# Long Monotone Paths in Line Arrangements

József Balogh\* Oded Regev<sup>†</sup> Clifford Smyth <sup>‡</sup> William Steiger <sup>§</sup>
Mario Szegedy <sup>¶</sup>

October 24, 2003

#### Abstract

We show how to construct an arrangement of n lines having a monotone path of length  $\Omega(n^{2-(d/\sqrt{\log n})})$ , where d>0 is some constant, and thus nearly settle the long standing question on monotone path length in line arrangements.

### 1 Introduction

Let  $L = \{\ell_1, \ldots, \ell_n\}$  be a set of n given lines in  $\mathbb{R}^2$ . A path in the arrangement A(L) is a simple polygonal chain joining a set of distinct vertices in  $V = \{\ell_i \cap \ell_j, i < j\}$  by segments which are on lines in L. The length of a path is one plus the number of vertices in V at which the path turns. A path is monotone in direction (a,b) if its sequence of vertices is monotone when projected orthogonally along the line with equation ay - bx = 0. An interesting open question asks for the value of  $\lambda_n$ , the maximal monotone path length that can occur in an arrangement of n lines<sup>1</sup>. Clearly  $\lambda_n \leq \binom{n}{2} + 1$ .

A sequence of results by Sharir (see [2]), Matoušek [3], and Radoičić and Tóth [4] established that  $\lambda_n = \Omega(n^{3/2})$ ,  $\lambda_n = \Omega(n^{5/3})$ ,  $\lambda_n = \Omega(n^{7/4})$ , respectively. The last paper also showed  $\lambda_n \leq 5n^2/12$ . Here we give an explicit construction that proves

**Theorem 1** For any integers n, m > 0 such that  $m \leq \frac{1}{2}\sqrt{\log n}$ , there is an arrangement of at most  $2n + 2(30^m)n$  lines in which there is a monotone path of length at least  $2^{-m} \cdot n^{2-1/(m+1)}$ .

<sup>\*</sup>The Ohio State University, Department of Mathematics, jobal@math.ohio-state.edu. Work done while in the Institute for Advanced Study.

<sup>&</sup>lt;sup>†</sup>EECS Department, UC Berkeley, Berkeley, CA 94720, odedr@cs.berkeley.edu. Work done while the author was at the Institute for Advanced Study, Princeton, NJ. Supported by ARO grant DAAD19-03-1-0082 and NSF grant CCR-9987845.

<sup>&</sup>lt;sup>‡</sup>Zeev Nehari Assistant Professor, Carnegie-Mellon University, csmyth@andrew.cmu.edu. Work done while in the Institute for Advanced Study and supported by NSF grant CCR-9987845.

<sup>§</sup>Rutgers University, steiger@cs.rutgers.edu.

<sup>¶</sup>Rutgers University, szegedy@cs.rutgers.edu. Research supported by NSF grant 0105692.

<sup>&</sup>lt;sup>1</sup>Clearly, this is equivalent to the usual definition that considers paths monotone in the direction of the x-axis.

Notice that for m=3 this gives the previously best bound  $\lambda_n=\Omega(n^{7/4})$ .

Corollary 1 The maximal monotone path length satisfies

$$\lambda_n = \Omega(n^{2 - \frac{d}{\sqrt{\log n}}})$$

where d > 0 is some constant.

**Proof:** Let m be  $\frac{1}{2}\sqrt{\log n}$ . Then Theorem 1 gives a monotone path of length at least  $n^{2-(3/(\sqrt{\log n}))}$  using at most  $2n + 2(30^{\frac{1}{2}\sqrt{\log n}})n$  lines. A straightforward calculation gives the claimed bound on  $\lambda_n$ .

#### 2 The Construction

#### 2.1 The Basic Setup

Observe that k parallel horizontal lines and k parallel vertical lines give a path that is monotone in any direction (a, b) with a, b > 0, has length n = 2k, and uses n lines. We call this path a "staircase".



