
Tel Aviv University, Fall 2004
Lattices in Computer Science

Lecture 12
Average-case Hardness

Lecturer: Oded Regev
Scribe: Elad Verbin

Traditionally, lattices were used as tools in cryptanalysis, that is, as tools inbreakingcryptographic
schemes. We have seen an example of such an application in a previous lecture. In 1996, Ajtai made a
surprising discovery: lattices can be used toconstructcryptographic schemes [1]. His seminal work sparked
great interest in understanding the complexity of lattice problems and their relation to cryptography.

Ajtai’s discovery is interesting for another reason: the security of his cryptographic scheme is based on
theworst-case hardnessof lattice problems. What this means is that if one succeeds in breaking the crypto-
graphic scheme, even with some small probability, then one can also solveany instance of a certain lattice
problem. This remarkable property is what makes lattice-based cryptographic construction so attractive.
In contrast, virtually all other cryptographic constructions are based on someaverage-caseassumptions.
For example, in cryptographic constructions based on factoring, the assumption is that it is hard to factor
numbers chosen from a certain distribution. But how should we choose this distribution? Obviously, we
should not use numbers with small factors (such as even number), but perhaps there are other numbers that
we should avoid? In cryptographic constructions based on worst-case hardness, such questions do not even
arise.

Let us describe Ajtai’s result more precisely. The cryptographic construction given in [1] is known as a
family of one-way functions. Ajtai proved that the security of this family can be based on the worst-case hard-
ness of thenc-approximateSVP for some constantc. In other words, the ability to invert a function chosen
from this family with non-negligible probability implies an ability to solveany instance ofnc-approximate
SVP. Shortly after, Goldreich et al. [4] improved on Ajtai’s result by constructing a stronger cryptographic
primitive known as a family ofcollision resistant hash functions (CRHF). Much of the subsequent work
concentrated on decreasing the constantc (thereby improving the security assumption) [3, 5, 6]. In the most
recent work, the constant is essentiallyc = 1.

Shortly after [1], on a different but related direction of research, Ajtai and Dwork [2] constructed a
public-key cryptosystemwhose security is based on the worst-case hardness of lattice problems. Several
improvements were given in subsequent works [4, 7]. We should mention that unlike the case of one-way
functions and CRHF, the security of all known lattice-based public-key cryptosystems is based on a special
case ofSVP known as unique-SVP. The hardness of this problem is not understood so well, and it is an
open question whether one can base public-key cryptosystems on the (worst-case) hardness ofSVP.

1 Our CRHF

In this lecture, we present a CRHF based on the worst-case hardness ofO(n3)-approximateSIVP. This
construction is a somewhat simplified version of the one in [6]. We remark that it is possible to improve the
security assumption tõO(n)-approximateSIVP, as was done in [6]. We will indicate how this can be done
in Section4. Let us first recall the definition ofSIVP.

DEFINITION 1 (SIVPγ ) Given a basisB ∈ Zn×n, find a set ofn linearly independent vectors inL(B) each
of length at mostγλn(L(B)).

The transference theorem of Banaszczyk, which we saw in the last lecture, shows that a solution toSIVPγ

implies a solution to (the optimization variant of)SVPγ·n. This is achieved by simply solvingSIVPγ on
the dual lattice. Therefore our CRHF construction is also based on the worst-case hardness ofO(n4)-
approximateSVP. We now give the formal definition of a CRHF.

DEFINITION 2 A family of collision resistant hash functions (CRHF) is a sequence{Fn}∞n=1, where each
Fn is a family of functionsf : {0, 1}m(n) → {0, 1}k(n), with the following properties.

1. There exists an algorithm that given anyn ≥ 1 outputs a random element ofFn in time polynomial
in n.

1



2. Every functionf ∈ Fn is efficiently computable.

3. For anyc > 0, there is no polynomial-time algorithm that with probability at least1
nc , given a random

f ∈ Fn outputsx, y such thatx 6= y andf(x) = f(y) (i.e., there is no polynomial-time algorithm
that with non-negligible probability finds a collision).

