Tel Aviv University, Fall 2004 !_ecture 9 Lecturer: Oded Regev
Lattices in Computer Science Fourier Transform Scribe: Gillat Kol

In this lecture we describe some basic facts of Fourier analysis that will be needed later. The first section
discusses the Fourier transform, and the second discusses the Fourier series. We start each section with the
more familiar case of one-dimensional functions and then extend it to the higher dimensional case. As a
general rule, we will not worry too much about issues of convergence, differentiability etc., as these will
always be satisfied in our applications.

1 Fourier Transform

1.1 The one-dimensional case

DEFINITION 1 We define.!(R) as the set of functions : R — C satisfying[~°_|f(z)|dz < co.

DEFINITION 2 For a functionf € L'(R) define its Fourier transform as the functigh R — C given by
fo) = [ fayemivds

For example, the Fourier transform at pairis f(0) = [°°_ f(z)dz.

f(x):{1 if |z <a

0 otherwise

ExaMPLE 1 Define

Then,

f(y) _ /a 6—27T’i$ydx _ 6727riay _ eQm'ay _ sin(27my)
—a —2miy yr
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Figure 1: f(z) and f (y)

EXAMPLE 2 Let f(z) = e ™(3)” for somes > 0. Then,

oo 0 .
f(y) :/ e—ﬂ(%)26_2mzyd$ :/ efﬂ(i—z+2zxy)dl_

—0o0 —00

We now perform a (complex) change of variable- 7 + iys (which is possible by Cauchy’s theorem), and
see that the above is equal to

o0
_ 2 2 _ 2
s-e”(ys)/ e dz =5 e W),

—0o0

Notice that fors = 1 we get thatf(x) = e’ satisfiesf = f.



Figure 2: f(z) and f(y)

The following theorem lists some of the most important properties of the Fourier transform. The first
property shows that the Fourier transform is linear. The third and fourth properties show that under the
Fourier transform, translation becomes multiplication by phase and vice versa. The sixth property shows
that scaling a function by some > 0 scales its Fourier transform hy A (together with the appropriate
normalization). The seventh property shows that under the Fourier transform, convolution becomes multipli-
cations and vice versa, where we define the convolution of two functiofis aéy) = [ f(z)g(y — z)d.

The last property shows that the Fourier transform of the derivative of a function can be obtained by simply
multiplying the Fourier transform of the function Bytiy.

THEOREM1 Forallf,g € L*(R), x,y, 2z € R, the following holds:

1. f+g=f+gandforalla € C, (af) = af

. if f is the complex conjugate q’fthen(/f)(y) = f(—y)

. if h(x) .= 222 £ (1) thenh(y) = f(y — 2)

2
3. ifh(z) = f(x + 2) thenh(y) = f(y) . e2mizy
4
5 y)| < f x)|dx

6. VA > 0, defineh(x) := Af(\z) thenh(y) = f(¥)

7. fxg=1Ff-gandf-g=fxg
8. if h(x) = f'(z) € L' (R) thenh(y) = 2miyf(y)
PROOF. Most items are easy to verify. We only include a proof of two of them.

3.
— / f(CL‘ + Z) . e—QWimydx — / f(:E)e—Qwi(m—z)ydx — e27rizyf(y)

+ J57 f'(x)dx exists, and sincg¢ € L'(R) this limit must

8. Sincef’ € L'(R), lim,_. f(z) = £(0)
0. Hence, using integration by parts

be zero. Similarlyim, .. f(z) =

| r@emeis — - [ (coni) flaye s = 2miyf)



a

The following theorem, known as the inversion formula, shows that a function can be recovered from its
Fourier transform. The proof is omitted.

THEOREM?2 Ifboth f, f € L*(R) andf is continuous therf () = e f(y)exmizydy

1.2 Then-dimensional case

We now extend the Fourier transform to functiongith DefineL! (R") as the set of functiong : R* — C
satisfying [, | f(2)|dz < co. We also define, fox,y € R”, (z,y) = 1" | xy; and||z|| = \/(z,z). We
now define thex-dimensional Fourier transform.

DEFINITION 3 For f € L'(R") definef : R* — C by

f)= [ fl@)e ™ ¥ dy
]Rn

As shown below, all properties listed in Theorem 1 can be extended to-ttimensional case. The
proof is essentially the same as that in the one-dimensional case. The only new property is the last one: it
says that if am-dimensional function can be factored as the produet ohe-dimensional functions, then
its Fourier transform is the product of the individual Fourier transforms. The proof of this is left to the
reader.

