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Abstract. Following the work of Totaro and Pereira, we study
sufficient conditions under which collections of pairwise-disjoint di-
visors on a variety over an algebraically closed field are contained
in the fibers of a morphism to a curve. We prove that ρw(X) + 1
pairwise-disjoint, connected divisors suffices for proper, normal va-
rieties X, where ρw(X) is a modification of the Néron-Severi rank
of X (they agree when X is projective and smooth). We then prove
a strong counterexample in the affine case: if X is quasi-affine and
of dimension ≥ 2 over a countable, algebraically-closed field k, then
there exists a (countable) collection of pairwise-disjoint divisors
which cover the k-points of X, so that for any non-constant mor-
phism from X to a curve, at most finitely many are contained in
the fibers thereof. We show, however, that an uncountable collec-
tion of pairwise-disjoint, connected divisors in any normal variety
over an algebraically-closed field must be contained in the fibers
of a morphism to a curve.

1. Introduction

The goal of this note is to give a set-theoretic condition under which
collections of pairwise-disjoint divisors on varieties over an algebraically-
closed field are contained in the fibers of a single morphism to a curve.
We first adapt the methods of B. Totaro [16] and J. Pereira [11] to pro-
duce a stronger bound in the projective, smooth case in characteristic
zero, and we generalize these results to normal, proper varieties in all
characteristics.

We obtain the following result, which generalizes the theorems of
Totaro and Pereira, loc. cit., to normal, proper varieties of arbitrary
characteristic. Here, ρw(X) is an invariant of the variety X, equal to
the Néron-Severi rank when X is smooth and projective, and finite in
all cases :

Theorem 1.1. Let X be a normal, proper, integral variety defined over
an algebraically closed field k. Let {Di}i∈I be a collection of pairwise-
disjoint, reduced, codimension-one, connected subvarieties of X. As-
sume that #I ≥ ρw(X) + 1. Then there is a smooth, projective curve

1



C and a surjective morphism f : X → C with connected fibers such
that for any i ∈ I, the divisor Di is contained in a fiber of f . Further-
more, there is a set Σ ⊆ I so that #(I \ Σ) ≤ ρw(X)− 2 and for each
i ∈ Σ, Di is equal (set-theoretically) to a fiber of f .

In Pereira and Totaro’s approaches — which work only in the smooth
case — #I must be at least ρw(X) + 2; our extra saving comes from
an extra application of the Hodge index theorem.

In the affine case we have the following explicit counterexample.

Theorem 1.2. Let A2
k be the affine plane over a countable, algebraically-

closed field k. Then there is a countable family {Di}i∈I of integral,
Zariski-closed, codimension-1 subvarieties of X, such that:

• The divisors Di are pairwise disjoint and their k-points cover
A2, i.e. A2(k) =

⋃
i∈I Di(k);

• For any non-constant morphism f : A2 → C to a curve, at
most finitely many of the Di are contained in fibers of f .

As a corollary, we easily deduce:

Theorem 1.3. Let X be a quasi-affine variety over a countable, algebraically-
closed field k. Then there is a countable family {Di}i∈I of connected,
Zariski-closed, codimension-1 subvarieties of X, such that:

• The divisors Di are pairwise disjoint and their k-points cover
X, i.e., X(k) =

⋃
i∈I Di(k);

• For any non-constant morphism f : X → C, at most finitely
many of the Di are contained in fibers of f .

We can salvage this counterexample if I is uncountable:

Theorem 1.4. Let X be any normal variety over an algebraically-
closed field k, and let {Di}i∈I be an uncountable collection of pairwise-
disjoint, reduced, codimension-one, connected subvarieties of X. Then
there is a normal curve C and a non-constant morphism f : X → C
with connected fibers so that each Di is contained in a fiber of f .

In particular, if a set of divisors covers the k-points of the variety
when k is uncountable, there are uncountably many divisors.

This paper provides a tool to approach the third author (A.S.)’s
program of Geometric Reconstruction [13] in the first author (F.B.)’s
Program of Birational Anabelian Geometry. In Bogomolov’s program,
we take a field K which is the function field of an algebraic variety X of
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dimension ≥ 2 defined over an algebraically-closed field, and the goal
is to reconstruct K from its absolute Galois group GK . In Geometric
Reconstruction, the goal is to reconstruct individual varieties with a
given function field K as group-theoretically defined objects in GK .
The results in this paper are crucial in an upcoming paper by the
third author in proving geometric reconstruction for function fields K
of transcendence degree 2 over Q from the maximal, 2-step nilpotent,
pro-` quotient of GK .