Figure 1. A "staircase" with n = 2k lines, and having length n.

Given an integer m > 0 let  $\alpha_k = 1/((k+1)(k+2))$ ,  $0 \le k < m$ , and  $\alpha_m = 1/(m+1)$ . Since  $\alpha_0 + \ldots + \alpha_k = (k+1)/(k+2)$ ,

$$\alpha_0 + \dots + \alpha_m = \frac{1}{2} + \frac{1}{6} + \dots + \frac{1}{m(m+1)} + \frac{1}{m+1} = 1.$$
 (1)

Let  $\mathbf{u} = (1,0)$ ,  $\mathbf{v} = (0,1)$ . In the course of the proof we shall set an  $\varepsilon > 0$  that will be suitably small. For now we treat  $\varepsilon$  as an infinitesimal quantity. We develop a notation to describe points in a hierarchical construction. For  $\varepsilon > 0$ , the vector-matrix product

$$(1, \varepsilon, \varepsilon^2, \dots, \varepsilon^m) \begin{pmatrix} i_0 & i_1 & \dots & i_m \\ j_0 & j_1 & \dots & j_m \end{pmatrix}^T$$

is a point of the plane that we will denote by  $\begin{bmatrix} i_0 & i_1 & \dots & i_m \\ j_0 & j_1 & \dots & j_m \end{bmatrix}$ . The construction uses the set S of points for which  $i_0, j_0, \dots, i_m, j_m$  are integers with

$$0 \leq i_0, j_0 \leq \lfloor n^{\alpha_0} \rfloor - 1 \stackrel{def}{=} D_0$$

$$0 \leq i_1, j_1 \leq \lfloor n^{\alpha_1} \rfloor - 1 \stackrel{def}{=} D_1$$

$$\vdots$$

$$0 \leq i_m, j_m \leq \lfloor n^{\alpha_m} \rfloor - 1 \stackrel{def}{=} D_m.$$

In view of (1), the number of points in S is at most  $(n^{\alpha_0})^2(n^{\alpha_1})^2 \cdots (n^{\alpha_m})^2 = n^2$ . For k < m write  $B_k$  for the subset of S where  $i_r = j_r = 0, r > k$ . That is,

$$B_k = \left\{ P = \begin{bmatrix} i_0 & i_1 & \dots & i_{k-1} & i_k & 0 & \dots & 0 \\ j_0 & j_1 & \dots & j_{k-1} & j_k & 0 & \dots & 0 \end{bmatrix} \right\}.$$
 (2)

There are at most  $(n^{\alpha_0})^2 \cdots (n^{\alpha_k})^2 = n^{2-2/(k+2)}$  such points.

Another way to think about  $B_k$  is as follows: let us call the square  $[x, x + t) \times [y, y + t) \subseteq \mathbb{R}^2$  the "square of side t at (x, y)". The points of  $B_0$  are given by the intersection of the integer lattice  $\mathbb{Z} \times \mathbb{Z} \subseteq \mathbb{R}^2$  with the square of side  $\lfloor \sqrt{n} \rfloor$  at (0, 0). To get the points of  $B_1$ , the next level of the hierarchy, replace each point  $P \in B_0$  by the intersection of the square of side  $\varepsilon \lfloor n^{\alpha_1} \rfloor$  at P with the points  $P + \varepsilon(\mathbb{Z} \times \mathbb{Z})$ . For  $1 \leq k < m - 1$  we construct  $B_{k+1}$  by replacing each point  $P \in B_k$  by the intersection of the square of side  $\varepsilon^{k+1} \lfloor n^{\alpha_{k+1}} \rfloor$  at P and the points  $P + \varepsilon^{k+1}(\mathbb{Z} \times \mathbb{Z})$ .