THEOREM3 For allf,g € L*(R"), z,y, = € R", the following holds:
1. frg=F+gandforallaeC, (af) = af

if f is the complex conjugate tjfthen(}_\)(y) = f(—y)

if h(z) = f(z + 2), h(y) = ™02 f(y)

if h(x) == e2™@:2) f(2) thenh(y) = f(

W) < Jgn |f ()| dz

for \ > 0, h(z) := X" f(\z) thenh(y) = f(¥)

y—z)
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7. fxg=f-gandf-g=fxg

—
~

8. if 5’71; exists ther(%) (y) = 2miy, f(y)

9. if f(x) = fi(m1) - fulwn) thenf(y) = fi(y1) - fu(yn)
The following example will be used in future lectures.
EXAMPLE 3 Considerp(z) := e~"II*, Then
p(z) = e T HTL) — ommat L gmman
hence we obtain that(y) = p(y). More generally, fop,(z) := e 151”, 4,(y) = $"p1(y)-

We also have the following extension of the inversion formula (we omit the exact smoothness conditions
required fromf).

THEOREM4 Forf, f € L'(R™), f(z) = [pn f(y)e?™ @ W) dy



2 The Fourier Series

2.1 The one-dimensional case

In this subsection, we consider functionsRrwith period1, i.e., functionsf that satisfy thaff (x + y) =
f(z)foranyz e R,y € Z.

DEFINITION 4 For a functionf : R — C with period1 we definé its Fourier series as the function
f :7Z — C given by

1
fio = [ fa)e
0
The valuef(k) is sometimes called theh Fourier coefficient.

Notice that unlike the Fourier transform, the Fourier series is only defined on a discrete set of points,
namelyZ. The intuitive reason for this is that in laperiodic function, only integer frequencies appear.
Moreover, itis interesting to note that the Fourier coefficients can be seen as the limit of the Fourier transform
in the following sense. Consider a periodic functioriband restrict it td— R, R|. Then, roughly speaking,
asR goes toxo, its Fourier transform converges@mn non-integer points and to the Fourier coefficients on
integer points.

Most of the properties of the Fourier transform given in Theorem 1 also hold for the Fourier series. We
mention some below.

THEOREMS5 For any two functiong, g with periodl we have
1. frg=f+gandforany € C,af = af
2. if h(z) := f(z +r) for somer € R, thenh(k) = f(k) - e2mikr
3. if h(x) := 2™i% f (1) for somej € Z thenh(k) = f(k — j)

The following is the inversion formula for the Fourier series (also known as the Fourier convergence
theorem). Notice that in the case thfais continuous, the right hand side is simgliz).

THEOREM 6 For any piecewise smoothwith periodl we have

i f(k)eQﬂikx _

k=—00

(f (@4) + f(z=))-

NN

The following theorem is known as th®®isson summation formuldts proof is based on a connection
between the Fourier transform and the Fourier series.

THEOREM 7 (PSR) For a nice enougfi € L'(R),

Yo=Y o)

j=—00 j=—00

Equivalently,f(Z) = f(Z).

To be precise, we should assume tﬁ%\qf(x) |dz exists. From now on, we ignore such issues of convergence.



[ee]
j=—o00

PROOFE Given a functionf, definep(t) = >
therefore consider its Fourier series,

1 %) 1
gb(k:):/o o(t)e 2Tkt gy — Z /0 F(t+ e 2mikt gy

f(t + 7). Notice thaty has periodl, and we can

j=—00
o 1
_ Z / f(t+j)e‘2mk(t+j)dt
. 0
J=—00

= [ e = fo.

So, we see thap is the restriction off to the integers. Using the inversion formula we have

and the theorem followsJ

In the rest of this subsection, we extend our definition of the Fourier series to functions whose period
is not necessarily. It should be noted that this extension is not strictly necessary in the sense that any
function f with period\ can be transformed into a function with peribdy simply definingy(z) := f(\x).
Nevertheless, it serves as a good introduction to Fourier series on lattices since what we are doing here is
essentially defining the Fourier series of functions that are periodic on an arbitrary one-dimensional lattice
M (whereas so far we only dealt with the lattiég

For a functionf : R — C with some period\ > 0 we define its Fourier series js %Z — C by

A~ A .
fo) =5 [ sarezmimvaa,

The inversion formula becomes the following.

