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Abstract. Accurately estimating rare event probabilities with Monte Carlo can become costly if for each sample
a computationally expensive high-fidelity model evaluation is necessary to approximate the system
response. Variance reduction with importance sampling significantly reduces the number of required
samples if a suitable biasing density is used. This work introduces a multifidelity approach that
leverages a hierarchy of low-cost surrogate models to efficiently construct biasing densities for im-
portance sampling. Our multifidelity approach is based on the cross-entropy method that derives
a biasing density via an optimization problem. We approximate the solution of the optimization
problem at each level of the surrogate-model hierarchy, reusing the densities found on the previous
levels to precondition the optimization problem on the subsequent levels. With the preconditioning,
an accurate approximation of the solution of the optimization problem at each level can be obtained
from a few model evaluations only. In particular, at the highest level, only few evaluations of the
computationally expensive high-fidelity model are necessary. Our numerical results demonstrate
that our multifidelity approach achieves speedups of several orders of magnitude in a thermal and a
reacting-flow example compared to the single-fidelity cross-entropy method that uses a single model
alone.
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1. Introduction. Rare event simulation with standard Monte Carlo typically requires
a large number of samples to derive accurate estimates of rare event probabilities, which
can become computationally infeasible if for each sample a computationally expensive high-
fidelity model evaluation is necessary to simulate the system response. Importance sampling
is a variance reduction strategy for Monte Carlo estimation that samples from a problem-
dependent biasing distribution. The biasing distribution is chosen such that fewer samples
are necessary to obtain an acceptable estimate of the rare event probability than with standard
Monte Carlo. The bias introduced by the sampling from the biasing distribution is corrected
by reweighing the samples in the importance sampling estimator [16, 31].

Traditionally, importance sampling consists of two steps. In the first step, the biasing
distribution is constructed, and in the second step, samples are drawn from the biasing distri-
bution and the estimate is derived [6, 38]. The challenge of rare event probability estimation
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with importance sampling is the construction of a suitable biasing distribution that leads to
variance reduction. In principle, the optimal biasing distribution that leads to an estima-
tor with zero variance is known, but evaluating the density of this zero-variance distribution
requires the probability of the rare event, i.e., the quantity that is to be estimated. The
cross-entropy (CE) method [34, 33, 35, 10] provides a practical way to approximate the zero-
variance density. The CE method optimizes for a density that minimizes the Kullback-Leibler
divergence from the zero-variance density in a set of feasible densities. Even though solving for
a biasing density with the CE method typically requires fewer high-fidelity model evaluations
than estimating the rare event probability with a standard Monte Carlo approach, the costs of
the optimization problem in the CE method can still be significant if the high-fidelity model
is expensive to evaluate.

In this paper, we introduce a multifidelity method that leverages a hierarchy of low-cost
surrogate models to reduce the costs of constructing a CE-optimal biasing density. Examples
of surrogate models include projection-based reduced models [32, 2], data-fit interpolation and
regression models [17], machine-learning-based models such as support vector machines [9],
and other simplified models [23]. At each level of the hierarchy, a CE-optimal density is derived
with respect to the surrogate model corresponding to that current level. The optimization is
initialized with the CE-optimal density of the previous level, which leads to preconditioned
optimization problems that can be solved accurately with few model evaluations only. Thus,
at higher levels, where the models are expensive to evaluate, only few model evaluations are
necessary to obtain an accurate approximation of the solution of the optimization problem,
which can lead to significant runtime savings while obtaining biasing densities that lead to a
similar variance reduction as the biasing densities derived with the single-fidelity CE method
that uses the high-fidelity model alone.

Multifidelity methods have been extensively used to speedup rare event probability esti-
mation [30]. We distinguish here between three categories of multifidelity methods for rare
event simulation. First, there are two-fidelity methods that use a single surrogate model and
combine it with the high-fidelity model. The work [21, 20, 22] introduces a two-fidelity ap-
proach that switches between a single surrogate model and the high-fidelity model depending
on the error of the surrogate model, which can lead to unbiased estimators if the error of the
surrogate model is known. In [8], an error estimator of a reduced-basis model is used to decide
whether to evaluate the reduced or the high-fidelity model. In [12], the zero-variance biasing
density is approximated with a Kriging model. Unbiasedness of the estimator is guaranteed
by using the Kriging model as a proxy in the biasing density only. Similarly, in [26], unbiased
estimators of rare event probabilities are obtained by using a surrogate model to construct
biasing densities and the high-fidelity model to derive the actual estimates.

Second, there are methods that use a multilevel hierarchy of models of a single type to
speedup the estimation. Typically, these methods are developed for high-fidelity models that
stem from partial differential equations (PDEs). The model hierarchy then often corresponds
to different discretizations of the underlying PDE. There are extensions [13, 14, 15] of the
multilevel Monte Carlo method [19, 18] for rare event probability estimation, which are based
on variance reduction with control variates, instead of importance sampling. The subset
method [1, 42] is another approach that has been extended to exploit a hierarchy of coarse-
grid approximations in [40]. The subset method has also been combined with classification
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methods of machine learning such as support vector machines and neural networks in, e.g.,
[5, 25].

Third, multifidelity methods have been proposed that use multiple surrogate models of
any type and combine them with the high-fidelity model. The method introduced in [24, 29]
uses a control variate framework based on multiple surrogate models to accelerate the Monte
Carlo estimation of statistics of the outputs of the high-fidelity model; however, the approach
does not target rare event probability estimation. The multifidelity approach presented in
[27] uses multiple surrogate models for speeding up the construction of biasing densities in
importance sampling and guarantees unbiased estimators of the rare event probabilities by
using the high-fidelity model to derive the estimate; however, the approach proposed in [27]
has not been demonstrated on small probabilities below 1076, The new multifidelity approach
proposed in this paper also falls in this third category of multifidelity methods because we
aim to exploit a hierarchy of surrogate models of any type. In contrast to [24, 29, 27], our
approach explicitly targets rare event probabilities and we show that we successfully estimate
probabilities as low as ~ 107,

Section 2 of this paper provides preliminaries and the problem setup. Section 3 introduces
our multifidelity preconditioner for the CE method, provides an error analysis, and summarizes
our multifidelity approach in Algorithm 1. Section 4 demonstrates that our multifidelity
approach achieves up to two orders of magnitude speedup compared to the single-fidelity CE
method in a thermal and a reacting-flow example. Section 5 gives concluding remarks.