Figure 2. Some points in  $B_{k+1}$ 

For example in Figure 2,  $P_1$ ,  $P_2$ ,  $P_3$ ,  $P_4$  are neighboring points in  $B_k$ , each the lower-left corner of a square of side  $\varepsilon^{k+1}\lfloor n^{\alpha_{k+1}}\rfloor$  that contains  $\lfloor n^{\alpha_{k+1}}\rfloor^2$  grid points. If in Figure 2  $P_1$  has coordinates

$$\left[\begin{array}{ccccc} i_0 & \dots & i_{k-1} & I & 0 & \dots & 0 \\ j_0 & \dots & j_{k-1} & J & 0 & \dots & 0 \end{array}\right] \in B_k,$$

then  $P_2$  and  $P_4$  have  $i_k = I + 1$ , and  $P_3$  and  $P_4$  have  $j_k = J + 1$ .

We now pick a direction in which we want our path to be monotone. Our choice is  $\mathbf{w} = (\sqrt{2}, 1)$ . Orthogonal to this is the direction  $\mathbf{w}' = (-1, \sqrt{2})$ . A vector is said to point forward if it has positive scalar product with  $(\sqrt{2}, 1)$ . In particular,  $\mathbf{u}$  and  $\mathbf{v}$  point forward. For p, q > 0 the vector (-q, p) points forward iff  $\frac{p}{q} > \sqrt{2}$ , and (q, -p) points forward iff  $\frac{p}{q} < \sqrt{2}$ . In the first case we say p/q approximates  $\sqrt{2}$  from above; in the second, p/q approximates  $\sqrt{2}$  from below.

For each point in S consider the horizontal line and the vertical line that go through this point and let L be the union of all these lines. The points of S have at most n distinct x coordinates and at most n distinct y coordinates, so L has at most n lines. As we will see later, our monotone path goes through every point in  $B_{m-1}$ . Whenever it reaches a point

$$\left[\begin{array}{ccc} i_0 & \dots & i_{m-1} & 0 \\ j_0 & \dots & j_{m-1} & 0 \end{array}\right] \in B_{m-1},$$



**Figure 3. w** is the chosen direction of monotonicity. (-2,3) and (1,-1) point forward, since  $\frac{3}{2}$  approximates  $\sqrt{2}$  from above and 1/1 from below.

it follows the staircase to

$$\begin{bmatrix} i_0 & \dots & i_{m-1} & D_m \\ j_0 & \dots & j_{m-1} & D_m \end{bmatrix} \in S.$$

This staircase is a monotone path because  $\mathbf{u}$  and  $\mathbf{v}$  both point forward. We use the following coarse lower bound on the number of staircases (which is good enough for our claim):

$$|n^{\alpha_0}|^2 \dots |n^{\alpha_{m-1}}|^2 \ge 2^{-m} (n^{\alpha_0})^2 \dots (n^{\alpha_{m-1}})^2 = 2^{-m} n^{2-2/(m+1)}$$

where the first inequality holds since  $n^{\alpha_k} \ge n^{2/\log n} = 4$  for all  $0 \le k \le m-1$ . On each of these staircases the path makes  $2\lfloor n^{1/(m+1)}\rfloor - 1 \ge n^{1/(m+1)}$  turns, so if we could move from staircase to staircase in a monotone fashion, the resulting path would have length at least  $2^{-m}n^{2-1/(m+1)}$ , as required.

## 2.2 Helping Lines

In this section we complete the construction by showing how to connect the staircases using at most  $2(30^m)n$  extra lines, and moving along each in a direction that points forward with respect to **w**.

Suppose we project the points of S orthogonally onto the line  $\ell$  given by the equation  $\sqrt{2}y - x = 0$ . The points in  $B_0$  project to distinct points on  $\ell$  and are ordered by these projections. When each point in  $B_0$  is replaced by a square of side  $\varepsilon \lfloor n^{\alpha_1} \rfloor$ , each square projects to an interval, and if  $\varepsilon$  is suitably small, these intervals will be disjoint. This gives an ordering for the points in  $B_1$  based first on the ordering for  $B_0$ , and then on the ordering for points with the same  $i_0, j_0$ . Inductively, the points in  $B_k$  are ordered, and when we replace each by a square of side  $\varepsilon^{k+1}\lfloor n^{\alpha_{k+1}}\rfloor$ , each square projects to an interval; if  $\varepsilon$  is suitably small, these intervals will be disjoint. This gives an ordering for the points in  $B_{k+1}$ , first based on the ordering of points in  $B_k$ , and then on the ordering of points with the same values of  $i_r, j_r, r \leq k$ .

