
This article was downloaded by: [New York University]
On: 09 April 2014, At: 11:49
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Optimization Methods and Software
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/goms20

The spectral bundle method with
second-order information
C. Helmberga, M.L. Overtonb & F. Rendlc
a Fakultät für Mathematik, Technische Universität Chemnitz,
Chemnitz, Germany
b Courant Institute of Mathematical Sciences, New York University,
New York, NY, USA
c Institut für Mathematik, Alpen-Adria Universität Klagenfurt,
Klagenfurt, Austria
Accepted author version posted online: 18 Dec 2013.Published
online: 07 Feb 2014.

To cite this article: C. Helmberg, M.L. Overton & F. Rendl (2014) The spectral bundle method
with second-order information, Optimization Methods and Software, 29:4, 855-876, DOI:
10.1080/10556788.2013.858155

To link to this article:  http://dx.doi.org/10.1080/10556788.2013.858155

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or
howsoever caused arising directly or indirectly in connection with, in relation to or arising
out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

http://www.tandfonline.com/loi/goms20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/10556788.2013.858155
http://dx.doi.org/10.1080/10556788.2013.858155


Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 1
1:

49
 0

9 
A

pr
il 

20
14

 

http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Optimization Methods & Software, 2014
Vol. 29, No. 4, 855–876, http://dx.doi.org/10.1080/10556788.2013.858155

The spectral bundle method with second-order information

C. Helmberga∗, M.L. Overtonb and F. Rendlc

aFakultät für Mathematik, Technische Universität Chemnitz, Chemnitz, Germany; bCourant Institute of
Mathematical Sciences, New York University, New York, NY, USA; cInstitut für Mathematik, Alpen-Adria

Universität Klagenfurt, Klagenfurt, Austria

(Received 10 September 2012; accepted 15 October 2013)

The spectral bundle (SB) method was introduced by Helmberg and Rend [A spectral bundle method for
semidefinite programming. SIAM J. Optim. 10 (2000), pp. 673–696] to solve a class of eigenvalue opti-
mization problems that is equivalent to the class of semidefinite programs with the constant trace property.
We investigate the feasibility and effectiveness of including full or partial second-order information in the
SB method, building on work of Overton [On minimizing the maximum eigenvalue of a symmetric matrix.
SIAM J. Matrix Anal. Appl. 9(2) (1988), pp. 256–268] and Overton and Womersley [Second derivatives
for optimizing eigenvalues of symmetric matrices. SIAM J. Matrix Anal. Appl. 16 (1995), pp. 697–718].
We propose several variations that include second-order information in the SB method and describe effi-
cient implementations. One of these, namely diagonal scaling based on a low-rank approximation of the
second-order model for λmax, improves the standard SB method both with respect to accuracy requirements
and computation time.

Keywords: semidefinite optimization; bundle methods; eigenvalue optimization

1. Introduction

Given C, A1, . . . , Am ∈ Sn, the space of n × n real symmetric matrices, and a vector b ∈ R
m,

consider the optimization problem

min
y∈Rm

λmax

(
C −

∑
i

yiAi

)
+ bTy, (1)

where λmax denotes the largest eigenvalue. The function

f (y) := λmax

(
C −

∑
i

yiAi

)
+ bTy

is convex but nonsmooth. Eigenvalue optimization problems of this kind have attracted much
research over the past few decades, including the work of Cullum et al. [2], Overton [20,21],
Schramm and Zowe [25], Jarre [15], Overton andWomersley [23], Shapiro and Fan [26], Helmberg
and Rendl [13] and Oustry [18,19]. It is well known that the class of problems of the form (1)

∗Corresponding author. Email: helmberg@mathematik.tu-chemnitz.de

© 2014 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 1
1:

49
 0

9 
A

pr
il 

20
14

 

mailto:helmberg@mathematik.tu-chemnitz.de


856 C. Helmberg et al.

is equivalent to the class of semidefinite programs (SDPs) with the constant trace property, as
briefly discussed in the next section. It is this equivalence, together with the continued emerging
importance of SDP and its applications—with the constant trace property holding in many cases—
that largely motivates our work.

In order to be able to present our ideas more clearly, we summarize a somewhat simplified
version of the (SB) algorithm of Helmberg and Rendl [13] in Section 3. In Section 4, we summarize
the second-order method of Overton and Womersley [23]. Then in Section 5, we explain how
to incorporate the second-order model into the SB method. A closely related algorithm, also
incorporating such second-order information for the maximum eigenvalue function into a first-
order bundle method, was proposed and analysed by Oustry [19]. However, this method has not
been used much in practice. The difficulty is that the introduction of second-order approximations
substantially raises the computational cost per iteration, resulting in an algorithm that is simply
not competitive with interior-point methods for SDP.

