Almost sure theory for first order logic on Galton-Watson trees and probabilities of local neighbourhoods of the root

Moumanti Podder
Joint work with Joel Spencer

Courant Institute of Mathematical Sciences
New York University

14th Annual Northeast Probability Seminar
November 20, 2015
The First Order (F.O.) World

A random Galton-Watson tree, $Poisson(\lambda)$ offspring distribution.
Almost sure theory for first order logic on Galton-Watson trees and probabilities of local neighbourhoods of the root.

Moumanti Podder
Joint work with Joel Spencer

The First Order (F.O.) World

T random Galton-Watson tree, Poisson(λ) offspring distribution.

- Constant Symbol: root
- Equality: $x = y$,
- Parent: $\pi(y) = x$ (x is parent of y, binary predicate),
- Variable Symbols $x, y, z \ldots$,
- Boolean $\lor, \land, \neg, \rightarrow, \leftrightarrow$, etc,
- Quantification $\forall x, \exists y$ over vertices only.
The First Order (F.O.) World

T random Galton-Watson tree, $\text{Poisson}(\lambda)$ offspring distribution.

- Constant Symbol: root
- Equality: $x = y$
- Parent: $\pi(y) = x$ (x is parent of y, binary predicate),
- Variable Symbols $x, y, z \ldots$,
- Boolean $\lor, \land, \neg, \rightarrow, \leftrightarrow$, etc,
- Quantification $\forall x, \exists y$ over vertices only.

Example

\exists a node with exactly one child and one grandchild.
Ehrenfeucht games

Definition

1. Trees T_1, T_2, roots R_1, R_2, $\#$ moves $= k$.
Ehrenfeucht games

Definition

1. Trees T_1, T_2, roots R_1, R_2, $\# \text{ moves} = k$.
2. Spoiler picks any one tree and a node from it. Duplicator chooses a node from the other tree.

Theorem
If Duplicator wins $EHR[T_1, T_2, k]$ then $T_1 \models \varphi$ \iff $T_2 \models \varphi$ for FO_A of depth k.
Ehrenfeucht games

Definition

1. Trees T_1, T_2, roots R_1, R_2, $\# \text{ moves } = k$.
2. Spoiler picks any one tree and a node from it. Duplicator chooses a node from the other tree.
3. $(x_i, y_i) \in T_1 \times T_2, 1 \leq i \leq k$, pairs of nodes selected.
Ehrenfeucht games

Definition

1. **Trees** T_1, T_2, roots R_1, R_2, \# moves $= k$.
2. **Spoiler** picks any one tree and a node from it. **Duplicator** chooses a node from the other tree.
3. $(x_i, y_i) \in T_1 \times T_2, 1 \leq i \leq k$, pairs of nodes selected.
4. **Duplicator wins if**
 - $x_i = R_1 \iff y_i = R_2$,
Ehrenfeucht games

Definition

1. Trees T_1, T_2, roots R_1, R_2, \# moves $= k$.
2. Spoiler picks any one tree and a node from it. Duplicator chooses a node from the other tree.
3. $(x_i, y_i) \in T_1 \times T_2, 1 \leq i \leq k$, pairs of nodes selected.
4. Duplicator wins if
 - $x_i = R_1 \iff y_i = R_2$,
 - $\pi(x_j) = x_i \iff \pi(y_j) = y_i$, for π.

Theorem: If Duplicator wins $EHR\left[T_1, T_2, k \right]$ then $T_1 | = A \iff T_2 | = A$ for $F.O.A$ of depth k.
Ehrenfeucht games

Definition

1. *Trees* T_1, T_2, roots R_1, R_2, $\#$ moves $= k$.
2. **Spoiler** picks any one tree and a node from it. **Duplicator** chooses a node from the other tree.
3. $(x_i, y_i) \in T_1 \times T_2$, $1 \leq i \leq k$, pairs of nodes selected.
4. **Duplicator wins if**
 - $x_i = R_1 \iff y_i = R_2$,
 - $\pi(x_j) = x_i \iff \pi(y_j) = y_i$,
 - $x_i = x_j \iff y_i = y_j$.

