Long Monotone Paths in Line Arrangements

József Balogh* ${ }^{*}$ Oded Regev ${ }^{\dagger}$ Clifford Smyth ${ }^{\ddagger}$ William Steiger ${ }^{\S}$ Mario Szegedy ${ }^{9}$

October 24, 2003

Abstract

We show how to construct an arrangement of n lines having a monotone path of length $\Omega\left(n^{2-(d / \sqrt{\log n})}\right)$, where $d>0$ is some constant, and thus nearly settle the long standing question on monotone path length in line arrangements.

1 Introduction

Let $L=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$ be a set of n given lines in \mathbb{R}^{2}. A path in the arrangement $A(L)$ is a simple polygonal chain joining a set of distinct vertices in $V=\left\{\ell_{i} \cap \ell_{j}, i<j\right\}$ by segments which are on lines in L. The length of a path is one plus the number of vertices in V at which the path turns. A path is monotone in direction (a, b) if its sequence of vertices is monotone when projected orthogonally along the line with equation $a y-b x=0$. An interesting open question asks for the value of λ_{n}, the maximal monotone path length that can occur in an arrangement of n lines ${ }^{1}$. Clearly $\lambda_{n} \leq\binom{ n}{2}+1$.

A sequence of results by Sharir (see [2]), Matoušek [3], and Radoičić and Tóth [4] established that $\lambda_{n}=\Omega\left(n^{3 / 2}\right), \lambda_{n}=\Omega\left(n^{5 / 3}\right), \lambda_{n}=\Omega\left(n^{7 / 4}\right)$, respectively. The last paper also showed $\lambda_{n} \leq 5 n^{2} / 12$. Here we give an explicit construction that proves

Theorem 1 For any integers $n, m>0$ such that $m \leq \frac{1}{2} \sqrt{\log n}$, there is an arrangement of at most $2 n+2\left(30^{m}\right) n$ lines in which there is a monotone path of length at least $2^{-m} \cdot n^{2-1 /(m+1)}$.

[^0]Notice that for $m=3$ this gives the previously best bound $\lambda_{n}=\Omega\left(n^{7 / 4}\right)$.
Corollary 1 The maximal monotone path length satisfies

$$
\lambda_{n}=\Omega\left(n^{2-\frac{d}{\sqrt{\log n}}}\right)
$$

where $d>0$ is some constant.
Proof: Let m be $\frac{1}{2} \sqrt{\log n}$. Then Theorem 1 gives a monotone path of length at least $n^{2-(3 /(\sqrt{\log n}))}$ using at most $2 n+2\left(30^{\left.\frac{1}{2} \sqrt{\log n}\right)} n\right.$ lines. A straightforward calculation gives the claimed bound on λ_{n}.

2 The Construction

2.1 The Basic Setup

Observe that k parallel horizontal lines and k parallel vertical lines give a path that is monotone in any direction (a, b) with $a, b>0$, has length $n=2 k$, and uses n lines. We call this path a"staircase".

Figure 1. A "staircase" with $n=2 k$ lines, and having length n.
Given an integer $m>0$ let $\alpha_{k}=1 /((k+1)(k+2)), 0 \leq k<m$, and $\alpha_{m}=1 /(m+1)$. Since $\alpha_{0}+\ldots+\alpha_{k}=(k+1) /(k+2)$,

$$
\begin{equation*}
\alpha_{0}+\cdots+\alpha_{m}=\frac{1}{2}+\frac{1}{6}+\cdots+\frac{1}{m(m+1)}+\frac{1}{m+1}=1 . \tag{1}
\end{equation*}
$$

Let $\mathbf{u}=(1,0), \mathbf{v}=(0,1)$. In the course of the proof we shall set an $\varepsilon>0$ that will be suitably small. For now we treat ε as an infinitesimal quantity. We develop a notation to describe points in a hierarchical construction. For $\varepsilon>0$, the vector-matrix product

$$
\left(1, \varepsilon, \varepsilon^{2}, \ldots, \varepsilon^{m}\right)\left(\begin{array}{cccc}
i_{0} & i_{1} & \ldots & i_{m} \\
j_{0} & j_{1} & \ldots & j_{m}
\end{array}\right)^{T}
$$