The same is true of the second-order method that we introduce at the beginning of Section 5, but
this is not the method that we advocate. Instead, we develop several much less computationally
intensive variants in Section 5.4, after first discussing two important technical issues (how to
estimate the multiplicity of the maximum eigenvalue and how to collect the corresponding active
subspace during the bundle update) in Sections 5.2 and 5.3. These variants are based on low-
rank approximations of this matrix, which is then approximated itself and finally reduced to its
diagonal. The necessity to consider the entire active subspace has consequences for the scope of
such scaled SB methods as explained in Section 5.5. The effectiveness of the methods is illustrated
by numerical results that are reported in Section 6. Finally, we make some conclusions in Section 7.

2. Eigenvalue optimization and constant trace SDPs

Consider the primal SDP

max
X∈Sn

〈C, X〉 such that AX = b, X � 0 (2)

and its dual

min
u∈Rm

bTu such that ATu − C � 0. (3)

As usual, X � 0 means that X is in Sn+, the cone of symmetric, positive semidefinite matrices.
The notation 〈·, ·〉 refers to the trace inner product on Sn, and AX represents the vector with
components 〈Ai, X〉 for i = 1, . . . , m, with ATy = ∑

i yiAi defining its adjoint. It is well known
[29] that if both (2) and (3) have strictly feasible points, then their optimal values are the same and
are attained by optimizers X and u satisfying the complementarity equation X(ATu − C) = 0.

We say that the operator A has the constant trace property if the identity matrix I is in the range
of AT, i.e. ∃η such that ATη = I . The constant trace property implies constant trace of primal
feasible matrices, that is

AX = b implies tr(X) = 〈I , X〉 = 〈ATη, X〉 = 〈η, AX〉 = ηT b.

It is shown in [13] that, if the constant trace property holds, then there is a simple relationship
between the solution sets of (3) and the problem miny∈Rm(ηTb)λmax(C − ATy) + bTy, which is
(1) for ηTb = 1.

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 1
1:

49
 0

9 
A

pr
il 

20
14

 



Optimization Methods & Software 857

The subdifferential of f at a given point y is given by

∂f (y) = {b − A(W) : 〈W , C − ATy〉 = λmax(C − ATy), W ∈ Wn}
with Wn := {W ∈ Sn : tr W = 1, W � 0}.

Since f is convex, y∗ solves (1) if and only if 0 ∈ ∂f (y∗). This can be rewritten as follows. Let On,r

denote the n × r matrices with orthonormal columns, i.e. P ∈ On,r satisfies PTP = I , the identity
matrix of order r. Suppose y∗ solves (1), and let λ∗ = λmax(C − ATy∗) have multiplicity r∗. Then
there exists P∗ ∈ On,r∗ and U∗ ∈ Wr satisfying the following conditions:

• λ∗I � C − ATy∗ and (C − ATy∗)P∗ = λ∗P∗, i.e. λ∗ is indeed the largest eigenvalue of C −
ATy∗ and it has multiplicity r∗.

• A(P∗U∗(P∗)T) = b, i.e. 0 ∈ ∂f (y∗).

We say that P∗ and U∗ satisfying these conditions furnish an optimality certificate of y∗ for (1).

3. The SB method

We now recall the main idea of bundle methods [14] and more concretely of the SB method [13].
Given a first-order oracle of a nonsmooth convex function f , that is a routine returning the

function value and a subgradient of f at a given point y, bundle methods use the subgradient
information to form a minorizing model of f . A next candidate y+ is determined with respect to a
current centre of stability ŷ by minimizing the model augmented by a quadratic term (t/2)‖y − ŷ‖2

where t is a weight controlling the distance from the candidate to the centre as in a trust region
approach. If evaluation of f at the candidate exhibits sufficient decrease, the methods perform a
descent step by moving the centre to the candidate. Otherwise, in a null step, the centre is not
modified but the new subgradient information is used to improve the model.

Second-order information can be incorporated in bundle methods by replacing the augmenting
term ‖y − ŷ‖2 by a general quadratic term ‖y − ŷ‖2

Ht
= 〈y − ŷ, Ht(y − ŷ)〉 with

Ht = H + tI 	 0

for some H � 0 and t > 0. This is often called general scaling and is central to the approach
presented here. Therefore we describe the most important steps of the SB algorithm for general
scaling, deferring discussion of what choice to use for H until the later sections.

Note that for any W ∈ Wn the function

fW (y) := 〈C − ATy, W〉 + bTy = 〈C, W〉 + 〈b − AW , y〉
is a linear minorant of f . The SB method uses the maximum over a subset Ŵ ⊆ Wn of the
minorants to describe a cutting model

gŴ(y) := max
W∈Ŵ

fW (y) ≤ gWn(y) = f (y).