2. Importance sampling with the cross-entropy method. We first introduce the problem
setup and then discuss importance sampling with the classical CE method that uses a single
model alone.

2.1. Notation and problem setup. Let the value of the function f : D — R denote the
system response to an input z € D with the input domain D € R? in d € N dimensions. For
example, if the system of interest is a cantilever beam, then the input could define material
properties and the system response could be the displacement of the tip of the beam. Let
Z : Q) = D be a random variable with sample space 2 and with probability density function
p. We denote a realization of Z as z € D.

Let t € R with ¢t > 0 be a rare event threshold and define the rare event probability as

P=Blf <t = [ hEpez,
D
with the indicator function I : D — {0,1} defined as

o - {1 1@<t
0, fz) >t

Note that P, = Ep[I;], where E, denotes the expected value with respect to p. Let Var,[I;] be
the variance of I; with respect to p and assume Var,[I;] € R such that Var,[I;] = P,(1 — F;).
Let p € (0,1) and define the p-quantile of Z as vy € D, i.e.,

PplZ <q]=0p.
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Note that t is the Pi-quantile of f(Z).

Consider now models f : D — R of the system of interest, where ¢ € N is a level
parameter. For example, the models f can be derived via finite-element discretization from
the governing equations of the system of interest; in this case, the level parameter £ determines
the mesh width. Note, however, that we will also consider models where the level parameter
refers to more general concepts than mesh widths, e.g., the number of reduced basis vectors
in reduced models and the number of data points in support vector regression machines. The
costs of evaluating a model f are denoted as 0 < w; € R. For each model f©, we define
the indicator function It(z) : D —{0,1} as

with the rare event threshold ¢. The rare event probability with respect to a model f© is
Pt(é) =P,[f") < t]. In the following, we choose a maximal level L € N such that the indicator
function It(L) leads to a rare event probability Pt(L) that is a sufficiently accurate approximation
of the rare event probability P; of the system of interest for the current application at hand.

Let pt(L) be an unbiased estimator of the rare event probability Pt(L). We assess the quality
of an estimator with respect to its error and costs. We measure the error of an estimator ]%(L)
with the squared coefficient of variation

H(L)
(1) e(pt(L)> _ Var,[F; ] .
(B 1P

The costs c(pt(L)) are quantified with the costs of the model evaluations required by the
estimator.

2.2. Standard Monte Carlo estimators. Let z1,..., 2, € D be m € N realizations of the
random variable Z and let

. 1 &
(2) PO =3 1 (=)
i=1

be the standard Monte Carlo estimator of Pt(L). The squared coefficient of variation e(thMC)
of PMC is
1-pH

PMCy _
e(Pt ) - mP(L)
t

To achieve e(Pt(L)) < € for a given tolerance 0 < € € R, the standard Monte Carlo estimator
requires
1-p*

m >
ep®
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evaluations of It(L), and thus m evaluations of f(&). Since m depends inverse proportion-

ally on the rare event probability Pt(L), the number of evaluations m can become large for
small rare event probabilities, which means that standard Monte Carlo estimators become
computationally infeasible if the costs wy, of evaluating f) are high.

2.3. Importance sampling with the cross-entropy method. Importance sampling esti-
mators draw samples from a problem-dependent biasing distribution with the aim of reducing
the variance compared to standard Monte Carlo estimators. This section discusses the CE
method that iteratively constructs biasing distributions.

2.3.1. Importance sampling. Let supp(p) = {z € D|p(z) > 0} be the support of the
density p. For a biasing density ¢ with supp(p) C supp(q), the importance sampling estimator

PJS of Pt(L) is

15 1 ox= (), P(2])
PP == E L7 (z)) ==
t m o t ( Z)Q(Z;) )
with m realizations z1,. .., z,, of the random variable Z, with the biasing density ¢. Because

supp(p) C supp(q), and if the variance of the importance sampling estimator
- 1 P
Var,[P1S] = — Var, [P
AP = o Var, | 12

is finite, then the importance sampling estimator Ptls is an unbiased estimator of Pt(L). The
biasing density ¢* that minimizes the variance Var,[P[] is

L
vy 1 @p(2)
(=) ="m
By
which leads to an importance sampling estimator with variance 0. The density ¢*, however,

depends on Pt(L), which is the quantity we want to estimate.

2.3.2. CE-optimal biasing density. The CE method [34, 33, 35, 10] provides a practical
way of approximating the zero-variance density ¢*. Consider a set of parametrized densities
Q = {qv|v € P}, where v € P is a parameter in the set P. For example, Q could be the
set of normal distributions with the parameter v corresponding to the mean and covariance
matrix. To ease the presentation, we assume in the following without loss of generality that
the nominal density p of the random variable Z is in the set Q. The CE method optimizes for a
parameter v, € P such that the corresponding density g, € Q minimizes the Kullback-Leibler
divergence (also called the cross entropy) from the zero-variance density ¢*. Transformations
show that a solution of the problem

(3) vy = arg mapr[It(L) log(gw)]
veP

is a parameter v, that corresponds to a CE-optimal density g,,, see, e.g., [10]. Solving the
stochastic counterpart of (3)

(4) max — 3 13 (2) log(ga (24))
=1

PEQ M £
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with realizations z1,..., 2z, of Z, typically fails, because the stochastic counterpart (4) is
affected by the rareness of It(L)(Z ), just as the standard Monte Carlo estimator (2).