2. Disjoint divisors on proper varieties

In this section we prove Theorem 1.1, following the proof of Totaro
[16], but with two additional arguments. Totaro and Pereira prove the
theorem in characteristic zero, for smooth, projective varieties. First,
in order to generalize to characteristic p, we reduce the theorem for
X normal and projective to the case of a general surface which is an
intersection of hyperplane sections; this allows us to use resolution of
singularities of surfaces, in arbitrary characteristic. By appealing to
the Hodge index theorem we reduce the number of pairwise-disjoint
divisors to the theoretical minimum.

2.1. Divisors and Albanese varieties. We begin with the notion of
divisor class group we will use throughout the paper. Recall that for a
variety Y over a field k we denote by Z1(Y ) the group of Weil prime
divisors on X — that is, finite, linear combinations of closed, integral,
codimension-1 subvarieties and by CH1(Y ) the quotient of Z1(Y ) by
linear equivalence.

Let X be a normal projective integral variety defined over an al-
gebraically closed field k and U ⊂ X be the smooth locus of X.
Fix a prime ` not equal to the characteristic of k. Since X is nor-
mal, the singular locus is codimension ≥ 2 and the restriction map
CH1(X)→ CH1(U) is an isomorphism. Since U is smooth, we have the
cycle class map CH1(U) → H2

ét(U,Q`(1)) [4, 2.1.1]. We then denote
CH1(X)hom ⊂ CH1(X) the group of cycles homologically equivalent
to zero as the kernel of the composition

CH1(X)
∼→ CH1(U)→ H2

ét(U,Q`(1))

for ` 6= char k. If X is just normal and proper, we can use Chow’s
lemma [7, Th. 5.6.1] to find a projective, normal modification
π : X̃ → X — where π is a projective, surjective, birational morphism,
and X̃ is a normal, projective variety (we can assume normality because
normalization is a projective morphism). For a normal, projective
variety Y, define the group B1(Y ) := (CH1(Y )/CH1(Y )hom)⊗Q
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Note that if X is smooth, then algebraic equivalence (see [5, 10.3])
and numerical equivalence tensored with Q coincide for codimension 1
cycles ([8, 6.3]), also numerical and homological equivalences tensored
with Q coincide for codimension 1 cycles [1, 3.4.6.1]. In particular,
B1(Y ) = NS(Y )⊗Q.

Lemma 2.1. Let X be a normal projective integral variety defined over
an algebraically closed field k and U ⊂ X be the smooth locus of X.
Then:

(i) the algebraic and homological equivalence tensored over Q co-
incide for codimension 1 cycles on X;

(ii) dimQB
1(X) < ∞, and this number is independent of the `

chosen in the definition.

Proof. Note that if a codimension 1 cycle α ∈ Z1(U) is algebraically
equivalent to 0, then it is homologically equivalent to 0. Hence, for (i),
it is enough to show that if the class of α is 0, then α is algebraically
equivalent to zero. Let f : X̃ → X be a smooth projective alteration
of degree d, such that for Z = X \ U , Z̃ = f−1(Z) is a simple normal
crossings divisor [9]. Let Ũ be the inverse image of U and U0 ⊂ U an
open subset, such that the induced morphism Ũ0 = f−1(U0) → U0 is
finite of degree d. Note that one can assume that the complement of U0

in U is of codimension at least 2: indeed, this follows from the fact that
in the Stein factorisation X̃ → Y → X of f , with X̃ → Y birational
and Y → X finite of degree d, the map X̃ → Y is an isomorphism over
any point of codimension 1, since X, and so Y , is normal.

Assume now that α is homologically equivalent to 0 on X. Since Z̃
is the simple normal crossings divisor, we deduce that for a codimen-
sion 1 cycle β supported on Z̃, one has that f ∗α + β is homologically
equivalent to 0 on X̃. Since X is smooth, the discussion above the
lemma shows that N(f ∗α + β) is algebraically equivalent to 0 on X̃,
for some integer N . Hence, its restriction Nf ∗α to Ũ0 is algebraically
equivalent to 0. Since Ũ0 → U0 is finite of degree d, we deduce that Nα
is algebraically equivalent to 0 on U0, hence on U , as the complement
of U0 in U is of codimension at least two, so that we obtain (i).