is a point of the plane that we will denote by $\left[\begin{array}{cccc}i_{0} & i_{1} & \ldots & i_{m} \\ j_{0} & j_{1} & \ldots & j_{m}\end{array}\right]$. The construction uses the set S of points for which $i_{0}, j_{0}, \ldots, i_{m}, j_{m}$ are integers with

$$
\begin{gathered}
0 \leq \quad i_{0}, j_{0} \quad \leq\left\lfloor n^{\alpha_{0}}\right\rfloor-1 \stackrel{\text { def }}{=} D_{0} \\
0 \leq \quad i_{1}, j_{1} \leq\left\lfloor n^{\alpha_{1}}\right\rfloor-1 \stackrel{\text { def }}{=} D_{1} \\
\vdots \\
0 \leq \quad i_{m}, j_{m} \leq\left\lfloor n^{\alpha_{m}}\right\rfloor-1 \stackrel{\text { def }}{=} D_{m} .
\end{gathered}
$$

In view of (1), the number of points in S is at most $\left(n^{\alpha_{0}}\right)^{2}\left(n^{\alpha_{1}}\right)^{2} \cdots\left(n^{\alpha_{m}}\right)^{2}=n^{2}$.
For $k<m$ write B_{k} for the subset of S where $i_{r}=j_{r}=0, r>k$. That is,

$$
B_{k}=\left\{P=\left[\begin{array}{ccccccc}
i_{0} & i_{1} & \ldots i_{k-1} & i_{k} & 0 & \ldots & 0 \tag{2}\\
j_{0} & j_{1} & \ldots j_{k-1} & j_{k} & 0 & \ldots & 0
\end{array}\right]\right\}
$$

There are at most $\left(n^{\alpha_{0}}\right)^{2} \cdots\left(n^{\alpha_{k}}\right)^{2}=n^{2-2 /(k+2)}$ such points.
Another way to think about B_{k} is as follows: let us call the square $[x, x+t) \times$ $[y, y+t) \subseteq \mathbb{R}^{2}$ the "square of side t at (x, y) ". The points of B_{0} are given by the intersection of the integer lattice $\mathbb{Z} \times \mathbb{Z} \subseteq \mathbb{R}^{2}$ with the square of side $\lfloor\sqrt{n}\rfloor$ at $(0,0)$. To get the points of B_{1}, the next level of the hierarchy, replace each point $P \in B_{0}$ by the intersection of the square of side $\varepsilon\left\lfloor n^{\alpha_{1}}\right\rfloor$ at P with the points $P+\varepsilon(\mathbb{Z} \times \mathbb{Z})$. For $1 \leq k<m-1$ we construct B_{k+1} by replacing each point $P \in B_{k}$ by the intersection of the square of side $\varepsilon^{k+1}\left\lfloor n^{\alpha_{k+1}}\right\rfloor$ at P and the points $P+\varepsilon^{k+1}(\mathbb{Z} \times \mathbb{Z})$.

Figure 2. Some points in B_{k+1}
For example in Figure $2, P_{1}, P_{2}, P_{3}, P_{4}$ are neighboring points in B_{k}, each the lower-left corner of a square of side $\varepsilon^{k+1}\left\lfloor n^{\alpha_{k+1}}\right\rfloor$ that contains $\left\lfloor n^{\alpha_{k+1}}\right\rfloor^{2}$ grid points. If in Figure $2 P_{1}$ has coordinates

$$
\left[\begin{array}{ccccccc}
i_{0} & \ldots & i_{k-1} & I & 0 & \ldots & 0 \\
j_{0} & \ldots & j_{k-1} & J & 0 & \ldots & 0
\end{array}\right] \in B_{k}
$$

then P_{2} and P_{4} have $i_{k}=I+1$, and P_{3} and P_{4} have $j_{k}=J+1$.
We now pick a direction in which we want our path to be monotone. Our choice is $\mathbf{w}=(\sqrt{2}, 1)$. Orthogonal to this is the direction $\mathbf{w}^{\prime}=(-\mathbf{1}, \sqrt{\mathbf{2}})$. A vector is said to point forward if it has positive scalar product with $(\sqrt{2}, 1)$. In particular, \mathbf{u} and \mathbf{v} point forward. For $p, q>0$ the vector $(-q, p)$ points forward iff $\frac{p}{q}>\sqrt{2}$, and $(q,-p)$ points forward iff $\frac{p}{q}<\sqrt{2}$. In the first case we say p / q approximates $\sqrt{2}$ from above; in the second, p / q approximates $\sqrt{2}$ from below.