In [34, 33, 35], the CE method is proposed. The CE method iteratively derives an estimate
¥, of the solution of the optimization problem (3). Our description of the CE method follows
[10]. Consider the first iteration £k = 1. In the first iteration, the CE method is initialized
with the nominal random variable Z and the nominal density p € Q. Define the rare event
threshold for the first iteration t; € R to be the p-quantile of the distribution of f(F)(Z),
where p € (0,1) is a parameter that is typically in the range [1072,107!]. Note that typically
t; > t. Then, a solution v; € Q of the optimization problem

(5) r’lfleagazltl Zi 10g ( ))’ 21,0 2m ~ 4,

is obtained, where z1, ..., z,, ~ Z denotes that z1, ..., z,, are realizations of Z. The optimiza-
tion problem (5) uses the 1ndlcator function I (X) with threshold ¢, instead of t, and therefore
(5) avoids the rare event induced by the 0r1g1nal threshold ¢. Note that the gradient of log(qs)
with respect to the parameter ¥ is known analytically for certain sets of distributions Q, see
Section 3.5. In the second iteration k& = 2, the threshold ¢, is selected with respect to the
distribution of f (L)(Zl), where Z; is the random variable with density g4, derived in the first
iteration. To guarantee termination of the CE method, the threshold ¢, is set to the minimum
of the p-quantile of f(/)(Z;) and t; — &, where 0 < § € R is a small constant [11, 10]. Then,
the parameter vy is derived from the optimization problem

(z)
eIl 1 ~ 7
Be0 m Z t2 zi) o, Zi) 0g(qs(2i)) , Zly.-e Zm 1,

which is formulated with respect to the indicator function It(f ) that depends on the threshold
to. This process is continued until step K € N where tx < ¢, and where an estimate v, of the
CE-optimal parameter v, is obtained.

The CE method depends on two parameters: the quantile parameter p that determines the
p-quantile for selecting the thresholds t1,to,t3,...,tx, and the minimal-step-size parameter o
that defines the minimal reduction of the threshold in each iteration. With the parameter 9,
the CE method terminates after at most

t1—1
o

(6) K=

iterations with an estimate v, of v,. Thus, K is an upper bound on the number of CE
iterations. Note that we sometimes use K but implicitly mean [K] to get an integer number.
Details on the CE method, including a convergence analysis, are given in [10, 11]. A cross-
entropy method that optimizes for non-parametric densities, i.e., where it is unnecessary to
specify a family Q of parametrized distributions, is introduced in [36] and further extended
in [3, 4].

In each iteration k¥ = 1,..., K of the CE method, the model f() is evaluated at m
realizations. Therefore, a bound on the costs of deriving an importance-sampling estimate
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PJS of Pt(L) with the CE method from m samples is
pIS
c(P>) < Kmuwy, .

The squared coefficient of variation of the importance sampling estimator IStIS depends on the
variance reduction achieved by the biasing density

7D e
(7) e(fgtIS) — Varv* [It ‘113*:|

A 2 :
(Ba. [78]) m
Note that we abbreviate E,, and Var,, with E5, and Varg,, respectively, in (7) and in the
following.

3. A multifidelity preconditioner for the cross-entropy method. We propose a multifidelity-
preconditioned CE (MFCE) method that exploits a hierarchy of models f C f L) to re-
duce the runtime of constructing a biasing density compared to the classical, single-fidelity
CE method that uses f&) only. Section 3.1 introduces our MFCE approach. Section 3.2 and
Section 3.3 formalize our MFCE method and present an analysis of the savings obtained with
our MFCE method compared to the classical, single-fidelity CE method in terms of the bounds
on the number of CE iterations. Section 3.4 summarizes the MFCE method in Algorithm 1,
and Section 3.5 provides practical considerations.

3.1. The MFCE method. Let p be the nominal density and let ¢ € Q be a density in Q.
Consider the classical, single-fidelity CE method that uses model f(X) alone, as discussed in
Section 2.3.2. Let the CE method be initialized with density p and let ¢, be the p-quantile of
fE)(Z). Then, the bound K, = (t, — t)/§ on the number of CE iterations is obtained from
(6). Similarly, the bound on the number of CE iterations is K, = (t; —t)/0 if the CE method
is initialized with g, where ¢, is the p-quantile of f (L)(Zq) and where Z, is a random variable
with density ¢g. This shows that the bound on the number of iterations of the CE method
depends on the density with which the CE method is initialized. If ¢, < ¢,, then the bound
on the number of iterations of the CE method initialized with ¢ is lower or equal than the
bound on the number of iterations of the CE method initialized with p.

We propose to exploit that the bound on the number of CE iterations can be reduced by
a suitable choice of the density with which the CE method is initialized. Our MFCE method
iterates through the levels £ = 1,..., L. At level £ = 1, our MFCE method constructs a

biasing density ¢ ) with parameter o € P with the classical CE method, initialized with
the nominal density p and using model f(). At level ¢ = 2, our MFCE method uses the CE
method to derive a density NE with model f®); however, the CE method on level ¢ = 2
is initialized with the density 4y of the previous level, instead of the nominal density p as

in the classical CE method. This hierarchical process is continued until level £ = L, where
density qy-1) and model f (L) are used to derive density qy(r)-

3.2. Effect of the MFCE preconditioning. Consider now our MFCE method on level £,
(€)

where we have obtained an estimate v, and the corresponding biasing density qyo- Using
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q 0 on level £ + 1 to obtain an estimate of the solution of the stochastic counterpart of

maXEA(z)
vEQ Vx

It(Hl)qL log(qv)]

Dy

(+1)

means that in the first CE iteration on level ¢ 4 1 the threshold parameter t; is set to
the p-quantile of f(”l)(Zg) where Z; is a random variable with density Q- In contrast,
the classical CE method uses the p-quantile of f¢+1 ( ) instead, where Z corresponds to

the nominal density. If the p-quantile tg T of fED(Z,) is smaller than the p-quantile of
fU*D(Z), then the bound on the iterations of the CE method on level £ + 1 is smaller if
the CE method is initialized with G0 than if the CE method is initialized with the nominal

density p. The following proposition “formalizes this notion.
Proposition 1. Let £ € N and let UNONS Q be the biasing density obtained with the CE

method on level ¢ of our MEFCE approach. Let further t(“l) be the p-quantile of fU¢+D (Zg)
with respect to the random variable Z, with density Q) - If

)

(8) P, o FUD < (Z+1)} > P, [f(eﬂ) < ¢+

then the bound on the number of iterations of the CE method initialized with g0 O level

£+ 1 of our MFCE approach is less or equal to the bound of the classical CE method imitialized
with the nominal density p.