REMARK 1 We usually consider functions from{0, 1}m to {0, 1}k for m > k so that collisions are guar-
anteed to exist. If no collisions exist, the last requirement is trivially void.

REMARK 2 The more standard notion of afamily of one-way functions(OWF) is defined similarly, where
instead of the last requirement we have the following:

3. For anyc > 0, there is no polynomial-time algorithm that with probability at least1
nc , given a random

f ∈ Fn and the valuef(x) for a randomx ∈ {0, 1}m, outputsy suchf(x) = f(y) (i.e., there is
no polynomial-time algorithm that with non-negligible probability inverts the function on a random
input).

It is easy to see that any CRHF is in particular a OWF. We remark that both are important primitives in
cryptography, but we will not expand on this topic.

Our CRHF is essentially the modular subset-sum function overZn
q , as defined next. It is parameterized

by two functionsm = m(n), q = q(n).

DEFINITION 3 For anya1, . . . , am ∈ Zn
q , definefa1,...,am as the function from{0, 1}m to {0, 1}n log q given

by

fa1,...,am(b1, . . . , bm) =
m∑

i=1

biai mod q.

Then, we define the familyFn as the set of functionsfa1,...,am for all a1, . . . , am ∈ Zn
q .

This family clearly satisfies the first two properties of a CRHF. Our main theorem below shows that for
a certain choice of parameters, the existence of a “collision finder” (i.e., an algorithm that violates the third
property of a CRHF) implies a solution toSIVPO(n3).

THEOREM 4 Let q = 22n and m = 4n2. Assume that there exists a polynomial-time algorithmCOLLI -
SIONFIND that given random elementsa1, . . . , am ∈ Zn

q findsb1, . . . , bm ∈ {−1, 0, 1}, not all zero, such
that

∑m
i=1 biai = 0 (mod q) with probability at leastn−c0 for some constantc0 > 0. Then there is a

polynomial-time algorithm that solvesSIVPO(n3) on any lattice.

Notice that for this choice of parameters,m > n log q so collisions are guaranteed to exist. The proof is
based on the idea of smoothing a lattice by Gaussian noise, which is described in the next section.

2 The Smoothing Parameter

For s > 0 andx ∈ Rn defineνs(x) = ρs(x)/sn. This is the Gaussian probability density function with
parameters. As we have seen in the last lecture, a vector chosen randomly according toνs has length at
most

√
ns with probability 1 − 2−Ω(n). In this section we are interested in understanding what happens

when we take the ‘uniform’ distribution on a lattice and add Gaussian noise to it. An illustration of this is
shown in Figure1. The four plots show the distribution obtained with four different values ofs. Notice that
as we add more Gaussian noise, the distribution becomes closer to uniform. Our goal in this section is to

2



Figure 1:A lattice distribution with different amounts of Gaussian noise

analyze this formally and understand how larges has to be for this to happen. This will play a crucial role
in the proof of the main theorem.

To make the above formal, we ‘work modulo the parallelepiped’, as was described in Lecture 7. Namely,
the statement we wish to prove is that for large enoughs, if we reduce the distributionνs moduloP(B), we
obtain a distribution that is very close to uniform overP(B). This is done in the following lemma.

LEMMA 5 Let Λ be a lattice with basisB. Then, the statistical distance between the uniform distribution
onP(B) and the distribution obtained by sampling fromνs and reducing the result moduloP(B) is at most
1
2ρ1/s(Λ∗ \ {0}).
PROOF: We need to calculate the statistical distance between the following two density functions onP(B):

U(x) =
1

det(Λ)
= det(Λ∗)

and

Y (x) =
∑

x′ s.t.x′ mod P(B)=x

νs(x′) =
1
sn

ρs(x + Λ).