Theorem

If Duplicator wins $EHR[T_1, T_2, k]$ then $T_1 | A \iff T_2 | A$ for F. O. A of depth k.

Almost sure theory for first order logic on Galton-Watson trees and probabilities of local neighbourhoods of the root.

Moumanti Podder
Joint work with Joel Spencer
Ehrenfeucht games

Definition

1. Trees T_1, T_2, roots R_1, R_2, $\# \text{ moves} = k$.
2. Spoiler picks any one tree and a node from it. Duplicator chooses a node from the other tree.
3. $(x_i, y_i) \in T_1 \times T_2, 1 \leq i \leq k$, pairs of nodes selected.
4. Duplicator wins if
 - $x_i = R_1 \iff y_i = R_2$,
 - $\pi(x_j) = x_i \iff \pi(y_j) = y_i$,
 - $x_i = x_j \iff y_i = y_j$.

Theorem

If Duplicator wins $EHR[T_1, T_2, k]$ then

$$T_1 \models A \iff T_2 \models A$$

for F.O. A of depth k.
Ehrenfeucht value

Definition

$T_1 \equiv_k T_2$ if Duplicator wins $EHR[T_1, T_2, k]$.
Ehrenfeucht value

Definition

\[T_1 \equiv_k T_2 \text{ if Duplicator wins } EHR[T_1, T_2, k]. \]

Theorem

Fix k. Only finitely many equivalence classes.
Almost sure theory for first order logic on Galton-Watson trees and probabilities of local neighbourhoods of the root

Moumanti Podder
Joint work with Joel Spencer

Ehrenfeucht value

Definition

\[T_1 \equiv_k T_2 \] if Duplicator wins \(\text{EHR}[T_1, T_2, k] \).

Theorem

Fix \(k \). Only finitely many equivalence classes.

Definition

Equivalence class of \(T \) its Ehrenfeucht value.
Our results on almost sure theory for F.O.

Theorem

- Fix $k \in \mathbb{N}$.

- Fix a finite tree T_0. $A[T_0] := \{ \exists \text{ a subtree } \cong T_0 \text{ in } T \}$.

- Conditioned on the tree being infinite, A is almost surely true.

- Schema $A = \{ A[T_0] : \forall \ T_0 \text{ finite tree} \}$ gives almost sure theory for infinite trees.
Consequence of previous result

Corollary

- **Fix** $k \in \mathbb{N}$. **Condition on** T **being infinite**.

- **Ehrenfeucht value of** T **depends on the local neighbourhood of the root, of radius** $\approx 3^{k+2}$.

- **For all** $A = A[T_0]$, $P[A] = P[A^*]$ **where** A^* **only depends on the local neighbourhood of the root**.
Almost sure theory for first order logic on Galton-Watson trees and probabilities of local neighbourhoods of the root

Moumanti Podder
Joint work with Joel Spencer

First generation probability conditioned on infiniteness

1. Only concerned with $\Gamma_1 = \{0, 1, 2, \ldots k - 1, \omega\}$, ω indicates $\geq k$.

\[P[A_\omega \cap B^c] = P[A_\omega] - P[A_\omega \cap B] = \sum_{j=k}^{\infty} e^{-\lambda} \cdot \lambda^j j! \left[1 - p_j \right]. \]
First generation probability conditioned on infiniteness

1. Only concerned with $\Gamma_1 = \{0, 1, 2, \ldots k - 1, \omega\}$, ω indicates $\geq k$.
2. $A_i = \{R$ has i children$\}, i = 1, 2, \ldots k - 1, \omega$.
First generation probability conditioned on infiniteness

1. Only concerned with \(\Gamma_1 = \{0, 1, 2, \ldots k - 1, \omega\} \), \(\omega \) indicates \(\geq k \).
2. \(A_i = \{R \text{ has } i \text{ children}\} \), \(i = 1, 2, \ldots k - 1, \omega \).
3. \(B = \{T \text{ is finite}\} \), \(P[B] = p \).