For each point in S consider the horizontal line and the vertical line that go through this point and let L be the union of all these lines. The points of S have at most n distinct x coordinates and at most n distinct y coordinates, so L has at most $2 n$ lines. As we will see later, our monotone path goes through every point in B_{m-1}. Whenever it reaches a point

$$
\left[\begin{array}{cccc}
i_{0} & \ldots & i_{m-1} & 0 \\
j_{0} & \ldots & j_{m-1} & 0
\end{array}\right] \in B_{m-1}
$$

Figure 3. \mathbf{w} is the chosen direction of monotonicity. $(-2,3)$ and $(1,-1)$ point forward, since $\frac{3}{2}$ approximates $\sqrt{2}$ from above and $1 / 1$ from below.
it follows the staircase to

$$
\left[\begin{array}{cccc}
i_{0} & \ldots & i_{m-1} & D_{m} \\
j_{0} & \ldots & j_{m-1} & D_{m}
\end{array}\right] \in S .
$$

This staircase is a monotone path because \mathbf{u} and \mathbf{v} both point forward. We use the following coarse lower bound on the number of staircases (which is good enough for our claim):

$$
\left\lfloor n^{\alpha_{0}}\right\rfloor^{2} \ldots\left\lfloor n^{\alpha_{m-1}}\right\rfloor^{2} \geq 2^{-m}\left(n^{\alpha_{0}}\right)^{2} \ldots\left(n^{\alpha_{m-1}}\right)^{2}=2^{-m} n^{2-2 /(m+1)}
$$

where the first inequality holds since $n^{\alpha_{k}} \geq n^{2 / \log n}=4$ for all $0 \leq k \leq m-1$. On each of these staircases the path makes $2\left\lfloor n^{1 /(m+1)}\right\rfloor-1 \geq n^{1 /(m+1)}$ turns, so if we could move from staircase to staircase in a monotone fashion, the resulting path would have length at least $2^{-m} n^{2-1 /(m+1)}$, as required.

2.2 Helping Lines

In this section we complete the construction by showing how to connect the staircases using at most $2\left(30^{m}\right) n$ extra lines, and moving along each in a direction that points forward with respect to \mathbf{w}.

Suppose we project the points of S orthogonally onto the line ℓ given by the equation $\sqrt{2} y-x=0$. The points in B_{0} project to distinct points on ℓ and are ordered by these projections. When each point in B_{0} is replaced by a square of side $\varepsilon\left\lfloor n^{\alpha_{1}}\right\rfloor$, each square projects to an interval, and if ε is suitably small, these intervals will be disjoint. This gives an ordering for the points in B_{1} based first on the ordering for B_{0}, and then on the ordering for points with the same i_{0}, j_{0}. Inductively, the points in B_{k} are ordered, and when we replace each by a square of side $\varepsilon^{k+1}\left\lfloor n^{\alpha_{k+1}}\right\rfloor$, each square projects to an interval; if ε is suitably small, these intervals will be disjoint. This gives an ordering for the points in B_{k+1}, first based on the ordering of points in B_{k}, and then on the ordering of points with the same values of $i_{r}, j_{r}, r \leq k$.

To sum up, we obtain a lexicographic ordering of the points in S. We define $Q \in S$ to be the successor of $P \in S$ if it comes immediately after P in this ordering. These observations imply that the set of staircases can be connected in a monotone manner. We also obtain,