Proof. Let t, be the p-quantile of f (“+1)(Z), then we obtain with the monotonicity of the

cumulative distribution function of f¢*+1(Z) and (8) that t, > tggﬂ). The proposition follows
with (6). [ ]

3.3. Error analysis of multifidelity approach. Proposition 1 states under which condition
the bound on the number of iterations of our MFCE approach is lower than the bound on the
number of iterations of the classical CE method. In this section, we analyze which properties
of the models f), ..., f(') are required such that the condition (8) of Proposition 1 is met.
The following analysis is based on the framework introduced in [13, 14]. We first make similar
assumptions on the models as in [13, 14].

Assumption 1. Let 0 < a < 1 and let t be a threshold parameter. The models f\©) satisfy

FO@=) = fH D) < af or |f9(2) — V(2 < 1f92) ~ 1], z€D,
fort=1,...,L —1.
Assumption 2. Consider a density ¢ € Q and the corresponding random variable Z,. Let
further Fq(é) be the cumulative distribution function of f(é)(Zq) for£=1,...,L. The cumula-
tive distribution function Fq(g) is Lipschitz continuous with Lipschitz constant Cy). Further-

more, there exists a constant C' € R that bounds ng) <C foralll=1,...,L andqe Q. We
therefore have

[FO(t) - FO@) < Clt =1,
where t,t' € R.
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Assumption 1 is an assumption on the accuracy of the models f, ..., f(X). In many
settings in numerical analysis, accuracy assumptions of the form |f)(z) — fHD(2)| < af
need to hold for all z € D. Such a uniform assumption over D is too restrictive for our problem
setup. We can tolerate large model errors at inputs z € D that lead to model outputs far away
from our threshold ¢ and need a high accuracy only at inputs that lead to model outputs that
are close to t. Assumption 1 allows a large deviation of f*1) from f(® in regions of D for
which f) is far from t, see the right inequality in Assumption 1. The error | () (z)—f¢+1(2)|
has to be low only in regions of D that lead to model outputs near t. We refer to [13, 14],
where Assumption 1 is discussed in detail and further motivated. In particular, the work
[13, 14] presents a selective refinement algorithm to establish Assumption 1, which can be
applied in our setting as well.

Consider now Assumption 2 and note that F,(t') — Fq(g) (t) = Pt < fBO(z,) < t] for
t < t’. With the monotonicity of the cumulative distribution function, we obtain that the
probability Pt < f©(Z,) < #'] decreases with |t — #/|. Assumption 2 relates the decrease
of Pt < f¥(Z,) < ] to the decrease in |t — t/|. To gain intuition for the constant C in
Assumption 2, assume the cumulative distribution functions in Assumption 2 are absolutely
continuous and let g((f) be the density of the random variable f (5)(Zq). If there exists a bound

70 € R with g{”(€) < g for all ¢ € R and all ¢ € Q, then we obtain

FL(t) — FO() = Plt < fO(2,) < t] = / " g0©)de < gl 1]

with ¢ < #/. Thus, in this case, Assumption 2 is satisfied by setting the constant C' to the
maximum of the bounds gM),...,g%). The mean value theorem shows that there exists
t € [t,t'] such that
4 l
FO() ~F 1) _ o
t—t — Y

(t),

which gives further intuition for the constant g(¥). Assumption 2 is used in [14] in a similar
context.
Under Assumption 1 and Assumption 2 we obtain the following proposition.

Proposition 2. Let £ € {1,...,L — 1} and let 13,&“ be the parameter of the biasing density

estimated on level £. Let further tg”l) be the p-quantile with P o [f(“'l) < tg”l)] = p and let

Poolf© <59 > B[O < )], then

(9) Pﬁ(l) [f(Z—i—l) < tgf-i-l)] > Pp[f(€+1) < tgf-Fl)] _ 800/,

where o« and C' are the constants of Assumptions 1-2.

Before we prove Proposition 2, we first show Lemma 3 and Lemma, 4.

Lemma 3. Define v = tg“l) and the set B = {z € D : |fO(2) — 4| < of}. With
Assumption 1 follows that L(f) (2) = §K+1)(z) for z € D\ B.
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Proof. This proof follows similar arguments as the proof of Lemma 3.3 in [14]. We show
that f(z) <y <= fUD(z) < ~ holds for z € D\ B, which is equivalent to Iy)(z) =
I,(Yeﬂ)(z) for z € D\ B. Consider first f()(z) <y = 1 (z) < ~. We obtain
(10) 0 <y = fO(z) <9 = F V() +[FD(2) = fO2) <= @)+ 119(2) = a1,
because for all z € D\ B we have |f(¥)(z) —v| > of by definition of B and therefore | f(“+1) (z)—
fO(2)] < |fO(z) — 7| because of Assumption 1. Since 0 < v — f(2), we have v — f(2) =
Iy — f@(z)|, and therefore follows from (10)

(11) v = @) < v = F =) +119(=) -7l
Subtracting |y — f(2)| on both sides of (11) leads to

0<y- (),
which shows f((2) < v = f*(z) < 4. For fH(2) < v = fO(2) < 4, we show
fO(z) >~y = f(2) > 4 with similar arguments. We obtain
(12) 0< fOz) =7 < |f9(2) = F D @) + FD(2) =7 < 1F9(2) =+ £ (2) = .
Since f¥)(z) —~ >0, we have f)(z) — v = |f¥)(z) — 4|. Subtracting |f©(z) — 7| from the
inequality in (12), shows 0 < f+1(z) — . [ |

Lemma 4. With Assumptions 1-2, we obtain
(13) Po[fY <A] < P [f“TD) < 4] +4Caf,

where v = tg”l) as in Lemma 3.