Almost sure theory for first order logic on Galton-Watson trees and probabilities of local neighbourhoods of the root

Moumanti Podder
Joint work with Joel Spencer
First generation probability conditioned on infiniteness

1. Only concerned with $\Gamma_1 = \{0, 1, 2, \ldots k - 1, \omega\}$, ω indicates $\geq k$.

2. $A_i = \{R \text{ has } i \text{ children}\}$, $i = 1, 2, \ldots k - 1, \omega$.

4. For $i \in \{0, 1, \ldots k - 1\}$

$$P[A_i \cap B^c] = P[A_i] - P[A_i \cap B]$$

$$= e^{-\lambda} \cdot \frac{\lambda^i}{i!} (1 - p^i).$$
Almost sure theory for first order logic on Galton-Watson trees and probabilities of local neighbourhoods of the root

Moumanti Podder
Joint work with Joel Spencer

First generation probability conditioned on infiniteness

1. Only concerned with $\Gamma_1 = \{0, 1, 2, \ldots k-1, \omega\}$, ω indicates $\geq k$.

2. $A_i = \{R \text{ has } i \text{ children}\}$, $i = 1, 2, \ldots k-1, \omega$.

4. For $i \in \{0, 1, \ldots k-1\}$

\[
P[A_i \cap B^c] = P[A_i] - P[A_i \cap B] = e^{-\lambda} \cdot \frac{\lambda^i}{i!} (1 - p^i).
\]

5. For ω children:

\[
P[A_\omega \cap B^c] = P[A_\omega] - P[A_\omega \cap B] = \sum_{j=k}^{\infty} e^{-\lambda} \cdot \frac{\lambda^j}{j!} [1 - p^j].
\]
Some definitions

Almost sure theory for first order logic on Galton-Watson trees and probabilities of local neighbourhoods of the root

Moumanti Podder
Joint work with Joel Spencer

Definition

1. For $0 \leq i \leq k - 1$, $P_i(x) = \Pr[Poi(x) = i] = e^{-x} x^i / i!$.

2. For $i \geq k$, $P_\omega(x) = \Pr[Poi(x) \geq k] = e^{-x} \sum_{j=k}^{\infty} x^j / j!$.

3. $(i+1)$-generation neighbourhood $\Gamma_{i+1} = \{ g : \Gamma_i \to \Gamma_1 \}$.

4. For $\tau \in \Gamma_i$, $P_\tau(x) = \Pr[i \text{-generation neighbourhood is in } \tau \text{ for } Poi(x)]$.
Almost sure theory for first order logic on Galton-Watson trees and probabilities of local neighbourhoods of the root

Moumanti Podder
Joint work with Joel Spencer

Some definitions

Definition

1. For $0 \leq i \leq k - 1$, $P_i(x) = P[\text{Poi}(x) = i] = e^{-x} \frac{x^i}{i!}$.
Some definitions

1. For $0 \leq i \leq k - 1$, $P_i(x) = P[Poi(x) = i] = e^{-x} \frac{x^i}{i!}$.

2. For $k \geq k$, $P_\omega(x) = P[Poi(x) \geq k] = e^{-x} \sum_{j=k}^{\infty} \frac{x^j}{j!}$.
Almost sure theory for first order logic on Galton-Watson trees and probabilities of local neighbourhoods of the root

Moumanti Podder
Joint work with Joel Spencer

Some definitions

Definition

1. For $0 \leq i \leq k - 1$, $P_i(x) = P[\text{Poi}(x) = i] = e^{-x} \frac{x^i}{i!}$.

2. For $\geq k$, $P_\omega(x) = P[\text{Poi}(x) \geq k] = e^{-x} \sum_{j=k}^{\infty} \frac{x^j}{j!}$.

3. $(i + 1)$-generation neighbourhood $\Gamma_{i+1} = \{g : \Gamma_i \rightarrow \Gamma_1\}$.
Almost sure theory for first order logic on Galton-Watson trees and probabilities of local neighbourhoods of the root