Lemma 1 Let

$$
P=\left[\begin{array}{ccccccc}
i_{0} & \ldots & i_{k-1} & i_{k} & D_{k+1} & \ldots & D_{m} \\
j_{0} & \ldots & j_{k-1} & j_{k} & D_{k+1} & \ldots & D_{m}
\end{array}\right]
$$

be a point in S with either $i_{k} \neq D_{k}$ or $j_{k} \neq D_{k}$, and $k<m$. The successor of P is a point

$$
Q=\left[\begin{array}{llllll}
i_{0} & \ldots i_{k-1} & i_{k}^{\prime} & 0 & \ldots & 0 \\
j_{0} & \ldots j_{k-1} & j_{k}^{\prime} & 0 & \ldots & 0
\end{array}\right]
$$

with either $i_{k}^{\prime} \neq i_{k}, j_{k}^{\prime} \neq j_{k}$, or both.
The point P can be seen as the top of a staircase at level k. Let us define this notion more precisely: for $0 \leq k<m$ define $T_{k} \subseteq S$ as

$$
T_{k}=\left\{P=\left[\begin{array}{cccccc}
i_{0} & \ldots & i_{k} & D_{k+1} & \ldots & D_{m} \tag{3}\\
j_{0} & \ldots & j_{k} & D_{k+1} & \ldots & D_{m}
\end{array}\right] \in S:\left(i_{k}, j_{k}\right) \neq\left(D_{k}, D_{k}\right)\right\} .
$$

These points are the tops of staircases at level k of the hierarchy. Let us consider Figure 4 for some fixed $k<m$. All the points in the figure except P_{2} and P_{5} are in B_{k+1}. Moreover, the points that are at the bottom left of the shaded squares are also in $B_{k} . P_{2}$ is in T_{k} and P_{5} is in T_{k-1}. Hence, we can write

$$
\begin{aligned}
P_{1} & =\left[\begin{array}{lllllll}
i_{0} & \ldots & i_{k-1} & i_{k} & 0 & \ldots & 0 \\
j_{0} & \ldots & j_{k-1} & j_{k} & 0 & \ldots & 0
\end{array}\right] \in B_{k}, \\
P_{2} & =\left[\begin{array}{llllll}
i_{0} & \ldots & i_{k-1} & i_{k} & D_{k+1} & \ldots \\
j_{0} & \ldots & j_{k-1} & j_{k} & D_{k+1} & \ldots \\
D_{m}
\end{array}\right] \in T_{k}, \\
P_{4} & =\left[\begin{array}{lllllll}
i_{0} & \ldots & i_{k-1} & D_{k} & 0 & \ldots & 0 \\
j_{0} & \ldots & j_{k-1} & D_{k} & 0 & \ldots & 0
\end{array}\right] \in B_{k}, \\
P_{5} & =\left[\begin{array}{llllll}
i_{0} & \ldots & i_{k-1} & D_{k} & \ldots & D_{m} \\
j_{0} & \ldots & j_{k-1} & D_{k} & \ldots & D_{m}
\end{array}\right] \in T_{k-1} .
\end{aligned}
$$

Finally, notice that $P_{3} \in B_{k}$ is the successor of $P_{2} \in T_{k}$ while the successor of $P_{5} \in T_{k-1}$ in some point from B_{k-1} which is not shown.

Figure 4. Successors at level k.

We now discuss the issues concerning the choice of lines used to move from a point to its successor. We call these lines helping lines. Let us first use Figure 4 to describe the main ideas. From points in T_{k} we either follow a line in direction v_{1} or a line in direction v_{2}. The actual choice is determined by the position of the successor: for example, from P_{2} we choose the direction v_{1} because P_{3} is above P_{2}. In order to be able to move from a point in T_{k} to its successor in B_{k}, the directions v_{1} and v_{2} must be almost orthogonal to w. However, as we will explain next, it is crucial that neither v_{1} nor v_{2} are completely orthogonal to w.

As we said above, we need a helping line for every point in T_{k}. But there are as many as $n^{2-2 /(k+2)} \gg 2\left(30^{m}\right) n$ such points! The main idea is to reuse each helping line, many times. Hence, even though we define a helping for every point in T_{k}, the number of distinct helping lines is actually much lower. The way to reuse a line is the following: when we move to the successor of a point in T_{k-1} we do so on a helping line that is more orthogonal to w than the helping line used for points in T_{k}. For example, in Figure $4, v_{3}$ and v_{4} point less forward than v_{1} and v_{2}. This essentially allows us to cross v_{1} and v_{2} on the way to the successor and then to use them again. Let us now describe the choice of the helping lines more formally.