To sum up, we obtain a lexicographic ordering of the points in S. We define  $Q \in S$  to be the *successor* of  $P \in S$  if it comes immediately after P in this ordering. These observations imply that the set of staircases can be connected in a monotone manner. We also obtain,

Lemma 1 Let

$$P = \begin{bmatrix} i_0 & \dots & i_{k-1} & i_k & D_{k+1} & \dots & D_m \\ j_0 & \dots & j_{k-1} & j_k & D_{k+1} & \dots & D_m \end{bmatrix}$$

be a point in S with either  $i_k \neq D_k$  or  $j_k \neq D_k$ , and k < m. The successor of P is a point

$$Q = \begin{bmatrix} i_0 & \dots & i_{k-1} & i'_k & 0 & \dots & 0 \\ j_0 & \dots & j_{k-1} & j'_k & 0 & \dots & 0 \end{bmatrix}$$

with either  $i'_k \neq i_k$ ,  $j'_k \neq j_k$ , or both.

The point P can be seen as the top of a staircase at level k. Let us define this notion more precisely: for  $0 \le k < m$  define  $T_k \subseteq S$  as

$$T_k = \left\{ P = \begin{bmatrix} i_0 & \dots & i_k & D_{k+1} & \dots & D_m \\ j_0 & \dots & j_k & D_{k+1} & \dots & D_m \end{bmatrix} \in S : (i_k, j_k) \neq (D_k, D_k) \right\}.$$
(3)

These points are the **tops of staircases at level** k of the hierarchy. Let us consider Figure 4 for some fixed k < m. All the points in the figure except  $P_2$  and  $P_5$  are in  $B_{k+1}$ . Moreover, the points that are at the bottom left of the shaded squares are also in  $B_k$ .  $P_2$  is in  $T_k$  and  $P_5$  is in  $T_{k-1}$ . Hence, we can write

$$P_{1} = \begin{bmatrix} i_{0} & \dots & i_{k-1} & i_{k} & 0 & \dots & 0 \\ j_{0} & \dots & j_{k-1} & j_{k} & 0 & \dots & 0 \end{bmatrix} \in B_{k},$$

$$P_{2} = \begin{bmatrix} i_{0} & \dots & i_{k-1} & i_{k} & D_{k+1} & \dots & D_{m} \\ j_{0} & \dots & j_{k-1} & j_{k} & D_{k+1} & \dots & D_{m} \end{bmatrix} \in T_{k},$$

$$P_{4} = \begin{bmatrix} i_{0} & \dots & i_{k-1} & D_{k} & 0 & \dots & 0 \\ j_{0} & \dots & j_{k-1} & D_{k} & 0 & \dots & 0 \end{bmatrix} \in B_{k},$$

$$P_{5} = \begin{bmatrix} i_{0} & \dots & i_{k-1} & D_{k} & \dots & D_{m} \\ j_{0} & \dots & j_{k-1} & D_{k} & \dots & D_{m} \end{bmatrix} \in T_{k-1}.$$

Finally, notice that  $P_3 \in B_k$  is the successor of  $P_2 \in T_k$  while the successor of  $P_5 \in T_{k-1}$  in some point from  $B_{k-1}$  which is not shown.



Figure 4. Successors at level k.