Moumanti Podder
Joint work with Joel Spencer

Some definitions

Definition

1. For $0 \leq i \leq k - 1$, \[P_i(x) = P[ext{Poi}(x) = i] = e^{-x} \frac{x^i}{i!}. \]

2. For $k \geq k$, \[P_\omega(x) = P[ext{Poi}(x) \geq k] = e^{-x} \sum_{j=k}^{\infty} \frac{x^j}{j!}. \]

3. $(i + 1)$-generation neighbourhood $\Gamma_{i+1} = \{ g : \Gamma_i \to \Gamma_1 \}$.

4. For $\tau \in \Gamma_i$, \[P_\tau(x) = P[i\text{-generation neighbourhood } \in \tau \text{ for Poi}(x)]. \]
 Almost sure theory for first order logic on Galton-Watson trees and probabilities of local neighbourhoods of the root

Moumanti Podder
Joint work with Joel Spencer

Example + Illustration

\[k = 3, g(0) = 0, g(1) = \omega, g(2) = 1, g(\omega) = 1. \]

\[P_{\sigma}(x) = 2 \prod_{i=0}^{x} P_{g(i)}(xP_{i}(x)) \cdot P_{g(\omega)}(xP_{\omega}(x)) = e^{-x} \cdot \left(\sum_{j=3}^{\infty} \left(xP_{1}(x) \right)^{j} \cdot j! \right) \cdot \left(xP_{2}(x) \right) \cdot \left(xP_{\omega}(x) \right) \]
Almost sure theory for first order logic on Galton-Watson trees and probabilities of local neighbourhoods of the root

Moumanti Podder
Joint work with Joel Spencer

Example + Illustration

\[k = 3, g(0) = 0, g(1) = \omega, g(2) = 1, g(\omega) = 1. \]

\[P_{\sigma}(x) = 2 \prod_{i=0}^{\infty} P_{g(i)}(xP_i(x)) \cdot P_{g(\omega)}(xP_\omega(x)) = e^{-x} \cdot \sum_{j=3}^{\infty} \frac{(xP_1(x))^j}{j!} \cdot (xP_2(x)) \cdot (xP_\omega(x)). \]
Example + Illustration

Almost sure theory for first order logic on Galton-Watson trees and probabilities of local neighbourhoods of the root

Moumanti Podder
Joint work with Joel Spencer

\[k = 3, \quad g(0) = 0, \quad g(1) = \omega, \quad g(2) = 1, \quad g(\omega) = 1. \]
Example + Illustration

Almost sure theory for first order logic on Galton-Watson trees and probabilities of local neighbourhoods of the root

Moumanti Podder
Joint work with Joel Spencer

\[k = 3, \ g(0) = 0, \ g(1) = \omega, \ g(2) = 1, \ g(\omega) = 1. \]

\[P_{\sigma}(x) = \prod_{i=0}^{2} P_{g(i)}(xP_i(x)) \cdot P_{g(\omega)}(xP_\omega(x)) \]

\[= e^{-x} \cdot \left\{ \sum_{j=3}^{\infty} \frac{(xP_1(x))^j}{j!} \right\} \cdot (xP_2(x)) \cdot (xP_\omega(x)) \]
Almost sure theory for first order logic on Galton-Watson trees and probabilities of local neighbourhoods of the root

Moumanti Podder
Joint work with Joel Spencer
Recursive computation of probabilities

Theorem

\[P_\sigma(x) = \prod_{\tau \in \Gamma_i} P_{g(\tau)}(xP_{\tau}(x)) \quad \forall \sigma = g \in \Gamma_{i+1}. \]
Almost sure theory for first order logic on Galton-Watson trees and probabilities of local neighbourhoods of the root.