Proof. Let B be the set defined in Lemma 3. For z € B, we obtain with Assumption 1
that |fHD(z) — fO(2)] < af and |fHD(2) — 4| < 2af. Consider now P [£© < 4], which
we write as ’

PoolfY <q]= /

. I’j(/e) (z)q{)gg) (Z)dz + /

I(e)qu z)dz
A (2)q40(2)

(14) =A#meﬁw+é IV (2)q,0 (2)d=
\B
(15) < [ B0z + By [0 < ),
B * *
where we obtain equality in (14) because Ig)(z) = q(fﬂ)(z) for z € D\ B, see Lemma 3, and

< in (15) because Iyﬂ)

obtain

is non-negative. Consider now the first term in (15), for which we

Amm@%wung/

B
<P [|f(€+1) -9 < 20/}

950 (z)dz

= F(Z—H)('y — 20/) — F(Hl)(fy + 20/)

NO N0

(16) <4Cat,
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where we used Assumption 2 in (16). Combining the bound in (16) with (15) leads to (13).H
We now state the proof of Proposition 2.

Proof of Proposition 2. Let v and B be defined as in Lemma 3. Consider ]P’p[f(“l) <],
which we write as

&MWUsﬂaA#mumw@+/ 1) (2)p(2)dz

D\B

(17) _ /B 1D (2)p(2)dz + /D BRACIONE
g/zw Jp(2)dz + By[f0) < 7]
B
(18) < [ a0z + B0 1O <o
: (
(19 < [ K01z + 400" + By [0 < 9],
: (

where we obtain equality in (17) because of Lemma 3, and < in (18) because P,[f(*) < 4] <
P.o [f®) < 4] as assumed in the statement of Proposition 2. The inequality < in (19) is

obtained because of Lemma 4. Consider now the first term in (19), for which we obtain

(f )Z z z z z
/Bfﬁlup( )d s/Bp< )d

(20) <P, [IfHD — 9] < 20!
_ p(e+1 ¢ 0+1 ¢
= F{"V(y - 2a%) = F{ D (y + 2a)
(21) <4Cat,
where we used | f(“*1) —~| < 2af for z € Bin (20) as in the proof of Lemma 4 and Assumption 2
n (21). Combining the bound in (21) with (19) leads to (9). [ ]

Proposition 2 shows that with Assumptions 1-2 we obtain condition (8) of Proposition 1
up to the factor 8Ca. Note that the factor 8Caf decays with the level ¢, because we have

|a] < 1. With the parameter ") derived at level L, we define our MFCE estimator as

PMFCE _ I )
! Z (] (L)(Z’L)
where z1,..., 2, are realizations of the random variable with density Q) - The MFCE

(L)
t

estimator is unbiased with respect to the rare event probability P,
defined by the parameter 'f)iL) has a support that is a superset of the support of the nominal
density p and the variance of the MFCE estimator is finite. The squared coefficient of variation

of the MFCE estimator is

if the biasing density

L
Vari)ﬁL) |:It( )q{fm}

e(PMFCEY _
& ) (IE[ ptMFCE]> 2 m
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Algorithm 1 Cross-entropy method with multifidelity preconditioning

1: procedure MFCE(fM, ..., )t p, m, p, §)
2 Initialize 'v( ) € P such that q,0 = p; redefine Q@ = QU {p} if necessary
3 for {=1,...,L do )
4: In1t1ahze v( ) = @Ef‘l) and set k =0
5 while 1 do
6 Draw realizations zi, ..., 2z, from random variable with density qf’x(f)
7 Compute model outputs g,(f) = {fOz1), ..., fO(zn)}
: Estimate p-quantile ‘y(f) from g,(f)
9 if k== 0 then #{) =4 +5
10: end if
11: Set t,(f_?_l = max{t,min{tgf) — 9, ’Ay,(f)}}
12: Estimate parameter 13,(:21 € P by solving
(22) max — Z 19 (202106 (g (20))
VEP M — tei qﬁ](f) (Zl)
13: if t,(cll ==t then break
14: end if
15: Set k=Fk+1
16: end while
17: Set 3! = &) and g\ = g{"
18: end for
19: Return estimate PMFCE with gt = {fE)(z1),..., fP(z,)} and ") as

SMFCE _ L) p zz)
F ZI q ) q.w(2)

20: end procedure

(L)

and depends on the parameter v,

3.4. Computational procedure. Algorithm 1 summarizes our MFCE method. Inputs
are the models f, ..., f(X), the threshold ¢, the nominal density p, the number of samples
m € N, the quantile parameter p, and the minimal step size §. Note that the parameters p
and J are the same parameters as in the classical, single-fidelity CE method, see Section 2.3.2.
The for loop in line 3 iterates through the levels £ = 1,..., L. At each level ¢, the density
with parameter ﬁff) with respect to model f) is derived. At iteration k = 0,1,2,... of the
while loop in line 5, realizations zi,..., 2z, are drawn from the random variable with the
density qf’;(f> of the current iteration, the model £ is evaluated at the realizations, and the
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p-quantile is estimated from the model outputs. In line 9, the threshold tée) is set to the

p-quantile estimate ’Ay,(f) + § in the first iteration of the loop. The threshold tffll is selected in
(0)

line 11, where the max{} operation guarantees that the threshold ¢, 11 Is greater or equal to
t and the min{} operation guarantees that the threshold parameter is reduced by at least &
in each iteration of the while loop, except in the first and the last iteration. In line 12, the

,(:21 is estimated. Line 13 exits the while loop if t,(fll is equal to the threshold
(0)

t. In line 17, the estimate o, and the model outputs g,ff) of the last iteration of the while
loop are stored, and the for loop starts a new iteration for the next level £+ 1. After the for
loop iterated through all levels £ =1, ..., L, the MFCE estimate PtMFCE is returned using the

density Py and the model outputs in QLL).

parameter v

Typically, the computationally most expensive step of Algorithm 1 is the computation
of the model outputs on line 7, which scales linearly with the number of realizations m.
Solving the optimization problem (22) on line 12 typically incurs small costs if the gradients
of the objective can be computed analytically. If the gradients of the objective have to be
approximated numerically, then solving the optimization on line 12 can become expensive.