For (ii), the independence of ` follows from (i). For the finiteness,
it is enough to show that there is no infinite collection of divisors in
X with Q-linearly independent classes in H2

ét(U0,Q`(1)). Via the trace

map H2
ét(Ũ0,Q`(1)) → H2

ét(U0,Q`(1)) ([15, Exposé IX (5.1.4)]) it is

enough to establish the same property for Ũ0, which follows from the
fact that the Néron-Severi group of the smooth variety X̃ is finitely
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generated. �

The lemma above allows us to make the following definition, inde-
pendently of `:

Definition 2.2. The Weil divisor rank ρw(X) of X is the minimum
dimension of the Q-vector space B1(X̃) over all projective, normal
modifications π : X̃ → X of X.

In what follows we will fix π : X̃ → X a projective, normal modifi-
cation for which the dimension of the group B1(X̃) is minimized.

Let X be normal and projective. Given a linear section ι : Y ↪→ X
the intersection map ι∗ : CH1(X)→ CH1(Y ), proven to be well-defined
in [5, Prop. 2.6].

Proposition 2.3. Let X be normal and projective. Let ι : T ′ → X be
an intersection of hyperplane sections of some projective embedding of
X, smooth on the intersection with the smooth locus of X (such sections
are generic by [14, Theorem 1]), of dimension 2. Let β : T → T ′ be a
resolution of singularities which is an isomorphism on the smooth locus
of T ′ and for which the exceptional divisors are simple normal crossing
and let φ : T → X be the composition ι ◦ β. Then the composition
pT : β−1 ◦ ι∗: induces a pullback homomorphism pT : B1(X)→ B1(T ).

Proof. Let Γ be the subgroup of CH1(T ) generated by the exceptional
divisors of β, and let η : V → T be the inclusion of the inverse image in
T of the smooth locus of T ′. Each exceptional divisor is in the kernel
of the flat pullback morphism η∗ : CH1(T ) → CH1(V ). The image
of Γ ⊗ Q` under the cycle map in H2

ét(T,Q`(1)) is exactly the kernel
of the restriction morphism to H2

ét(V,Q`(1)) by inductive use of the
Gysin sequence [10, Cor. 16.2], so by functoriality of the cycle map,
if α ∈ pT (CH1

hom(X)), then α is a linear combination of exceptional
divisors on T . If H is an ample divisor on T ′ not passing by T \ β(V )
we then deduce that β−1H · α = 0, hence α is numerically equivalent
to 0 on T using the Hodge index theorem for surfaces, and pT defines
a homomorphism from B1(X)→ B1(T ). �

We now recall some facts about Albanese varieties.
Let Y be a variety defined over an algebraically closed field k, Yi

its irreducible components, and let x0,i be a smooth point of each
Yi. We say a rational map (resp. morphism) f : Y → A with A an
abelian variety is admissible if f is defined at each x0,i and f(x0,i) =
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0. Following R. Ghorpade and G. Lachaud [6, Section 9], we call
an Albanese-Weil variety Albw(Y ) (resp., an Albanese-Serre variety
Albs(Y )) of Y an abelian variety A over k with an admissible rational
map f (resp., morphism) from Y to A, such that the following universal
property holds: for any admissible rational map g (resp., morphism)
from Y to an abelian variety B there is a homomorphism of abelian
varieties g̃ : A → B such that g = g̃ ◦ f . We have the following
properties:

(1) The variety Albw(Y ) and the universal rational map Y →
Albw(Y ) exist, are independent of the choice of x0,i up to a
translation, and Albw(Y ) =

∏
i Albw(Yi).

(2) If Y is normal, the variety Albs(Y ) exists, and is dual to the
reduced Picard variety (Pic0

Y/k)red [6, Paragraph after Example
9.2].

(3) If Y is smooth, the variety Albs(Y ) coincides with Albw Y
and for Y normal, there is a canonical surjective map ν :
Albw(Y )→ Albs(Y ) with connected kernel [6, Prop. 9.1].