Moumanti Podder
Joint work with Joel Spencer

Theorem

$$P_\sigma(x) = \prod_{\tau \in \Gamma_i} P_{g(\tau)}(xP_{\tau}(x)) \quad \forall \sigma = g \in \Gamma_{i+1}.$$

Theorem

$$B = \{ T \text{ is finite} \}, \quad P[B] = p.$$
Recursive computation of probabilities

Theorem

\[P_\sigma(x) = \prod_{\tau \in \Gamma_i} P_g(\tau)(xP_\tau(x)) \quad \forall \, \sigma = g \in \Gamma_{i+1}. \]

Theorem

- \(B = \{ T \text{ is finite} \} \), \(P[B] = p. \)
- By duality for Galton-Watson trees,

\[P\{i - \text{generation neighbourhood} = \sigma\} | B] = P_\sigma(p\lambda). \]
Almost sure theory for first order logic on Galton-Watson trees and probabilities of local neighbourhoods of the root

Moumanti Podder Joint work with Joel Spencer

Theorem

\[P_\sigma(x) = \prod_{\tau \in \Gamma_i} P_{g(\tau)}(xP_{\tau}(x)) \quad \forall \sigma = g \in \Gamma_{i+1}. \]

Theorem

- \(B = \{ T \text{ is finite} \}, \quad P[B] = p. \)
- By duality for Galton-Watson trees,
 \[P[\{ \text{i\text{-}generation neighbourhood} = \sigma \}|B] = P_\sigma(p\lambda). \]

- If \(P^*[\sigma] = P[\{ \text{i\text{-}generation neighbourhood} = \sigma \}|B^c], \) then
 \[P^*[\sigma] = \frac{P_\sigma(\lambda) - p \cdot P_\sigma(p\lambda)}{1 - p}. \]
Almost sure theory for first order logic on Galton-Watson trees and probabilities of local neighbourhoods of the root

Moumanti Podder
Joint work with Joel Spencer

The probabilities are *nice* functions

Remark

For all i *and* $\sigma \in \Gamma_i$, $P_\sigma(x)$ *nice function. Consists of polynomials in* p, x, e^{-x}, *and base* e *exponentiation.*
Almost sure theory for first order logic on Galton-Watson trees and probabilities of local neighbourhoods of the root

Moumanti Podder
Joint work with Joel Spencer

The probabilities are *nice* functions

Remark

For all i and $\sigma \in \Gamma_i$, $P_\sigma(x)$ nice function. Consists of polynomials in p, x, e^{-x}, and base e exponentiation.

Example

1. $A := \{ \text{Root has no child with no child} \}, \ k \geq 1.$
The probabilities are *nice* functions

Remark

For all i *and* $\sigma \in \Gamma_i$, $P_\sigma(x)$ *nice function*. *Consists of polynomials in* p, x, e^{-x}, *and base* e *exponentiation.*

Example

1. $A := \{\text{Root has no child with no child}\}, k \geq 1$.
2. $A = \{g(0) = 0\}$.
Almost sure theory for first order logic on Galton-Watson trees and probabilities of local neighbourhoods of the root

Moumanti Podder
Joint work with Joel Spencer

The probabilities are *nice* functions

Remark

For all i and $\sigma \in \Gamma_i$, $P_{\sigma}(x)$ nice function. Consists of polynomials in p, x, e^{-x}, and base e exponentiation.

Example

1. $A := \{ \text{Root has no child with no child} \}, \ k \geq 1$.
2. $A = \{ g(0) = 0 \}$.
3. $P[A] = P_0[\lambda P_0(\lambda)] = e^{-\lambda P_0(\lambda)} = e^{-\lambda}e^{-\lambda}$.
Almost sure theory for first order logic on Galton-Watson trees and probabilities of local neighbourhoods of the root

Moumanti Podder
Joint work with Joel Spencer

Thank you.