Using the Poisson summation formula and properties of the Fourier transform, we obtain

Y (x) =
1
sn

det(Λ∗) · sn ·
∑

w∈Λ∗
ρ1/s(w) · e2πi〈w,x〉

= det(Λ∗)


1 +

∑

w∈Λ∗\{0}
ρ1/s(w) · e2πi〈w,x〉


 .

3



So,

∆(Y, U) =
1
2

∫

P(B)
|Y (x)− U(x)|dx

≤ 1
2
vol(P(B)) · max

x∈P(B)
|Y (x)− det(Λ∗)|

=
1
2

det(Λ) · det(Λ∗) max
x∈P(B)

∣∣∣∣∣∣
∑

w∈Λ∗\{0}
ρ1/s(w) · e2πi〈w,x〉

∣∣∣∣∣∣

≤ 1
2

det(Λ) · det(Λ∗)
∑

w∈Λ∗\{0}

∣∣ρ1/s(w)
∣∣

=
1
2
ρ1/s(Λ

∗ \ {0})

where the last inequality uses the triangle inequality.¤
The above lemma motivates the following definition.

DEFINITION 6 For anyε > 0, we define thesmoothing parameterof Λ with parameterε as the smallests
such thatρ1/s(Λ∗ \ {0}) ≤ ε and denote it byηε(Λ).

To see why this is well-defined, notice thatρ1/s(Λ∗\{0}) is a continuous and strictly decreasing function
of s with lims→0 ρ1/s(Λ∗ \ {0}) = ∞ andlims→∞ ρ1/s(Λ∗ \ {0}) = 0. Using this definition, the lemma
can be restated as follows: for anys ≥ ηε(Λ), the statistical distance between the uniform distribution on
P(B) and the distribution obtained by sampling fromνs and reducing the result moduloP(B) is at most
1
2ε. In the rest of this section, we relateηε(Λ) to other lattice parameters.

CLAIM 7 For anyε < 1
100 we haveηε(Λ) ≥ 1

λ1(Λ∗) .

PROOF: Let s = 1
λ1(Λ∗) , and lety ∈ Λ∗ be of normλ1(Λ∗). Then

ρ1/s(Λ
∗ \ {0}) ≥ ρ1/s(y) = e−π‖y/λ1(Λ∗)‖2 = e−π >

1
100

.

¤
Using Banaszczyk’s transference theorem, we immediately obtain the following corollary.

COROLLARY 8 For anyε < 1
100 we haveηε(Λ) ≥ 1

nλn(Λ).

CLAIM 9 For anyε ≥ 2−n+1, ηε(Λ) ≤
√

n
λ1(Λ∗) .

PROOF: Let s =
√

n/λ1(Λ∗). Our goal is to prove thatρ1/s(Λ∗ \ {0}) ≤ 2−n+1. Then,

ρ1/s(Λ
∗ \ {0}) = ρ(sΛ∗ \ {0}) ≤ 2−n+1

where the inequality follows from a corollary we saw in the previous lecture together withλ1(sΛ∗) ≥
√

n.
¤

Using the easy direction of the transference theorem, we obtain the following corollary.

COROLLARY 10 For anyε ≥ 2−n+1, ηε(Λ) ≤ √
nλn(Λ).

We remark that it can be shown thatηε(Λ) ≤ log n · λn(Λ) for ε ≥ n− log n (see Lemma15).

4



3 Proof of Theorem4

Our goal is to describe an algorithm that solvesSIVPO(n3) on any given latticeΛ using calls toCOLLISION-
FIND (as defined in Theorem4). The core of the algorithm is the procedureFINDVECTORpresented below.
In this procedure and elsewhere in this section, we fixε to ben− log n and recall that we chooseq = 22n and
m = 4n2. The output ofFINDVECTOR is some random short lattice vector. As we shall see later, by calling
FINDVECTORenough times, we can obtain a set ofn short linearly independent vectors, as required.