(4) A birational morphism Y → X of varieties induces an iso-
morphism Albw(Y )→ Albw(X) (this follows straight from the
definition), so a resolution of singularities Y → X induces an
isomorphism Albs(Y )→ Albw(X).

We need the following Lefschetz-type property [6, Prop. 9.4]:

Proposition 2.4. Let X ↪→ PN be an embedding of X into a projective
space. If i : Y ↪→ X is a general linear section of X of dimension
d ≥ 2, the canonical map i∗ : Albw(Y ) → Albw(X) induced by i is a
purely inseparable isogeny.

2.2. The torsion case.

We start with the following easy lemma:

Lemma 2.5. Let ∆1 and ∆2 be two effective, disjoint divisors on a
proper, normal variety Y over a field k, and suppose that

(2.1) ∆1 −∆2 ∼lin 0.

Then there exists a morphism f : Y → P1
k such that ∆1 = f−1(0) and

∆2 = f−1(∞).

Proof. By assumption, there exists a rational function g on Y such
that ∆1 − ∆2 = div(g). Then we define a map f : Y → P1

k by
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f(x) = [g(x) : 1] if x is not in the support of ∆2 and [1 : 0] (equiv-
alently, [1 : g(x)] if x is not in the support of ∆1) otherwise. Since
the divisors ∆1 and ∆2 are disjoint, we get a well-defined map as re-
quired. �

Let now X be as in Theorem 1.1. We assume first that X is projec-
tive. Since #I ≥ ρw(X) + 1, there is a subset J ⊆ I and a nontriv-
ial linear combination D =

∑
j∈J λjDj ∈ Z1(X), where λj ∈ Z and

D ∈ CH1
hom(X).

Proposition 2.6. If there exists N > 0 such that ND ∼lin 0, then
there is a surjective morphism f : X → P1

k such that for any j ∈ J the
divisor Dj is contained in a fiber of f .

Proof. It suffices to write ND = ∆1 −∆2 as a difference of two effec-
tive (and disjoint) divisors and apply Lemma 2.5. We obtain a map
f : X → P1

k satisfying the required properties: note that for each
i ∈ I \ J the divisor Di is a subset of a fiber of f : otherwise, for each
j ∈ J , there would exist some i ∈ I so that Dj would intersect Di,
contradicting disjointness. �

To handle the non-torsion case, we need that non-torsion elements
of CH1 specialize under generic hyperplane sections to non-torsion el-
ements.

Proposition 2.7. Let X ↪→ PN be an embedding of X into a projective
space. If D is a non-torsion element of CH1(X) then for a general
linear section τ : Y ⊂ X of dimension d ≥ 2 the restriction τ ∗D given
by intersection of D with Y to CH1(Y ) is also a non-torsion element.

Proof. By induction, it suffices to prove the theorem for general Y of
codimension 1. We may assume Y is normal [14, Theorem 7], and
that Y contains no irreducible component of D, as Y is basepoint-free.
Suppose there is an integer NY and a function fY ∈ k(Y ) such that
NY τ

∗D = div(fY ) in Z1(Y ). We can lift the function fY to an ele-
ment FY ∈ OX,Y ⊂ k(X). Define D′ := NYD − div(FY ) =

∑
aiZi

with ai ∈ Z and Zi irreducible components of D′, that are included in
X \ Y by construction. Since Y is ample, Y intersects every proper
codimension-1 subvariety, so X has no proper codimension-1 subvari-
ety contained in X\Y , so that we have div(FY )−NYD = 0 in CH1(X),
contradicting our assumption on D. �
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2.3. The Hodge Index Theorem and the General Case. Let S̃
be a projective resolution of singularities of a generic, normal, linear
surface section S ⊆ X, whose smooth locus is exactly the intersection
of the smooth locus of X with S. As a simple linear-algebraic corollary
of the Hodge index theorem, we have:

Proposition 2.8. Let H = {Hj}j∈J ⊆ B1(S̃) be an orthogonal subset
of nonzero elements – that is, Hj · Hj′ = 0 for each j 6= j′. Assume

furthermore that H is contained in a subspace V ⊆ B1(S̃) of dimension
d for which there exists M ∈ V so that M ·M > 0. Define:

J+(resp., J−, J0) := {j ∈ J | Hj ·Hj > (resp., <,=) 0} .
Then:

(1) J+∪J− is a linearly independent set, and #J+ ≤ 1 and #J− ≤
d− 1.

