HW 3-4 (Due Feb 21)

1. We want to prove the Hardy inequality.
 \[\left(\int_{\mathbb{R}^d} \frac{|f(x)|^2}{|x|^2} \, dx \right)^{1/2} \leq \frac{2}{d-2} \left(\int_{\mathbb{R}^d} |\nabla f|^2 \, dx \right)^{1/2} \quad \text{if } d \geq 3 \]

 a) Does it follow from the Sobolev embedding theorem?
 b) Check that the scaling is satisfied (consider \(f_{\lambda} \))
 c) Can it hold for \(d=1,2 \) if \(f \in C_0^\infty \)?
 d) Prove this identity for \(f \in C_0^\infty \) by using the identity \((x \cdot \nabla) |x|^{-2} = -2 |x|^{-2} (x \cdot \nabla = \sum x_i \partial_i) \)
 e) Extend this result to any \(f \in H^1(\mathbb{R}^d), d \geq 3 \)

2. Assume that \(\varphi \in C_0^\infty \), with \(|\text{Jac } \varphi| = \left| \det \frac{\partial \varphi}{\partial x} \right| < 1 \), and let \(\psi : \mathbb{R}^d \to \mathbb{R}^d \)
 \[x \mapsto x + \varphi(x) \]
 Prove then that \(f \circ \psi \in H^1(\mathbb{R}^d) \) if \(f \in H^1(\mathbb{R}^d) \).
 What are optimal conditions on \(\varphi \) for such a result to hold?
3. Prove that the $H^s(\mathbb{R}^d)$ norm is equivalent to the following norm:
\[
\left(\int_{\mathbb{R}^d} |u(x)|^2 \, dx \right)^{1/2} + \left(\iint_{|y| > 2s} \frac{|u(x+y) - u(x)|^2}{|y|^{d+2s}} \, dx \, dy \right)^{1/2}
\]
if $s \in (0,1)$ and $d \geq 2$. [Argue in Fourier space]

4. We want to prove the Rellich-Kondrakov theorem.
 Let K be a compact set of \mathbb{R}^d.
 a) For $s > 0$, $\varepsilon > 0$, $s - \varepsilon > 0$, show that the embedding $H^s(\mathbb{R}^d) \subset H^{s-\varepsilon}(\mathbb{R}^d)$ is not compact (i.e., there are bounded sequences in $H^s(\mathbb{R}^d)$ which do not admit any convergent subsequence in $H^{s-\varepsilon}$).
 b) If $0 < s < \frac{d}{2}$, $\frac{2s}{d-2s}$, show that the embedding $H^s(K) \subset L^2(\mathbb{R}^d)$ is not compact.
 c) Prove that $H^s(K) \subset H^{s-\varepsilon}(\mathbb{R}^d)$ (compact embedding) [Hint: show that it suffices to find a subsequence f_n s.t. $f_n \rightharpoonup f$ uniformly on $B(0,N)$ for all N, and then use Arzela-Ascoli].
 d) Prove that $H^0(T^d) \subset H^{0-\varepsilon}(T^d)$ [Argue in Fourier space; the definition of $H^0(T^d)$ is identical to that of $H^0(\mathbb{R}^d)$ replacing the continuous frequencies by discrete frequencies k, and $\int_{\mathbb{R}^d}$ by $\sum_{\mathbb{Z}^d}$].