Roughly speaking,FINDVECTORworks as follows. It first choosesm vectorsx1, . . . , xm independently
from the Gaussian distributionνη̃ where η̃ is close to the smoothing parameter of the lattice. Since the
smoothing parameter is not much bigger thanλn, these vectors are short. Then, these vectors are reduced
moduloP(B) to obtainy1, . . . , ym. By Lemma5, each ofy1, . . . , ym is distributed almost uniformly in
P(B). We now partitionP(B) into a very fine grid containingqn cells (see Figure2). Each cell naturally
corresponds to an element ofZn

q and we defineai ∈ Zn
q as the element corresponding to the cell containing

yi. Notice that eachai is distributed almost uniformly inZn
q . We can therefore applyCOLLISIONFIND to

a1, . . . , am and obtain a{−1, 0, 1}-combination of them that sums to zero inZn
q . We then notice that the

same combination applied tox1, . . . , xm is: (i) a short vector (since eachxi is short and the coefficients are
at most1 is absolute value) (ii) extremely close to a lattice vector (which must therefore be short as well).
The procedure outputs this close-by lattice vector.

zi

yi

Figure 2:Partitioning a basic parallelepiped into42 parts

Procedure 1FINDVECTOR

Input: A latticeΛ given by an LLL-reduced basisB, and a parameter̃η satisfying2ηε(Λ) ≤ η̃ ≤ 4ηε(Λ).
Output: A (short) element ofΛ, or a messageFAIL .

1: For eachi ∈ {1, . . . , m} do the following:
2: Choose a random vectorxi from distributionνη̃

3: Let yi = xi mod P(B)
4: Consider the sub-parallelepiped containingyi. Let ai be the element ofZn

q corresponding to it, and
let zi be its “lower-left” corner. In symbols,ai = bqB−1yic andzi = Bai/q = BbqB−1yic/q.

5: RunCOLLISIONFIND on (a1, . . . , am). If it fails then outputFAIL . Otherwise, we obtainb1, . . . , bm ∈
{−1, 0, 1}, not all zero, such that

∑m
i=1 biai = 0 (mod q)

6: Return
∑m

i=1 bi(xi − yi + zi)

Later in this section, we will prove thatFINDVECTORsatisfies the following properties:

• When it is successful, its output is a lattice vector, and with probability exponentially close to1, its
length is at mostO(n3 · λn(Λ))

• It is successful with probability at leastn−c0/2

• The distribution of its output is ‘full-dimensional’, in the sense that the probability that the output
vector lies in any fixedn− 1-dimensional hyperplane is at most0.9.

5



Based on these properties, we can now describe theSIVPO(n3) algorithm. Given some basis of a lattice
Λ, the algorithm starts by applying the LLL algorithm to obtain an LLL-reduced basisB. Assume for
simplicity that we know a valuẽη as required byFINDVECTOR. We can then applyFINDVECTOR nc0+2

times (wheren−c0 is the success probability ofCOLLISIONFIND). Among all vectors returned, we look for
n linearly independent vectors. If such vectors are found, we output them; otherwise, we fail.

By the properties mentioned above, we see that among thenc0+2 applications ofFINDVECTOR made
by our algorithm, the expected number of successful calls is at leastn2/2. Using standard arguments, we
obtain that with very high probability, the number of successful calls is at least, say,n2/4. Moreover, we see
that with high probability all these vectors are lattice vectors of length at mostO(n3 · λn(Λ)). Finally, we
claim that these vectors containn linearly independent vectors with very high probability. Indeed, as long
as the dimension of the space spanned by the current vectors is less thann, each new vector increases it by
one with probability at least0.1. Hence, with very high probability, we findn linearly independent vectors.

It remains to explain how to find a parameterη̃ in the required range. Recall that the length of the
longest vector in an LLL-reduced basis gives a2n approximation toλn. Together with Corollaries8 and
10, we obtain an3/22n approximation toηε(Λ). We can therefore apply the algorithm described above with
n + 3

2 log n guesses of̃η. One of them is guaranteed to be in the required range.
In the rest of this section, we show thatFINDVECTORsatisfies the properties mentioned above.