We now discuss the issues concerning the choice of lines used to move from a point to its successor. We call these lines *helping lines*. Let us first use Figure 4 to describe the main ideas. From points in  $T_k$  we either follow a line in direction  $v_1$  or a line in direction  $v_2$ . The actual choice is determined by the position of the successor: for example, from  $P_2$  we choose the direction  $v_1$  because  $P_3$  is above  $P_2$ . In order to be able to move from a point in  $T_k$  to its successor in  $B_k$ , the directions  $v_1$  and  $v_2$  must be almost orthogonal to w. However, as we will explain next, it is crucial that neither  $v_1$  nor  $v_2$  are completely orthogonal to w.

As we said above, we need a helping line for every point in  $T_k$ . But there are as many as  $n^{2-2/(k+2)} \gg 2(30^m)n$  such points! The main idea is to reuse each helping line, many times. Hence, even though we define a helping for every point in  $T_k$ , the number of distinct helping lines is actually much lower. The way to reuse a line is the following: when we move to the successor of a point in  $T_{k-1}$  we do so on a helping line that is more orthogonal to w than the helping line used for points in  $T_k$ . For example, in Figure 4,  $v_3$  and  $v_4$  point less forward than  $v_1$  and  $v_2$ . This essentially allows us to cross  $v_1$  and  $v_2$  on the way to the successor and then to use them again. Let us now describe the choice of the helping lines more formally.

**Definition 1** A best upper approximator of  $\sqrt{2}$  is a rational number  $\frac{p}{q} > \sqrt{2}$  such that no other rational  $\frac{p'}{q'}$  with  $q' \leq q$  approximates  $\sqrt{2}$  better from either above or below. A best lower approximator of  $\sqrt{2}$  is a rational  $\frac{r}{s} < \sqrt{2}$  such that no other rational  $\frac{r'}{s'}$  with  $s' \leq s$  approximates  $\sqrt{2}$  better from either above or below.

**Lemma 2** For every  $t \geq 1$  there is a best upper approximator  $\frac{p}{q}$  and a best lower approximator  $\frac{p'}{a'}$  of  $\sqrt{2}$  such that  $t < q, q' \leq 10t$ .

**Proof:** The convergents of the simple continued fraction for  $\sqrt{2}$  are  $1, \frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \ldots$  They can be defined by  $r_i/s_i$  where  $s_0 = r_0 = 1$ ,  $r_{i+1} = r_i + 2s_i$  and  $s_{i+1} = r_i + s_i$ . It is easy to see that for  $j \geq 0$ 

$$\frac{r_{2j}}{s_{2j}} < \frac{r_{2j+2}}{s_{2j+2}} < \sqrt{2} < \frac{r_{2j+3}}{s_{2j+3}} < \frac{r_{2j+1}}{s_{2j+1}}.$$

It is also well known (and easy to check) that  $r_{2j}/s_{2j}$  is a best lower approximator of  $\sqrt{2}$  and  $r_{2j+1}/s_{2j+1}$  is a best upper approximator of  $\sqrt{2}$ . Since  $s_{i+1} = r_i + s_i \leq 3s_i$ , for every  $t \geq 1$  there exists some  $i \geq 0$  such that  $t < s_i < s_{i+1} \leq 10t$ .

For  $0 \le k < m$ , let  $\frac{p_k}{q_k}$  be a best upper approximator of  $\sqrt{2}$  such that  $n^{\alpha_k} < q_k \le 10n^{\alpha_k}$  and let  $\frac{p'_k}{q'_k}$  be a best lower approximator of  $\sqrt{2}$  such that  $n^{\alpha_k} < q'_k \le 10n^{\alpha_k}$ . We can now define for every point  $P \in T_k$  two lines that are incident with P: one in direction  $(-q_k, p_k)$  (an upper helping line, like  $v_1$  and  $v_3$  in Figure 4) and one in direction  $(q'_k, -p'_k)$  (a lower helping line, like  $v_2$  and  $v_4$  in Figure 4). Formally,  $L_k^{up}$  denotes the set of lines of slope  $\frac{-p_k}{q_k}$  through the points of  $T_k$  and  $T_k^{down}$ , the lines of slope  $T_k^{up}$  through these points. As mentioned above, the monotone path will actually follow only one of these lines but for simplicity we define both.