(2) If (J+ ∪ J0) ≥ 2 then #J− ≤ d − 2,#J+ = 0 and #J0 ≥
#J − (d− 2).

(3) The span of J0 is at most one-dimensional.

The pullback {D̃i}i∈I of {Di}i∈I to B1(S̃) is an orthogonal set of
nonzero elements, and is contained in the image of B1(X), by Propo-
sition 2.3. The restriction of a general ample divisor to S̃ is likewise
ample, so the image of B1(X) in B1(S̃) is a subspace of dimension
≤ ρw(X) which contains an element of positive self-intersection. By
Proposition 2.8, #(J+ ∪ J−) ≥ 2, so in fact #J0 ≥ 3. Let i, j, t be
distinct elements of J0, and let F := aD̃i − bD̃j be an integral linear

combination in CH1(S̃)hom. Let I ′ := I \ {i, j}.

Proposition 2.9. If F is not torsion, then for each l ∈ I ′, the map

AlbwDl → AlbwX

is not surjective.

Proof. Fix a projective embedding X ⊂ PN . By Proposition 2.4, if
τ : S ⊂ X is a general linear section of X of dimension 2, then S is
normal, and we have an isogeny Albw S → AlbwX. By Proposition
2.7, the restriction of F ′ of F to CH1(S)hom is not a torsion element.
Let ν : S̃ → S be a resolution of singularities. Since S is normal,
we may assume that ν is an isomorphism over the smooth locus Ssm,
which contains all codimension one points of S. Let D̃l be a union
of normalizations of the components of ν−1(Dl ∩ S) (that is, the in-
verse image of the intersection of Dl intersected with S). Since the
support of F is disjoint from Dl, the line bundle defined by F becomes
trivial on D̃l and we conclude that D̃ is a non-torsion element in the
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kernel of the map Pic0(S̃) → Pic0(D̃l). By duality, we obtain that
the map Albs(D̃l) → Albs(S̃) is not surjective. The maps Albs(S̃) →
Albw(S)→ Albw(X) are isogenies, so Albw(D̃l)→ Albw(X̃) cannot be
surjective. �

Proof of theorem 1.1.

In Proposition 2.6, we established the result if F is a torsion element
in CH1(X).

Consider now the general case. Let F ∈ CH1(X) be non-torsion.
Let i, j, t be distinct elements of J0 as before. By Proposition 2.9, the
map Albw(D̃t)→ Albw(X) is not surjective.

By the universal property of the Albanese variety we have the fol-
lowing commutative diagram

D̃t
//

��

Albw(D̃t)

��
X // Albw(X) // Albw(X)/Albw(D̃t).

showing that D̃t is contracted by the composite rational map g : X 99K
Albw(X)/Albw(D̃t).

Let us show that the image of g is a curve:

(1) We have dim Im(g) > 0 since the image of X in Albw(X) gen-
erates the abelian variety Albw(X) by the universal property
and Albw(Dt)→ Albw(X) is not surjective.

(2) If dim Im(g) were greater than 1, the image of the dimension
of g restricted to S̃ would also have image of dimension 2. The
morphism g restricted to S̃ is a regular map, because it factors
through Albs(S̃)/Albw(D̃t), and the map from S̃ → Albs(S̃) is
defined everywhere. Any effective divisor on S̃ contracted by g
would need to have negative self-intersection [2, Remark after
Theorem 16.2]. But Dt is contracted and has self-intersection
0, so the image has to be of dimension < 2.

We then see immediately that D̃j is also contracted and should be

(a multiple of) a fiber of g restricted to S̃, since its self-intersection
is zero. Therefore, Dj and Dt are (multiples of) fibers of the rational
map to Albw(X)/Albw(Dt); as they are disjoint, and X is normal, g
is in fact a regular map — that is, it is defined everywhere.
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Therefore, the image of g : X → Albw(X)/Albw(Dt) is a curve
C ′, and all the divisors Dl for l ∈ I ′ are contained in fibers. If now

X
f→ C → C ′ is the Stein factorization of g, C is a normal curve, in

which the Dl are contained in fibers for l ∈ I ′. By [3, Fact 1.1d], Dt

is in fact a multiple of an entire fiber of f ; as Di and Dj are disjoint
from Dt, both Di and Dj are contained in fibers, and the Dσ which
are (multiples of) fibers of f are exactly those for which σ ∈ J0. We
may thus set J to be J0.