Definition 1 A best upper approximator of $\sqrt{2}$ is a rational number $\frac{p}{q}>\sqrt{2}$ such that no other rational $\frac{p^{\prime}}{q^{\prime}}$ with $q^{\prime} \leq q$ approximates $\sqrt{2}$ better from either above or below. A best lower approximator of $\sqrt{2}$ is a rational $\frac{r}{s}<\sqrt{2}$ such that no other rational $\frac{r^{\prime}}{s^{\prime}}$ with $s^{\prime} \leq s$ approximates $\sqrt{2}$ better from either above or below.

Lemma 2 For every $t \geq 1$ there is a best upper approximator $\frac{p}{q}$ and a best lower approximator $\frac{p^{\prime}}{q^{\prime}}$ of $\sqrt{2}$ such that $t<q, q^{\prime} \leq 10 t$.

Proof: The convergents of the simple continued fraction for $\sqrt{2}$ are $1, \frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \ldots$. They can be defined by r_{i} / s_{i} where $s_{0}=r_{0}=1, r_{i+1}=r_{i}+2 s_{i}$ and $s_{i+1}=r_{i}+s_{i}$. It is easy to see that for $j \geq 0$

$$
\frac{r_{2 j}}{s_{2 j}}<\frac{r_{2 j+2}}{s_{2 j+2}}<\sqrt{2}<\frac{r_{2 j+3}}{s_{2 j+3}}<\frac{r_{2 j+1}}{s_{2 j+1}} .
$$

It is also well known (and easy to check) that $r_{2 j} / s_{2 j}$ is a best lower approximator of $\sqrt{2}$ and $r_{2 j+1} / s_{2 j+1}$ is a best upper approximator of $\sqrt{2}$. Since $s_{i+1}=r_{i}+s_{i} \leq 3 s_{i}$, for every $t \geq 1$ there exists some $i \geq 0$ such that $t<s_{i}<s_{i+1} \leq 10 t$.

For $0 \leq k<m$, let $\frac{p_{k}}{q_{k}}$ be a best upper approximator of $\sqrt{2}$ such that $n^{\alpha_{k}}<q_{k} \leq$ $10 n^{\alpha_{k}}$ and let $\frac{p_{k}^{\prime}}{q_{k}^{\prime}}$ be a best lower approximator of $\sqrt{2}$ such that $n^{\alpha_{k}}<q_{k}^{\prime} \leq 10 n^{\alpha_{k}}$. We can now define for every point $P \in T_{k}$ two lines that are incident with P : one in direction $\left(-q_{k}, p_{k}\right)$ (an upper helping line, like v_{1} and v_{3} in Figure 4) and one in direction $\left(q_{k}^{\prime},-p_{k}^{\prime}\right)$ (a lower helping line, like v_{2} and v_{4} in Figure 4). Formally, $L_{k}^{u p}$ denotes the set of lines of slope $\frac{-p_{k}}{q_{k}}$ through the points of T_{k} and $L_{k}^{\text {down }}$, the lines of slope $\frac{-p_{k}^{\prime}}{q_{k}^{\prime}}$ through these points. As mentioned above, the monotone path will actually follow only one of these lines but for simplicity we define both.

Lemma 3 From each point in $P \in T_{k}$ there is a monotone path to its successor Q, that either follows the line in $L_{k}^{u p}$ through P or the line in $L_{k}^{\text {down }}$ through P, and then follows a horizontal line to Q (see Figure 5).

Figure 5. Helping lines precede successors.
Proof: The choice of p_{k} / q_{k} and $p_{k}^{\prime} / q_{k}^{\prime}$ as best approximators with $q_{k}, q_{k}^{\prime}>n^{\alpha_{k}}$ guarantee that if ε is small enough, the successor of P is on a line from P of slope less than $-p_{k} / q_{k}$ in the upper case, or greater than $-p_{k}^{\prime} / q_{k}^{\prime}$ in the lower case.

2.3 Counting

To complete the proof of the theorem we count the number of distinct helping lines used in the construction.