CLAIM 11 If FINDVECTORdoes not fail, its output is a lattice vector.

PROOF: AssumingFINDVECTOR is successful, its output is the vector
∑m

i=1 bi(xi − yi + zi). Eachxi − yi

is a lattice vector by the definition ofyi. Moreover,
m∑

i=1

bizi = B
m∑

i=1

biai/q

is a lattice vector because
∑m

i=1 biai/q is an integer vector.¤
The following claim shows that whenFINDVECTOR is successful, its output is a short vector. By

combining the bound below with Corollary10and our choice ofm, we obtain a bound ofO(n3 · λn(Λ)) on
the length of the output.

CLAIM 12 If η̃ ≥ ηε(Λ), the probability thatFINDVECTORoutputs a vectorv of length‖v‖ > 2m · √n · η̃
is at most2−Ω(n).

PROOF: Using the triangle inequality and the fact thatbi ∈ {−1, 0, 1} we get that

∥∥∥
m∑

i=1

bi(xi − yi + zi)
∥∥∥ ≤

m∑

i=1

|bi| · ‖xi − yi + zi‖ ≤
m∑

i=1

‖xi‖+
m∑

i=1

‖zi − yi‖.

We bound the two terms separately. First, eachxi is chosen independently from the distributionνη̃. As we
saw in the previous lecture, the probability that‖xi‖ > η̃ · √n is at most2−Ω(n). So the contribution of the
first term is at mostm

√
nη̃ except with probabilitym · 2−Ω(n) = 2−Ω(n).

We now consider the second term. By the definition ofzi, bothyi andzi are in the same sub-parallelepiped,
so‖zi − yi‖ ≤ 1

q · diam(P(B)). This quantity is extremely small: indeed, by our choice ofq and Corollary
8 we obtain

‖zi − yi‖ ≤ 2−2n · n · 2n · λn(Λ) ≤ 2−2n · n · 2n · n · ηε(Λ) ¿ η̃

where we used thatB is LLL-reduced and therefore

diam(P(B)) ≤ n · 2n · λn(Λ).

¤

6



CLAIM 13 If η̃ ≥ ηε(Λ), algorithmFINDVECTORsucceeds with probability at least1
2 · n−c0 .

PROOF: By definition, COLLISIONFIND succeeds on a uniformly random input with probability at least
n−c0 . So it would suffice to show that the input we provide toCOLLISIONFIND is “almost uniform”, i.e.,
that the statistical distance between them-tuple (a1, . . . , am) and the uniform distribution onm-tuples of
elements inZn

q is negligible.
To show this, notice that by Lemma5, the statistical distance between the distribution of eachyi and the

uniform distribution onP(B) is at most12ρ1/η̃(Λ∗ \ {0}). By our assumption oñη, this quantity is at most
1
2ε, which is negligible.

Now consider the functionf : P(B) → Zn
q given byf(y) = bqB−1yc ∈ Zn

q . Then we can write
ai = f(yi). Moreover, it is easy to see that on input a uniform pointy in P(B), f(y) is a uniform element
of Zn

q . These two observations, combined with the fact that statistical distance cannot increase by applying a
function, imply that the statistical distance betweenai and the uniform distribution onZn

q is negligible. Since
theai are chosen independently, the distance between them-tuple(a1, . . . , am) and the uniform distribution
on(Zn

q )m is at mostm times larger, which is still negligible. To summarize, we have the following sequence
of inequalities:

∆((a1, . . . , am), (U(Zn
q ))m) ≤

m∑

i=1

∆(ai, U(Zn
q )) =

= m ·∆(
f(νη̃ mod P(B)), f(U(P(B)))

) ≤
≤ m ·∆(νη̃ mod P(B), U(P(B))) ≤
≤ m · ε.