Finally, if X is normal and proper, consider {π−1(Di)}i∈I , where
π : X̃ → X is a birational morphism given by Chow lemma, with
X̃ projective. By Zariski’s main theorem, each π−1(Di) is connected.

Then there exists a function f̃ : X̃ → C for which each of the π−1(Di) is
contained in a fiber, and for at least two (in fact, three) m1,m2,m3 ∈
I, π−1(Dmi

) is a (multiple of) a fiber. As X is normal, by Zariski’s

Main Theorem, to check that f̃ factors through a function to X we
must merely check that none of the divisors that π contracts intersects
π−1(Dm1) and π−1(Dm2). But if a divisor that π contracts intersected
both of them, the Dmi

would not be disjoint. �

3. Disjoint divisors on affine varieties

In this section we prove Theorem 1.2 and Theorem 1.3. Let y, z
be the coordinates of A2

k. Consider the following family, constructed
recursively:

(1) Define d0 := 1, f0(y, z) := zd0 , and D0 := V (f0), the zero locus
of f0.

(2) Define d1 := 2, f1(y, z) := yzd1 + 1; and D1 := V (f1).
(3) Let P2 ∈ A2

k \ (D0 ∪D1) and define

a2 := −f1(P )/f0(P )2d1−1.

Since P2 /∈ D1, a2 6= 0. Define d2 := 2d1;

f2(y, z) := a2f0(y, z)d2−1 + f1(y, z)d1;

and D2 := V (f2). Note that in each case, di = degz fi, the
degree of fi as a polynomial in z.

(4) Let now n > 2; we give a recursive definition of fn, given fi
when i < n. We define Di := V (fi) and di := degz(fi). Define
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now dn :=
n−1∑
i=1

di. Let Pn ∈ A2
k \

n−1⋃
i=0

Di; define

an := −
n−1∏
i=1

fi(P )/f0(P )dn−1.

Again, an 6= 0. Define

fn(y, z) := anf0(y, z)dn−1 +
n−1∏
i=1

fi(y, z)

and Dn := V (fn); by construction, dn = degz f .

If we enumerate the k-points of A2
k, we may choose our Pi so that the⋃

iDi(k) = A2(k). By construction, the Di are pairwise-disjoint: the
radical of the ideal generated by fn and fi for 0 < i < n contains f0

and fi; and by construction, fi and f0 have no common zeroes.
We now prove that each fn is irreducible, and that no infinite subset

of the Di could be contained in the fibers of a non-constant morphism.
To prove that fn is irreducible, we will change coordinates. We view

P1
k = A1

k ∪ {∞}. Let X := P1
k × P1

k, and use the coordinates y, z to
embed A2

k as an open subset

A2
k
∼→ A1

k × A1
k ↪→ X

; call this open subset X1. Let Di be the Zariski closure of Di in
X. Define X2 ⊆ X as A1

k × (P1
k \ {0}); this is isomorphic to A2 with

coordinates y, x := 1
z
. Let D′i := Di ∩X2.

The defining ideals for D′i are generated by:

(1) f ′1(y, x) = y + x2;
(2) f ′2(y, x) = a2x+ (y + x2)2;

(3) f ′n(y, x) = anx+
n−1∏
i=1

fi(y, x).

By Eisenstein’s criterion, applied to the ring k(x)[y], all the polyno-
mials f ′n are irreducible. Therefore, to check whether the fi are irre-
ducible, we must merely check that V (fi) does not have any compo-
nent contained in X1 \ (X1 ∩X2). But X1 \ (X1 ∩X2) is just D0, and
Di ∩D0 = ∅ for i > 0.

As the fi’s have unbounded degree and are irreducible, their zero
sets could not be the fibers of a morphism (or even a rational map!)
to a curve. �
To prove Theorem 1.3, we choose algebraically independent y, z in the
ring of regular functions on X for which V (y) and V (z) are irreducible,
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and construct fi and Di as above (replacing the Di with its finite set of
connected components at each stage, if necessary). Any function to a
curve with the Di as fibers would factor through the map to A2 given
by y and z.