Lemma 4 Let $\left|L_{k}^{u p}\right|$ and $\left|L_{k}^{\text {down }}\right|$ denote the number of distinct lines in the respective sets, $k<m$. Then the total number of helping lines is

$$
\begin{equation*}
\leq \sum_{k=0}^{m-1}\left(\left|L_{k}^{u p}\right|+\left|L_{k}^{d o w n}\right|\right) \leq 2\left(30^{m}\right) n \tag{4}
\end{equation*}
$$

Proof: Fix some $k<m$. We just treat $\left|L_{k}^{u p}\right|$, the down case being completely analogous. Fix non-negative $I_{r}, J_{r} \leq D_{r}, r<k$, and consider the points in

$$
A=\left\{P \in T_{k}:\left(i_{r}, j_{r}\right)=\left(I_{r}, J_{r}\right) \text { for all } r<k\right\} .
$$

There are at most $N=n^{2 \alpha_{k}}$ such points, one for each possible pair $\left(i_{k}, j_{k}\right) \neq\left(D_{k}, D_{k}\right)$, and they require N distinct lines in $L_{k}^{u p}$. Let R be the points in T_{k} which have the same values of i_{r}, j_{r} as do the points in A, for all $r<k-1$; i.e.,

$$
R=\left\{P \in T_{k}:\left(i_{r}, j_{r}\right)=\left(I_{r}, J_{r}\right) \text { for all } r<k-1\right\} .
$$

The N lines just considered (for A) will also meet all points in R for which both $i_{k-1}=I_{k-1}-c q_{k} \geq 0$ and $j_{k-1}=J_{k-1}+c p_{k} \leq D_{k-1}$ for some integer c. For example, in Figure 6 , the square B is located q_{k} squares to the left of A and p_{k} squares above it and therefore the N lines going through A are the same as the N lines going through B. Similarly, C is located $2 q_{k}$ squares to the left and $2 p_{k}$ squares above A and also shares the same N lines.

This indicates that the number of distinct lines in $L_{k}^{u p}$ needed for all points in R is less than the trivial bound of $n^{2 \alpha_{k-1}} \cdot N$. Indeed, consider the lines of slope $-p_{k} / q_{k}$ at those points with $\left(i_{r}, j_{r}\right)=\left(I_{r}, J_{r}\right), r<k-1$ and with $i_{k-1}=0, \ldots, 2\left\lfloor n^{\alpha_{k-1}}\right\rfloor$ and

Figure 6. Lines in $L_{k}^{u p}$ for points with the same $i_{r}, j_{r}, r<k-1$
$j_{k-1}=0, \ldots, p_{k}-1$ (in Fig. 6, these are the lines emanating from the squares inside the dashed rectangle, such as A and D). Because $p_{k}>q_{k}$ (i.e., the lines form an angle of more than 45° with the x-axis), all points in R will be covered. Each square uses at most N lines in $L_{k}^{u p}$ and we cover R with at most $2 p_{k} n^{\alpha_{k-1}}$ squares. Hence, the number of distinct lines in $L_{k}^{u p}$ needed for all the points in $R \subseteq T_{k}$ is at most

$$
2 p_{k} \cdot n^{\alpha_{k-1}} N \leq\left(30 n^{\alpha_{k}}\right) n^{\alpha_{k-1}} n^{2 \alpha_{k}}
$$

where we used the fact that $p_{k} \leq 1.5 q_{k}$ and $q_{k} \leq 10 n^{\alpha_{k}}$.
Applying this argument again to points in T_{k} that have $\left(i_{r}, j_{r}\right)=\left(I_{r}, J_{r}\right)$ for $r<$ $k-2$ we deduce that at most

$$
\left(30 n^{\alpha_{k}}\right)^{2} n^{\alpha_{k-2}} n^{\alpha_{k-1}} n^{2 \alpha_{k}}
$$

lines in $L_{k}^{u p}$ are needed, and continuing inductively, we see that T_{k} needs at most

$$
\left(30 n^{\alpha_{k}}\right)^{k} n^{\left(\alpha_{0}+\ldots+\alpha_{k-1}\right)} n^{2 \alpha_{k}}=(30)^{k} n^{\left(\alpha_{0}+\ldots+\alpha_{k-1}+(k+2) \alpha_{k}\right)}
$$

lines in $L_{k}^{u p}$. Using the fact that $(k+2) \alpha_{k}=1 /(k+1)$ and $\alpha_{0}+\ldots+\alpha_{k-1}=k /(k+1)$, we obtain

$$
\left|L_{k}^{u p}\right| \leq(30)^{k} n
$$

Applying this estimate for each k, we establish the bound in (4) and prove the lemma.