**Lemma 3** From each point in  $P \in T_k$  there is a monotone path to its successor Q, that either follows the line in  $L_k^{up}$  through P or the line in  $L_k^{down}$  through P, and then follows a horizontal line to Q (see Figure 5).



Figure 5. Helping lines precede successors.

**Proof:** The choice of  $p_k/q_k$  and  $p'_k/q'_k$  as best approximators with  $q_k, q'_k > n^{\alpha_k}$  guarantee that if  $\varepsilon$  is small enough, the successor of P is on a line from P of slope less than  $-p_k/q_k$  in the upper case, or greater than  $-p'_k/q'_k$  in the lower case.

#### 2.3 Counting

To complete the proof of the theorem we count the number of distinct helping lines used in the construction.

**Lemma 4** Let  $|L_k^{up}|$  and  $|L_k^{down}|$  denote the number of distinct lines in the respective sets, k < m. Then the total number of helping lines is

$$\leq \sum_{k=0}^{m-1} (|L_k^{up}| + |L_k^{down}|) \leq 2(30^m)n. \tag{4}$$

**Proof:** Fix some k < m. We just treat  $|L_k^{up}|$ , the down case being completely analogous. Fix non-negative  $I_r, J_r \leq D_r, r < k$ , and consider the points in

$$A = \{ P \in T_k : (i_r, j_r) = (I_r, J_r) \text{ for all } r < k \}.$$

There are at most  $N = n^{2\alpha_k}$  such points, one for each possible pair  $(i_k, j_k) \neq (D_k, D_k)$ , and they require N distinct lines in  $L_k^{up}$ . Let R be the points in  $T_k$  which have the same values of  $i_r, j_r$  as do the points in A, for all r < k - 1; i.e.,

$$R = \{ P \in T_k : (i_r, j_r) = (I_r, J_r) \text{ for all } r < k - 1 \}.$$

The N lines just considered (for A) will also meet all points in R for which both  $i_{k-1} = I_{k-1} - cq_k \ge 0$  and  $j_{k-1} = J_{k-1} + cp_k \le D_{k-1}$  for some integer c. For example, in Figure 6, the square B is located  $q_k$  squares to the left of A and  $p_k$  squares above it and therefore the N lines going through A are the same as the N lines going through B. Similarly, C is located  $2q_k$  squares to the left and  $2p_k$  squares above A and also shares the same N lines.

This indicates that the number of distinct lines in  $L_k^{up}$  needed for all points in R is less than the trivial bound of  $n^{2\alpha_{k-1}} \cdot N$ . Indeed, consider the lines of slope  $-p_k/q_k$  at those points with  $(i_r, j_r) = (I_r, J_r)$ , r < k-1 and with  $i_{k-1} = 0, \ldots, 2\lfloor n^{\alpha_{k-1}} \rfloor$  and



Figure 6. Lines in  $L_k^{up}$  for points with the same  $i_r, j_r, r < k-1$ 

 $j_{k-1}=0,\ldots,p_k-1$  (in Fig. 6, these are the lines emanating from the squares inside the dashed rectangle, such as A and D). Because  $p_k>q_k$  (i.e., the lines form an angle of more than 45° with the x-axis), all points in R will be covered. Each square uses at most N lines in  $L_k^{up}$  and we cover R with at most  $2p_kn^{\alpha_{k-1}}$  squares. Hence, the number of distinct lines in  $L_k^{up}$  needed for all the points in  $R\subseteq T_k$  is at most

$$2p_k \cdot n^{\alpha_{k-1}} N \le (30n^{\alpha_k}) n^{\alpha_{k-1}} n^{2\alpha_k},$$

where we used the fact that  $p_k \leq 1.5q_k$  and  $q_k \leq 10n^{\alpha_k}$ .