Remark 3.1. This procedure is by no means unique. For instance, one
could replace f0 and f1 by any other two irreducible polynomials with
no common roots in A2

k, and the above construction works. However,
the following questions remain open:

(1) Does there exist an example as above where the curves are all
smooth?

(2) In any example as above, is the geometric genus of the curves
necessarily unbounded? (That is, could we find such a coun-
terexample consisting of only rational curves?)

(3) In any example as above, does there necessarily exist a divi-
sor D such that #(D ∩ Di), the set-theoretic intersection, is
unbounded?

We now prove Theorem 1.4, that any uncountable set of disjoint
divisors must form a family. In this proof, X will be normal and
affine; the theorem follows immediately for all normal varieties from
this case.

Proposition 3.2. Let X be a normal quasi-projective variety over an
uncountable algebraically closed field k. Let {Di}i∈I be an uncount-
able collection of pairwise-disjoint, reduced, connected, codimension
one closed subvarieties of X.

Then there exist a smooth projective curve C defined over k and a
dominant morphism ϕ : X → C so that for any i ∈ I the divisor Di is
contained in a fiber of f .

Proof. Let X ⊂ X̄ be a projective model of X. We may assume that
X̄ is normal. Let D̄i be the closure of Di in X̄. Note that if there is a
subset I0 ⊂ I with #I0 ≥ ρw(X̄) + 2, such that D̄i, i ∈ I0 are disjoint,
then we can apply theorem 1.1 for X̄ to get a map g : X̄ → C such
that all D̄i, i ∈ I0, are contained in the fibers of g. Since Di, i ∈ I are
disjoint, we can take ϕ the restriction of g to X.

There is an alteration f : Ȳ → X̄, such that Ȳ is smooth and for
Y = f−1(X), we have Y∞ = Ȳ \ Y is a simple normal crossings divisor
[9]. Let Fi = f−1(Di), then Fi are disjoint and cover Y . Let F̄i ⊂ Ȳ
be the closure of Fi in Ȳ . Since Ȳ is smooth, each F̄i gives a class
in the Picard group Pic Ȳ . Since NS Ȳ is countable, we obtain that
for J ⊂ I uncountable, the divisors F̄j, j ∈ J have all the same class
α ∈ NS Ȳ .
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Lemma 3.3. There is an infinite subset J ′ ⊂ J , a finite set of irre-
ducible divisors (Et)t∈T ⊂ Y∞ and M > 0 such that for any i, j ∈ J ′
one has F̄i · F̄j =

∑
t∈T

atEt with 0 ≤ at ≤M .

Proof. First note that since the divisors (F̄j)j∈J intersect only on Y∞,
for a fixed j ∈ J , any intersection F̄j ∩ F̄j′ with j′ ∈ J is supported
on components of F̄j ∩ Y∞, also the intersections F̄j ∩ F̄j′ have all the
same class α2.

Consider j0 ∈ J . Since J is uncountable, there is an uncountable
subset J1 ⊂ J such that for any j, j′ ∈ J1 one has H0 := F̄j0 · F̄j =
F̄j0 · F̄j′ as a divisor (not only a class) on Y∞, one may also assume
that this intersection is nonzero. Fix now j1 ∈ J1. Similarly, one finds
an uncountable subset J2 ⊂ J1 such that for any j, j′ ∈ J2 one has
H1 := F̄j1 · F̄j = F̄j1 · F̄j′ .

By the same procedure, we construct inductively the sets Jn and the
divisors Hn. Since all the divisors F̄j have the same class, after a finite
number of steps we should obtain Hn+r ⊂ ∪m<nHm for all r ≥ 0. Then
J ′ = Jn and T the set of irreducible components of ∪m<nHm works.

�

The lemma above gives the following bound on X̄: there is an integer
N such that for any closed Z ⊂ X̄ that is a (set-theoretic) component
of the intersection of D̄j and D̄j′ , j ∈ J ′ we have that locally in OX,Z ,
the ideal of the intersection of D̄j and D̄j′ is contained in at most the
N th power of the maximal ideal mN

Z ⊂ OX,Z of Z. Hence after a finite

number of blow-ups X̃ → X̄ centered at X∞, the strict transforms D̃j

of D̄j do not intersect. Now we can apply theorem 1.1 to X̃ and the

family (D̃j)j∈J ′ to get a map f : X̃ → C, such that the restriction φ of
f to X satisfies the conclusion of the theorem.

�
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