We use in Algorithm 1 the same number of realizations m for all models in the model
hierarchy, i.e., in each iteration of the for loop in line 3 of Algorithm 1 the same number of
realizations m are used. An adaptive selection of m might help to further reduce the costs
of our MFCE approach. There are several options for selecting the number of realizations
m adaptively. For example, the number of realizations within the p-quantile in line 8 of
Algorithm 1 can be used to guide the selection of m. If only few realizations are within the
p-quantile, then the estimation of the parameters in (22) can become inaccurate. Increasing
the number of realizations m in such a situation can help to improve the estimation of the
parameters and so lead to a more suitable biasing density. If many samples are within the
p-quantile, then reducing m is unlikely to have a significant effect on the accuracy of the
estimated parameter in (22) while the reduction of m saves costs. We also refer to [26] where
similar strategies are discussed in the context of importance sampling.

3.5. Practical considerations. The gradient of the objective of the stochastic counterpart
(22) can be derived analytically in many situations. In particular, if Q corresponds to distri-
butions that belong to the natural exponential family, the gradient can be derived analytically
[10, 37]. In the following, we will use Gaussian, log-normal, and Gamma distributions, for
which we derive the gradients here.

Let the parameter v € P describe the mean pu € R? and the covariance matrix 3 €
of a d-dimensional Gaussian distribution. The corresponding density is

Rdxd

1

VeeEl

where |27X| denotes the determinant of the matrix 273. We obtain the gradient of log(gy(2))
with respect to p as

0o(2) (-5-ws ),

Vulog(qe(2)) =7 (z —p) ,
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and the gradient with respect to X as

Vs log(au(2)) = 5 (57 57 (z ) (- )" 57

We use the gradients of log(gy(2z)) and plug them into the gradient of the objective of the
stochastic counterpart (22). Then, setting the gradient of the objective of (22) to zero leads
to a system of equations that is linear in g and 3. Therefore, in the case where Q is the set of
Gaussian distributions of dimension d, solving the optimization problem (22) means solving
a system of linear equations. To find the parameters of a log-normal distribution, we fit a
Gaussian to log(z). Consider now a one-dimensional Gamma distribution with density

1

_ a—1_—z/8
w0 = papp ¢

where T is the Gamma function, v = [a, 8]7, and a and /3 are the shape and scaling parameter,
respectively. When we fit a Gamma distribution to data in the following, we keep the shape
parameter « fixed and modify the scaling parameter 5 only. The gradient of log(g,(z)) with
respect to 8 can be obtained analytically and is

Valoglaa(2) = 5

As in the Gaussian and the log-normal case, setting the gradient Vglog(gy(2)) = 0 and solving
for the scaling parameter 5 leads to a system of linear equations.

4. Numerical results. We demonstrate the efficiency of our MFCE method on a heat
transfer and a reacting flow example. In all of the following experiments, the quantile pa-
rameter is set to p = 0.1 and the minimal step size is § = 1072, which are similar to the
parameters chosen in, e.g., [10]. Furthermore, we set Q to the set of Gaussian distributions of
the respective dimensions, except if noted otherwise. We constrain the optimization problem
(22) in Algorithm 1 to covariance matrices ¥ with a minimal absolute value of 1073, which
avoids convergence of the biasing distributions to outliers and single points, see [39] for a
similar technique. All runtime measurements were performed on compute nodes with Intel
Xeon E5-1620 and 32GB RAM on a single core using a MATLAB implementation.

4.1. Heat transfer. We consider rare event probability estimation with a one-dimensional
heat problem with two inputs.

4.1.1. Problem setup. Let X = (0,1) € R be a domain with boundary 90X = {0, 1}.
Consider the linear elliptic PDE with random coefficients

(23) -V - (a(w,z)Vu(w,z)) = 1, rekX,
(24) u(w,0) = 0,
(25) Opu(w,1) = 0,

where u : Q x X — R is the solution function defined on the set of outcomes Q and where
X is the closure of X. We impose homogeneous Dirichlet boundary condition on the left
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Figure 1: Heat transfer: Our MFCE approach achieves up to two orders of magnitude speedup com-
pared to using the single-fidelity CE method with the model f(%) for ¢t € {0.75,0.95}.

boundary x = 0 of the domain X and homogeneous Neumann boundary conditions on the
right boundary x = 1. The coefficient a is given as

: (o = wi)?
= ; —0.5—
a(w,x) ;exp (zl(w))exp< 00225 > ,
where n = 2 and where Z = [z1, 20]7 is a random vector with components that are normally
distributed with mean g = [1,1]7 and covariance matrix

(0.1 0 2%9
z_[o 01]@@ .

The vector v = [vy,v2]T € R? is v = [0.5,0.8]7. The quantity of interest is the value of the
solution function at the right boundary and given by the output of the function f: D — R
defined as

[(Z(w)) = u(w, 1)
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Figure 2: Heat transfer: Our MFCE approach achieves a speedup of about one order of magnitude for
rare event probabilities of ~ 107 with ¢ = 1.14 in this example.

We discretize (23)—(25) with linear finite elements on an equidistant grid with mesh width
h) = 27 on level £ € N. The solution of the discretized problem on level ¢ leads to models
9. We set the maximal level to L = 8.

4.1.2. Rare event probability estimation. Our goal is to estimate the rare event prob-
abilities Pt(L) for t € {0.75,0.95,1.14}. We derive reference rare event probabilities with the
classical, single-fidelity CE method with 107 realizations. To obtain these reference probabil-
ities, we run Algorithm 1 with the model f(&) only. We average over 30 runs and obtain the
reference probability ]5&575 ~ 3x107? for t = 0.75, the reference probability ]5&%5 ~ 2x1077 for
t = 0.95, and the reference probability ]511%4 ~ 4 x 107 for t = 1.14. For our MFCE method,
we consider the levels £ = 3,...,8 and run Algorithm 1 with m € {103,10%, 105, 10%} realiza-
tions. We repeat the estimation with MFCE 30 times and estimate the squared coefficient of
variation (1) with respect to the reference probabilities.