Applying this argument again to points in  $T_k$  that have  $(i_r, j_r) = (I_r, J_r)$  for r < k-2 we deduce that at most

$$(30n^{\alpha_k})^2 n^{\alpha_{k-2}} n^{\alpha_{k-1}} n^{2\alpha_k}$$

lines in  $L_k^{up}$  are needed, and continuing inductively, we see that  $T_k$  needs at most

$$(30n^{\alpha_k})^k n^{(\alpha_0 + \dots + \alpha_{k-1})} n^{2\alpha_k} = (30)^k n^{(\alpha_0 + \dots + \alpha_{k-1} + (k+2)\alpha_k)}$$

lines in  $L_k^{up}$ . Using the fact that  $(k+2)\alpha_k = 1/(k+1)$  and  $\alpha_0 + \ldots + \alpha_{k-1} = k/(k+1)$ , we obtain

$$|L_k^{up}| \le (30)^k n.$$

Applying this estimate for each k, we establish the bound in (4) and prove the lemma.

**Proof of Theorem 1.** We have constructed an arrangement of at most  $2n + 2(30^m)n$  lines, at most n horizontal and at most n vertical lines used in the staircases, and the helping lines. Also, as mentioned above, the staircases alone comprise part of a monotone path of length at least  $2^{-m} \cdot n^{2-1/(m+1)}$ .

# 3 Remarks

1. One interesting open question concerns the quantity  $\lambda_n(k)$ , the length of the longest monotone path in an arrangement of n lines with at most k distinct

- slopes. Clearly,  $\lambda_n(k)$  increases with k and is at most  $\lambda_n$ . The construction of Sharir used k=4 different slopes, so  $\lambda_n(4) \geq \Omega(n^{3/2})$ . Matoušek's construction gives  $\lambda_n(5) \geq \Omega(n^{5/3})$ . For any constant m, our construction uses a set of O(n) lines with 2m+2 distinct slopes. Hence, it implies  $\lambda_n(2m+2) \geq \Omega(n^{2-1/(m+1)})$ . Recently, Dumitrescu [1] showed that  $\lambda_n(k) \leq O(n^{2-1/F_{k-1}})$  where  $F_k$  is the k'th Fibonacci number  $(F_1 = F_2 = 1, F_3 = 2, F_4 = 3, \text{ etc.})$ . In particular, this provides tight upper bounds for k=4,5.
- 2. Matoušek [3] also studied arrangements of pseudo-lines; i.e., n continuous functions  $f_1, \ldots, f_n$  with the same intersection rules as lines. Specifically, for each i < j there is a point  $x_{ij}$  (a vertex) such that  $(f_i(u) f_j(u))(f_i(t) f_j(t)) < 0$  whenever  $(u x_{ij})(t x_{ij}) < 0$ . General position would impose the condition that the vertices be distinct. A "path" moves along a function and may turn at a vertex. Matoušek constructed a pseudoline arrangement with an x-monotone path of length  $\Omega(n^2/\log n)$ . He also had conjectured that  $\lambda_n = O(n^{5/3})$ , i.e., that his lower bound for monotone path length in line arrangements was optimal. If this were true we would have a neat combinatorial separation of line and pseudoline arrangements based on monotone path length. The result of this paper implies that such a strong separation is impossible. A weaker separation is still possible by showing a  $O(n^2/\log n)$  upper bound for  $\lambda_n$  (but we don't even know how to show  $\lambda_n = O(n^2)$ !).

### References

- [1] A. Dumitrescu. Monotone Paths in Line Arrangements with a Small Number of Directions. Manuscript.
- [2] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, Berlin, 1987.
- [3] J. Matoušek. Lower Bounds on the Length of Monotone Paths in Arrangements. Discrete and Computational Geometry 6, 129-134 (1991).
- [4] R. Radoičić and G. Tóth. Monotone Paths in Line Arrangements. *Proc.* 17<sup>th</sup> ACM Symp. Comp. Geom., 312-314 (2001)