldreich, S. Goldwasser, and S. Halevi. Collision-free hashing from lattice problems. Technical
report, TR96-056, Electronic Colloquium on Computational Complexity (ECCC), 1996.

10

[5] D. Micciancio. Improved cryptographic hash functions with worst-case/average-case connection. In
Proc. of 34th STOpages 609-618, 2002.

[6] D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaussian measures. In
Proc. 45th Annual IEEE Symp. on Foundations of Computer Science (F@&sds 372—-381, 2004.

[7]1 O. Regev. New lattice-based cryptographic constructidesirnal of the ACM51(6):899-942, 2004.
Preliminary version in STOC'03.

11