Figure la and Figure lc compare the runtime of constructing the biasing density with
our MFCE method to the runtime of the single-fidelity CE method that uses model f(&)
alone. Our MFCE approach achieves a speedup of up to two orders of magnitude. Figure 1b
and Figure 1d show similar speedups for the total runtime, which includes the runtime of
constructing the biasing density and the final estimation step. In this example, the total
runtime is dominated by the runtime of constructing the biasing densities.

Figure 2 shows the speedup of our MFCE method for the threshold ¢ = 1.14, which
is smaller than the speedup obtained with the thresholds ¢t = 0.75 and ¢ = 0.95 shown in
Figure 1. The threshold ¢t = 1.14 corresponds to a reference probability of ~ 107, which
is significantly higher than the reference probabilities ~ 10~7 and ~ 10~ corresponding to
t = 0.95 and t = 0.75, respectively. Typically fewer CE iterations are sufficient to construct
a biasing density to estimate a rare event probability of ~ 107¢ than of ~ 107%. Thus, the
results in Figure 2 confirm that our MFCE approach is particularly beneficial in cases where
the CE method requires many iterations to obtain a biasing density, which typically is the case
for small rare event probabilities. Overall, the results reported in Figure 1 and Figure 2 show
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Figure 3: Heat transfer: Our MFCE approach achieves runtime speedups by shifting most of the
iterations onto the models with coarse grids.

that our MFCE method successfully leverages the hierarchy of models to estimate rare event
probabilities that vary by about three orders of magnitude (i.e., from ~ 1076 to ~ 1077).

4.1.3. Number of model evaluations. Figure 3 compares the number of iterations spent
at each level £ = 3, ..., 8 of our MFCE method to the number of iterations of the single-fidelity
CE method on level L = 8. The reported numbers of iterations are averaged over 30 runs.
First, note that our MFCE approach and the single-fidelity CE method require most iterations
for t = 0.75, which corresponds to the smallest rare event probability ~ 107 of the three cases
t € {0.75,0.95,1.14}. Second, the results confirm that our multifidelity approach spends most
of the iterations with models on the coarse grids, where model evaluations are cheap compared
to the model f(X) on the finest grid. Consider now Figure 4, which reports the intermediate
thresholds that are selected by Algorithm 1. Figure 4a shows that the single-fidelity CE
method requires about 10 iterations on level L = 8 to obtain an intermediate threshold that
is equal to or below ¢ = 0.75. Our MFCE approach requires six iterations on the lowest level
¢ = 3; however, the parameter ﬁ£3) estimated on level ¢ = 3 is then further corrected on level
£ = 4 in three iterations. On levels £ = 5,6, 7,8 only a single iteration is necessary to slightly
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Figure 4: Heat transfer: The plot shows the intermediate thresholds selected by Algorithm 1. Our
multifidelity approach achieves speedups because only a single iteration is required with the computa-
tionally expensive models on the fine grids (high level) to correct estimates obtained with the cheap
models on the coarse grids (low levels).

correct the estimated parameter. Similar results are obtained for ¢ € {0.95,1.14} shown in
Figure 4b and Figure 4c.

4.2. Reacting flow problem. This section demonstrates the MFCE approach on a reacting-
flow problem.

4.2.1. Problem setup. We consider the simplified combustor model described in [7], which
is based on the one-step reaction

2Hy + O9 — 2H20,

with the fuel Hs, the oxidizer O9, and the product HoO. The governing equations are nonlinear
advection-diffusion-reaction equations with an Arrhenius-type reaction term [7]. The geometry
of the combustor is shown in Figure 5. Dirichlet boundary conditions are imposed on I'y, 'y,
and I's. On I'y,['s, and I'g, homogeneous Neumann boundary conditions are imposed. The
governing equations are discretized with finite differences on a mesh with equidistant grid
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Figure 5: Reacting flow: The geometry of the combustor is shown in (a). The plots in (b) and (c)
show the temperature of the reaction for two different inputs.

points. The problem has two inputs z = [z1, 22]7 that define properties of the reaction. The
input z; is the normalized pre-exponential factor of the Arrhenius-type reaction term and zo
is the normalized activation energy. We refer to [7, 28] for details on the problem. The inputs
are realizations of a random variable with normal distribution with mean g = [1,1]7 and
covariance

0.0060 0
2_[ 0 0.0037]‘

The output of the model is the maximum temperature in the combustion chamber, see Fig-
ure 5.

The high-fidelity model in this experiment is given by the finite-difference model on a mesh
with 54 x 27 equidistant grid points. Furthermore, we derive a reduced model with proper
orthogonal decomposition and the discrete empirical interpolation method as described in
[41]. To construct the reduced model, we derive 100 snapshots with the high-fidelity model
that correspond to inputs on an equidistant 10 x 10 grid in the domain [0.7,1.92] x [0.27,1.72]
and derive proper orthogonal decomposition and empirical interpolation bases with 4 and 8
basis vectors, respectively. Additionally, we derive a piecewise-linear interpolant of the input-
output map given by the high-fidelity model from four data points drawn from the distribution
of the inputs. Thus, we have an interpolant f(!); a reduced model f®, and a high-fidelity
finite-difference model f) = f(L).
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Figure 6: Reacting flow: The total runtime is dominated by the estimation step with the high-fidelity
model because a speedup of multiple orders of magnitude is achieved for constructing the biasing
density and a speedup of at most one order of magnitude is obtained in the total runtime.