THEOREM8 ) ‘
f(z) = fly)e”™

1
LSS/

We now obtain the following extension of the Poisson summation formula (we remark that this extension
can also be derived directly from Theorem 7).

LeEmMMmA 9 (PSE) For any\ > 0 and any nice enough functigh

> fw =5 Y i)

TENL yEZL/A

Equivalently,f(\Z) = + f(17Z).



PROOF: Definep(z) = 35 _  f(z + Aj). Theny has period\ and fory € 1Z,

j=—00

1 [ o
ﬂsz/¢@Y”WM
% Z / flz+ Aj) _zmxydx
j—foo
1 —2mix
=5 f(z)e Ydzx
1 .
= Xf(?/)

By the inversion formula, we have

a

EXAMPLE 4 For f(z) = e "l#I* | we obtain that for any > 0,

o

00 .
S el :i IR

j=—o0 j=—o0

2.2 Then-dimensional case

In this subsection, we extend the definition of the Fourier series tattlienensional case. We start by
considering the Fourier series of functions®h that areZ™-periodic, that is, functiong : R® — C such
that f(x + y) = f(x) foranyz € R™, y € Z".

DEFINITION 5 For a Z"-periodic functionf define its Fourier serieg : Z" — C as
fo)= [ fapeniends
[0,1)"

THEOREM 10 For a nice enouglfi we have that for alt

Zf 27r7,xy

yezn
LEMMA 11 (PSR) For a nice enougli we havef (Z") = f‘(Z”)

We would now like to extend the above to functions that afperiodic for some full-rank lattice..
Notice that we already did a similar thing in the previous subsection for one-dimensional lattices. Indeed,
we started witlZ-periodic functions and then extended our discussiak-preriodic functions for any one-
dimensional lattice\. The Fourier series okZ-periodic functions was defined as a function on the dual
lattice }Z. Moreover, in Lemma 9 we proved thAtA) = det(A*) - F(A*) for any one-dimensional lattice
A.

Let B be a basis of some full-rank latticeand letf be aA-periodic function, i.e., a functiofi : R™ —
C such thatf(z + y) = f(z) foranyz € R,y € A. The Fourier series of is the functionf : A* — C

given by
p 1

_ —27i(z,y)
F0) = gy e

6



As the following exercise shows, this definition is independent of the choice of Basiad is therefore
well-defined.

ExeErRcCISEL1 Show that ifg is a A-periodic function for some latticA = £(B), then its integral oP(B)

is the same for any choice of bagks (A possible approach is to show that the integral is invariant under the

basic operations and then use the fact that a basis can be transformed into any other basis using a sequence
of basic operations.) Deduce thats well-defined.

The inversion formula is now of the following form.

THEOREM 12 For a nice enougli we have that for alt

Zf 271'sz

ZEA*

Finally, we have the following general formulation of the Poisson summation formula. This formulation
will be often used is future lectures.

LEMMA 13 (PSK) For a nice enouglfi and any full-rank latticé\, f(A) = det(A*) f (A™).

PROOF. The functionp(z) = >°_ ., f(z + 2) is A-periodic and hence we can consider its Fourier series.
For anyy € A* we have

1 —27i(z,y)
= T / ; flz+ 2)e dz
—2mi(z,y)
det A) Z/ flx+2)e dx
zEA
f(l’ + Z) 727ri<z+z,y>dx
de’ﬂ(A) ZZG/:\/P(B)
1 —2mi(z,y)
— 7T/LII; d
et(A) Jo T )€ v
= det(A*)f(y)7

where we used thdt, y) € Z. By the inversion formulap(0) = 3, - ¢(y). O

Let us remark that it is possible to derive Lemma 13 directly from Lemma 11 by using the fact that if
f : R™ — Cis aA-periodic function for some lattica with basisB, then the functiory : R™ — C given
by g(x) = f(Bx) is Z™-periodic.

ExampPLE 5 Applying this to the functiorp defined in Example 3, we obtain thatA) = det(A*)p(A™).
More generally, we obtaips(A) = s™ det(A*)py /4 (A*).