Sincem · ε = 4n2 · n− log n is a negligible function, we are done.¤
It remains to prove that the output ofFINDVECTOR is full-dimensional. (Notice that so far we haven’t

even excluded the possibility that its output is constantly the zero vector!) We cannot make any assumptions
on the behavior ofCOLLISIONFIND, and we need to argue that even if it ‘acts maliciously’, the vectors given
by FINDVECTORare full-dimensional. Essentially, the idea is the following. We note thatCOLLISIONFIND

is only given theai. From this, it can deduce thezi and also theyi to within a good approximation. But,
as we show later, it still has lots of uncertainty about the vectorsxi: conditioned on any fixed value foryi,
the distribution ofxi is full-dimensional. So no matter whatCOLLISIONFIND does, the distribution of the
output vector is full-dimensional.

To argue this formally, it is helpful to imagine that the vectorsxi are chosenafter we callCOLLISION-
FIND. This is done by introducing the following ‘virtual’ procedureFINDVECTOR′. We use the notation
Ds,y to denote the probability obtained by conditioningνs on the outcomex satisfyingx mod P(B) = y.
More precisely, for anyx ∈ Λ + y,

Pr[Ds,y = x] =
νs(x)

νs(Λ + y)
=

ρs(x)
ρs(Λ + y)

.

We only useFINDVECTOR′ in our analysis and therefore it doesn’t matter that we don’t have an efficient way
to sample fromDs,y. The important thing is that its output distribution is identical to that ofFINDVECTOR.

We complete the analysis with the following lemma. It shows that fors ≥ √
2ηε(Λ) and anyn −

1-dimensional hyperplaneH, the probability that a vectorx chosen fromDs,y is in H is at most0.9.
This implies that the same holds for the output distribution ofFINDVECTOR′ (and hence also for that of
FINDVECTOR). Indeed, consider Step5. Not all bi are zero, so assume for simplicity thatb1 = 1. Then for
the output of the procedure to be in somen − 1-dimensional hyperplaneH, the vectorx1 must also be in
some hyperplane (namely,H + y1 − z1 −

∑m
i=2 bi(xi − yi + zi)), which happens with probability at most

0.9.

7



Procedure 2FINDVECTOR′
Input: A latticeΛ given by an LLL-reduced basisB, and a parameter̃η satisfying2ηε(Λ) ≤ η̃ ≤ 4ηε(Λ).
Output: A (short) element ofΛ, or a messageFAIL .

1: For eachi ∈ {1, . . . , m} do the following:
2: Chooseyi according to the distributionνη̃ mod P(B)
3: Defineai = bqB−1yic andzi = Bai/q = BbqB−1yic/q.
4: RunCOLLISIONFIND on (a1, . . . , am). If it fails then outputFAIL . Otherwise, we obtainb1, . . . , bm ∈
{−1, 0, 1}, not all zero, such that

∑m
i=1 biai = 0

5: For eachi ∈ {1, . . . , m}, choosexi from the distributionDη̃,yi

6: Return
∑m

i=1 bi(xi − yi + zi)

LEMMA 14 For s ≥ √
2ηε(Λ), anyy and anyn− 1-dimensional hyperplaneH, Prx∼Ds,y [x ∈ H] < 0.9.

PROOF: Let u ∈ Rn be a unit vector andc ∈ R be such thatH = {x ∈ Rn | 〈x, u〉 = c}. Without loss of
generality, we can assume thatu = (1, 0, . . . , 0) so〈x, u〉 = x1. Clearly, it is enough to show that

Ex∼Ds,y [e
−π(

x1−c
s

)2 ] < 0.9.

The left hand side can be written as
∑

x∈Λ+y

ρs(x)
ρs(Λ + y)

· e−π(
x1−c

s
)2 =

1
ρs(Λ + y)

·
∑

x∈Λ+y

e−π‖x
s
‖2e−π(

x1−c
s

)2 .

