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Instructions as before.

1. The Nisan-Szegedy bound [2]: Let f : {0, 1}n → R be a nonzero function of degree
at most d (i.e., f̂ (S) = 0 for all S of size at least d + 1).

(a) Show that Pr[ f (x) 6= 0] ≥ 2−d (this is known as the Schwartz-Zippel lemma).
Hint: induction on n.

(b) Show that if in addition f maps into [−1, 1] then I( f ) ≤ d.

(c) Show that if in addition f maps into {−1, 1} then f is a d2d-junta.

(d) Consider the address function Addrk : {0, 1}k+2k → {−1, 1} defined by

Addrk(x1, . . . , xk, y1, . . . , y2k) = (−1)yx

where we think of x here as an element of [2k]. Show that deg(Addrk) = k + 1.
Conclude that the bound in (c) must be at least 2d−1 + d− 1.

2. Total influence of DNFs:

(a) Assume f can be expressed as a DNF of width w (i.e., each clause has at most
w literals). Show that I( f ) ≤ 2w. Open question: improve on the constant 2.

(b) Deduce that width-w DNFs can be learned from random examples in time
nO(w/ε). We will improve this in class.

3. Unbalanced functions have a low Fourier coefficients: Let f : {0, 1}n → {−1, 1}
be such that f̂ (∅) /∈ {−1, 0, 1} (i.e., f is neither constant nor balanced).

(a) Show that there must exist a nonempty S of size at most 2n/3 such that f̂ (S) 6=
0. Hint: f 2

(b) Optional: show that the 2n/3 bound above is tight.

(c) Does a similar statement hold for balanced functions?

4. Bent functions: Compute the maximum possible value of ‖ f̂ ‖1 := ∑S | f̂ (S)| among
all functions f : {0, 1}n → {−1, 1}. For infinitely many n, show a function achieving
this bound.

5. Deterministically estimating Fourier coefficients: A set A ⊆ {0, 1}n is called ε-
biased if for x chosen uniformly fromA and for all nonempty S ⊆ [n], |Expx[χS(x)|| ≤
ε. There is a known algorithm that on inputs ε, n, outputs an ε-biased set of size
(n/ε)2 in time poly(n, 1/ε). Use this to show how to deterministically estimate f̂ (S)
to within ±ε for any given S in time poly(‖ f̂ ‖1, n, 1/ε) using query access to f :
{0, 1}n → R. You can assume the algorithm knows ‖ f̂ ‖1.
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6. Close functions and concentration: Recall that f is ε-concentrated on a family S if
∑S/∈S f̂ (S)2 ≤ ε. Show that if ‖ f − g‖2

2 ≤ ε and g is ε-concentrated on S then f is
4ε-concentrated on S .

7. Learning functions with low ‖ f̂ ‖1:

(a) For f : {0, 1}n → R let L = ‖ f̂ ‖1. Show that for any ε > 0, f is ε-concentrated
on a set of size at most L2/ε.

(b) Deduce that the set of Boolean functions f with ‖ f̂ ‖1 ≤ L can be learned in
time poly(L, 1

ε , n) using membership queries.

(c) Define a decision tree on parities as a decision tree where on each node we can
branch on an arbitrary parity of variables (as opposed to just a single variable
in the usual definition of decision trees). Show that decision trees on parities of
size L can be learned in time poly(L, 1

ε , n) using membership queries.

8. The Goemans-Williamson MAX-CUT 0.87856-approximation algorithm [1]: (no
need to hand in) The input to the algorithm is an undirected graph G = (V, E) on
n vertices. The first step is to solve the following optimization problem over vector
variables v1, . . . , vn ∈ Rn: maximize ∑{i,j}∈E(1− 〈vi, vj〉)/2 subject to all vectors be-
ing unit vectors. It is known that this optimization problem can be solved efficiently
(because it is a convex optimization problem, and in fact a semidefinite program). Notice
that the value of the optimum is at least the number of edges in the optimal MAX-
CUT. The second step in the algorithm is to take the optimal solution v1, . . . , vn and
to construct from it a good solution to MAX-CUT (this step is known as rounding).
This is done as follows: choose a random unit vector w ∈ Rn uniformly and parti-
tion the vertices according to the sign of 〈w, vi〉. Notice that each edge {i, j} is cut
with probability 1

π arccos 〈vi, vj〉. Hence the expected size of the cut given by the
algorithm is 1

π ∑ij arccos 〈vi, vj〉. To complete the proof, notice that this is at least
α ·∑{i,j}∈E(1− 〈vi, vj〉)/2 where α = 2

π minβ∈[−1,1] arccos(β)/(1− β) ≈ 0.87856.
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