Our goal in this experiment is to estimate the probability that the temperature is below
a threshold value, which can indicate a poor mixing in the reaction. We estimate the rare
event probabilities for the thresholds ¢ € {2021.3,2043}. We first run Algorithm 1 with the
high-fidelity model f(%) alone to obtain the reference probabilities }521821.3 ~ 2 x 107% and
PQI(S)43 ~ 2 x 1077, respectively. The reference probabilities are estimated from 10* realizations
and are averaged over 30 runs. We then run Algorithm 1 with the models f(), f2 £3) 30
times with m € {102,5x10%,103,5x 103,10} and estimate the squared coefficient of variation
with respect to the reference probabilities.

4.2.2. Comparison of multi- and single-fidelity approaches. Figure 6 compares the run-
time of our multifidelity approach with the runtime of the single-fidelity CE method that uses
) alone. Our multifidelity approach achieves speedups of more than two orders of magni-
tude in the construction of the biasing densities. The large speedups are obtained because
the data-fit ) and the reduced model £ are five and two orders of magnitude cheaper
to evaluate than the high-fidelity model f®), respectively. Consider now the total runtime,
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Figure 7: Reacting flow: Our MFCE approach shifts most of the iteration onto the reduced and data-fit
interpolation models.

which includes the construction of the biasing densities and the final estimate step. The total
runtime in this example is dominated by the costs of the final estimation step, which means
that the speedup of our multifidelity approach obtained in constructing the biasing densities
is smaller when considered with respect to the total runtime. Our method achieves up to an
order of magnitude speedup in the total runtime.

Figure 7 reports the number of iterations per level. In our MFCE method, a single iteration
with the high-fidelity model is sufficient, whereas the single-fidelity CE method requires up
to almost 5 iterations. The intermediate thresholds selected by Algorithm 1 are shown in
Figure 8. The results confirm that model f() is a poor approximation of the high-fidelity
model because the intermediate threshold selected on level £ = 1 needs to be corrected with
three iterations on level ¢ = 2.

4.3. Reacting flow problem with five inputs. We now extend the reacting flow problem
of Section 4.2 with three additional inputs to demonstrate our MFCE approach on a five-
dimensional problem with non-Gaussian input random variables.

4.3.1. Problem setup. Consider the combustor model described in Section 4.2. The
two inputs z; and zy describe the properties of the Arrhenius-type reaction term. We now
additionally have the input z3, which is the temperature that is imposed on the boundaries
I'y and T's, see Figure 5. The input z4 is the temperature imposed on I's, and the input zs
controls the fuel content of the inflow on I's. The inputs are described in detail in [7].

The inputs z; and zy are realizations of a random variable that is distributed as described
in Section 4.2. The input z3 is the realization of a random variable with a Gamma distribution
with shape parameter o« = 18000 and scaling parameter 5 = 1/60. The random variable of
input z4 is also a Gamma distribution with parameters o = 180500 and 8 = 1/190. The mean
of the random variables is 300 and 950, respectively, which are the values used in Section 4.2.
The input z5 is the realization of a random variable with a log-normal distribution with mean
—5 x 1077 and standard deviation 0.001. In Section 4.2, the input zs is set to 1.
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Figure 8: Reacting flow: The data-fit model f(!) is a poor approximation of the high-fidelity model
and therefore three iterations with the more accurate reduced model f(?) are necessary to correct the
intermediate thresholds. Overall, our multifidelity method leverages the data-fit and the reduced model
to reduce the number of iterations required on the highest level with the high-fidelity model.

A finite-difference high-fidelity model f®) is used as in Section 4.2. A reduced model
@ is derived similar to Section 4.2, except that the snapshots correspond to inputs z =
[21,22,...,25) on a5 x5 x5 x5 x5 grid in the domain

(26) [0.7,1.92] x [0.27,1.72] x [280,320] x [920,980] x [0.95,1.05] .

The grid points are logarithmically spaced in the first two dimensions corresponding to z;
and zo and equidistant on a linear scale in the dimensions corresponding to z3, 24, and zs.
Additionally, we construct a data-fit model f (1) that interpolates the input-output map given
by the high-fidelity model. The data-fit model is a spline interpolant on a 4 x 4 x 4 x 4 x 4 grid
in the domain (26). The grid points are logarithmically spaced in the first two dimensions and
linearly spaced in dimensions 3, 4, and 5. The spline interpolant is obtained with MATLAB’s
griddedInterpolant method.

4.3.2. Estimation of rare event probability. We estimate the probability that the tem-
perature is below the threshold ¢ = 2021.3. Running Algorithm 1 with the high-fidelity model
B alone gives a reference probability ]521821.3 ~ 2 x 1079, which is similar to what we ob-
tained in Section 4.2. For the parameter estimation step in (22) in Algorithm 1, we use the
formulas obtained in Section 3.5. The reference probability is estimated from 10° realizations
and averaged over 30 runs. We run Algorithm 1 with m € {5 x 103,10% 5 x 10%,10°} and
models fM), £ and f®). Algorithm 1 is run 30 times and the averages of the coefficients of
variations of the single-fidelity CE estimator and our MFCE estimator are reported in Fig-
ure 9. Our MFCE approach achieves a speedup of about two orders of magnitude compared
to the single-fidelity approach that uses the high-fidelity model alone.

5. Conclusions. We presented a multifidelity preconditioner for the CE method to ac-
celerate the estimation of rare event probabilities. Our multifidelity approach leverages a
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Figure 9: Reacting flow with five inputs: Our MFCE approach achieves up to two orders of magnitude
speedup in this example with five inputs. The first two inputs are normally distributed, the third and
fourth input follow a Gamma distribution, and the fifth input is log-normally distributed.

hierarchy of surrogate models to reduce the costs of constructing biasing densities compared
to the single-fidelity CE method that uses the high-fidelity model alone. Our approach can ex-
ploit multiple surrogate models that include general surrogate models such as projection-based
reduced models and data-fit models, which goes beyond the classical setting of multilevel tech-
niques that are often restricted to hierarchies of coarse-grid approximations. In our numerical
examples, our approach achieved speedups of up to two orders of magnitude compared to the
single-fidelity CE method in estimating probabilities on the order of 107> to 1077,
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