We now analyze this expression. Using the Poisson summation formula and the fact thats ≥ ηε(Λ),

ρs(Λ + y) = det Λ∗ · sn
∑

w∈Λ∗
ρ1/s(w)e2πi〈w,y〉 ≥ detΛ∗ · sn · (1− ε).

To analyze the sum, we define

g(x) := e−π‖x
s
‖2e−π(

x1−c
s

)2

= e−
π
s2

(x2
1+(x1−c)2+x2

2+···+x2
n)

= e−
π
s2

c2

2 · e− π
s2

((
√

2(x1− 1
2
c))2+x2

2+···+x2
n).

From this we can see that the Fourier transform ofg is given by

ĝ(w) = e−
π
s2

c2

2 · e2πiw1(− 1
2
c) · sn−1 · s√

2
· e−πs2((

w1√
2
)2+w2

2+···+w2
n)

and in particular,

|ĝ(w)| ≤ sn

√
2
· e−πs2((

w1√
2
)2+w2

2+···+w2
n) ≤ sn

√
2
· ρ√2/s(w).

We can now apply the Poisson summation formula and obtain

g(Λ + y) = det Λ∗
∑

w∈Λ∗
ĝ(w) · e2πi〈w,y〉 ≤ detΛ∗

∑

w∈Λ∗
|ĝ(w)| ≤ detΛ∗

sn

√
2
(1 + ε)

where the last inequality follows froms ≥ √
2ηε(Λ). Combining the two bounds, we obtain

Ex∼Ds,y [e
−π(

x1−c
2

)2 ] ≤ detΛ∗sn(1 + ε)/
√

2
detΛ∗sn(1− ε)

< 0.9.

¤

8



4 Possible Improvements and Some Remarks

The reduction we presented here shows how to solveSIVPO(n3) using a collision finder. The best known

reduction [6] achieves a solution toSIVPÕ(n), where theÕ hides polylogarithmic factors. This improvement
is obtained by adding three more ideas to our reduction:

1. Use the boundηε(Λ) ≤ log n · λn(Λ) for ε = n− log n described below in Lemma15. This improves
the approximation factor tõO(n2.5).

2. It can be shown that the summands of
∑m

i=1 bi(xi − yi + zi) add up like random vectors, i.e., with
cancellations. Therefore, the total norm is proportional to

√
m and notm. This means that one can

improve the bound in Claim12 to Õ(
√

m · √n · η̃). Together with the previous improvement, this
gives an approximation factor of̃O(n1.5).

3. The last idea is to use aniterative algorithm. In other words, instead of obtaining an approximate
solution toSIVP in one go, we obtain it in steps: starting with a set of long vectors, we repeatedly
make it shorter by replacing long vectors with shorter ones. This allows us to choose a smaller value
of q, say,q = n10, which in turn allows us to choosem = Θ̃(n). This smaller value ofm makes the
length of the resulting basis onlỹO(n) · λn(Λ). See [6] for more details.

Let us also mention two modifications to the basic reduction. First, notice that it is enough ifCOL-
LISIONFIND returns coefficientsb1, . . . , bm that are “small”, and not necessarily in{−1, 0, 1}. So finding
small solutions to random modular equations is as hard as worst-case lattice problems. Another possible
modification is to partition the basic parallelepiped intop1p2 · · · pn parts for some primesp1, . . . , pn (in-
stead ofqn parts). This naturally gives rise to the groupZp1 × · · · × Zpn = Zp1···pn . Hence, we see that
finding small solutions to a random equation inZN (for an appropriateN ) is also as hard as worst-case
lattice problems.

Finally, we note that the basic reduction presented in the previous section isnon-adaptivein the sense
that all oracle queries can be made simultaneously. In contrast, in an adaptive reduction, oracle queries
depend on answers from previous oracle queries and therefore cannot be made simultaneously. If we apply
the iterative technique outlined above in order to gain an extra

√
n in the approximation factor, then the

reduction becomes adaptive.

4.1 A Tighter Bound on the Smoothing Parameter

LEMMA 15 Letε = n− log n. Then for any latticeΛ, ηε(Λ) ≤ log n · λn(Λ).