Proof of Theorem 1. We have constructed an arrangement of at most $2 n+2\left(30^{m}\right) n$ lines, at most n horizontal and at most n vertical lines used in the staircases, and the helping lines. Also, as mentioned above, the staircases alone comprise part of a monotone path of length at least $2^{-m} \cdot n^{2-1 /(m+1)}$.

3 Remarks

1. One interesting open question concerns the quantity $\lambda_{n}(k)$, the length of the longest monotone path in an arrangement of n lines with at most k distinct
slopes. Clearly, $\lambda_{n}(k)$ increases with k and is at most λ_{n}. The construction of Sharir used $k=4$ different slopes, so $\lambda_{n}(4) \geq \Omega\left(n^{3 / 2}\right)$. Matoušek's construction gives $\lambda_{n}(5) \geq \Omega\left(n^{5 / 3}\right)$. For any constant m, our construction uses a set of $O(n)$ lines with $2 m+2$ distinct slopes. Hence, it implies $\lambda_{n}(2 m+2) \geq \Omega\left(n^{2-1 /(m+1)}\right)$. Recently, Dumitrescu [1] showed that $\lambda_{n}(k) \leq O\left(n^{2-1 / F_{k-1}}\right)$ where F_{k} is the k^{\prime} th Fibonacci number ($F_{1}=F_{2}=1, F_{3}=2, F_{4}=3$, etc.). In particular, this provides tight upper bounds for $k=4,5$.
2. Matoušek [3] also studied arrangements of pseudo-lines; i.e., n continuous functions f_{1}, \ldots, f_{n} with the same intersection rules as lines. Specifically, for each $i<j$ there is a point $x_{i j}$ (a vertex) such that $\left(f_{i}(u)-f_{j}(u)\right)\left(f_{i}(t)-f_{j}(t)\right)<0$ whenever $\left(u-x_{i j}\right)\left(t-x_{i j}\right)<0$. General position would impose the condition that the vertices be distinct. A "path" moves along a function and may turn at a vertex. Matoušek constructed a pseudoline arrangement with an x-monotone path of length $\Omega\left(n^{2} / \log n\right)$. He also had conjectured that $\lambda_{n}=O\left(n^{5 / 3}\right)$, i.e., that his lower bound for monotone path length in line arrangements was optimal. If this were true we would have a neat combinatorial separation of line and pseudoline arrangements based on monotone path length. The result of this paper implies that such a strong separation is impossible. A weaker separation is still possible by showing a $o\left(n^{2} / \log n\right)$ upper bound for λ_{n} (but we don't even know how to show $\lambda_{n}=o\left(n^{2}\right)!$.

References

[1] A. Dumitrescu. Monotone Paths in Line Arrangements with a Small Number of Directions. Manuscript.
[2] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, Berlin, 1987.
[3] J. Matoušek. Lower Bounds on the Length of Monotone Paths in Arrangements. Discrete and Computational Geometry 6, 129-134 (1991).
[4] R. Radoičić and G. Tóth. Monotone Paths in Line Arrangements. Proc. $17^{\text {th }}$ ACM Symp. Comp. Geom., 312-314 (2001)

[^0]: *The Ohio State University, Department of Mathematics, jobal@math.ohio-state.edu. Work done while in the Institute for Advanced Study.
 ${ }^{\dagger}$ EECS Department, UC Berkeley, Berkeley, CA 94720, odedr@cs.berkeley.edu. Work done while the author was at the Institute for Advanced Study, Princeton, NJ. Supported by ARO grant DAAD19-03-1-0082 and NSF grant CCR-9987845.
 ${ }^{\ddagger}$ Zeev Nehari Assistant Professor, Carnegie-Mellon University, csmyth@andrew.cmu.edu. Work done while in the Institute for Advanced Study and supported by NSF grant CCR-9987845.
 ${ }^{\S}$ Rutgers University, steiger@cs.rutgers.edu.
 ${ }^{\text {© R Rutgers University, szegedy@cs.rutgers.edu. Research supported by NSF grant } 0105692 .}$
 ${ }^{1}$ Clearly, this is equivalent to the usual definition that considers paths monotone in the direction of the x-axis.