This lemma is essentially tight: consider, for instance, the latticeΛ = Zn. Then clearlyλn(Λ) = 1. On
the other hand, the dual lattice is alsoZn and we can therefore lower boundρ1/s(Λ∗ \ {0}) by (say)e−πs2

.
To make this quantity at mostε, s should be at leastΩ(log n) and henceηε(Λ) ≥ Ω(log n).
PROOF: Let v1, . . . , vn be a set ofn linearly independent vectors inΛ of length at mostλn(Λ) (such a set
exists by the definition ofλn). Takes = log n · λn(Λ). Our goal is to show thatρ1/s(Λ∗ \ {0}) is smaller
thanε. The idea is to show that for eachi, almost all the contribution toρ1/s(Λ∗) comes from vectors inΛ∗

that are orthogonal tovi. Since this holds for alli, we will conclude that almost all contribution must come
from the origin. The origin’s contribution is1, henceρ1/s(Λ∗) is essentially1 andρ1/s(Λ∗ \ {0}) is very
small.

For i = 1, . . . , n andj ∈ Z we define

Si,j = {y ∈ Λ∗ | 〈vi, y〉 = j}.

9



If we recall the definition of the dual lattice, we see that for anyi, the union ofSi,j over all j ∈ Z is Λ∗.
Moreover, ifSi,j is not empty, then it is a translation ofSi,0 and we can write

Si,j = Si,0 + w + jui

whereui = vi/‖vi‖2 is a vector of length1/‖vi‖ ≥ 1/λn(Λ) in the direction ofvi andw is some vector
orthogonal tovi. Using these properties, we see that ifSi,j is not empty, then

ρ1/s(Si,j) = e−π‖jsui‖2ρ1/s(Si,0 + w)

≤ e−π‖jsui‖2ρ1/s(Si,0)

≤ e−πj2 log2 nρ1/s(Si,0).

where the first inequality follows from a lemma in the previous lecture. Hence,

ρ1/s(Λ
∗ \ Si,0) =

∑

j 6=0

ρ1/s(Si,j)

≤ ρ1/s(Si,0)
∑

j 6=0

e−πj2 log2 n

≤ ρ1/s(Si,0) · n−2 log n ≤ n−2 log nρ1/s(Λ
∗).

Sincev1, . . . , vn are linearly independent,

Λ∗ \ {0} =
n⋃

i=1

(Λ∗ \ Si,0)

and therefore

ρ1/s(Λ
∗ \ {0}) ≤

n∑

i=1

ρ1/s(Λ
∗ \ Si,0)

≤ n · n−2 log n · ρ1/s(Λ
∗)

= n−2 log n+1(1 + ρ1/s(Λ
∗ \ {0})).

We obtain the result by rearranging.¤

References

[1] M. Ajtai. Generating hard instances of lattice problems. InProc. of 28th STOC, pages 99–108, 1996.
Available from ECCC.

[2] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equivalence. InProc.
29th ACM Symp. on Theory of Computing (STOC), pages 284–293, 1997.

[3] J. Cai and A. Nerurkar. An improved worst-case to ity average-case connection for lattice problems. In
Proc. of 38th FOCS, pages 468–477, 1997.

[4] O. Goldreich, S. Goldwasser, and S. Halevi. Collision-free hashing from lattice problems. Technical
report, TR96-056, Electronic Colloquium on Computational Complexity (ECCC), 1996.

10



[5] D. Micciancio. Improved cryptographic hash functions with worst-case/average-case connection. In
Proc. of 34th STOC, pages 609–618, 2002.

[6] D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaussian measures. In
Proc. 45th Annual IEEE Symp. on Foundations of Computer Science (FOCS), pages 372–381, 2004.

[7] O. Regev. New lattice-based cryptographic constructions.Journal of the ACM, 51(6):899–942, 2004.
Preliminary version in STOC’03.

11