To simplify the notation in what follows, we focus on the case where Ŵ is defined by some
P ∈ On,k as

Ŵ = {PUPT : U ∈ Sk , tr U = 1, U � 0} (4)

although in practice, it is necessary to consider a slightly more general set

{PUPT + αW̄ : tr U + α = 1, U ∈ Sr , U � 0, α ∈ R, α ≥ 0},
where W̄ ∈ Sn+ is used to ‘aggregate’ residual information in order to allow for fewer columns in
P. A key point of the SB method is that the columns of the matrix P are chosen to be approximate

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 1
1:

49
 0

9 
A

pr
il 

20
14

 



858 C. Helmberg et al.

eigenvectors for the largest eigenvalues of C − ATŷ at the current or previous values of ŷ. Given
a bundle of approximate eigenvectors P, a scaling matrix H � 0, a weight t > 0 and a centre of
stability ŷ, the next candidate is

y+ = argmin
y∈Rm

{
gŴ(y) + 1

2
‖y − ŷ‖2

Ht

}
= argmin

y∈Rm
max
W∈Ŵ

{
〈C, W〉 + 〈b − AW , y〉 + 1

2
‖y − ŷ‖2

Ht

}
.

(5)
Compactness and convexity of the set Ŵ and strong convexity of the augmented function in y
ensure the existence of saddle points, so we may exchange min with max. For any given W , the
minimizing y is

y(W) := ŷ − H−1
t (b − AW), (6)

so, substituting this into the right-hand side of (5), we must maximize the dual functional

〈C, W〉 + 〈b − AW , ŷ〉 − 1
2‖b − AW‖2

H−1
t

.

For Ŵ as in (4), a maximizing W+ = PU+PT is defined by

U+ ∈ argmax{〈C, PUPT〉 + 〈b − APUPT, ŷ〉 − 1
2‖b − APUPT‖2

H−1
t

: tr U = 1, U � 0}

or equivalently

U+ ∈ argmax{〈PT(C − ATŷ)P, U〉 + bTŷ − 1
2‖b − APUPT‖2

H−1
t

: tr U = 1, U � 0}. (7)

This convex optimization problem in Sk , with a quadratic objective and a semidefinite constraint,
is called a quadratic SDP. We assume that k is small enough that it can be solved efficiently by
a standard interior-point method. Having determined U+, the new candidate is given by y+ =
y(W+) = y(PU+PT). If the progress predicted by the model value gŴ(y+) = fW+(y+) is small
in relative scale, i.e. if for given εopt > 0

f (ŷ) − fW+(y+) ≤ εopt

max{1, tr H/n} (|f (ŷ)| + 1), (8)

then the algorithm stops. Here the denominator max{1, tr H/n} compensates for the influence
of H on the step size in (6). Otherwise, f is evaluated at y+ and actual progress f (ŷ) − f (y+)

is compared to the predicted progress f (ŷ) − fW+(y+). If this ratio is good, say f (ŷ) − f (y+) >

κ[f (ŷ) − fW+(y+)] for some κ ∈ (0, 1), the method performs a descent step by moving its centre of
stability to the candidate, that is, setting ŷ ← y+. Otherwise, in a null step, the centre of stability is
left unchanged and the model Ŵ is corrected by updating P. Summarizing, we have the following
basic version of the SB algorithm.

Algorithm 1 (Spectral bundle method)

Input: ŷ ∈ R
m, εopt ≥ 0, κ ∈ (0, 1), κ̄ ∈ (κ , 1), Hmin

t and Hmax
t with 0 ≺ Hmin

t � Hmax
t .

SB0 (Initialization).
Compute f (ŷ) and initialize P to contain some approximate eigenvectors for the largest eigenvalues
of C − ATŷ. Initialize Ht 	 0 so that Hmin

t � Ht � Hmax
t .

Iteration: repeat the following steps

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 1
1:

49
 0

9 
A

pr
il 

20
14

 



Optimization Methods & Software 859

SB1 (Candidate Finding).
Compute U+ and W+ = PU+PT by solving (7) and set y+ ← y(W+) using (6). If

f (ŷ) − fW+(y+) ≤ εopt

max{1, tr H/n} (|f (ŷ)| + 1),

stop.

SB2 (Evaluation and Descent Test).
For B+ := C − ATy+ compute a Ritz vector v, with ‖v‖ = 1, so that at least one of the following
cases applies:

SB3a (Null Step).

f (ŷ) − fvvT(y+) ≤ κ̄[f (ŷ) − fW+(y+)]
In this case, leave the centre of stability ŷ unchanged.

SB3b (Descent Step).
Here we assume v to satisfy fvvT(y+) = f (y+); see the remark below.

f (ŷ) − fvvT(y+) > κ[f (ŷ) − fW+(y+)]
In this case set ŷ ← y+. The candidate solution becomes the new centre of stability.

SB4 (Update Bundle and Scaling Matrix).
Update the bundle P. Details will be given later, but if a null step was taken (Step SB3a), the
update must ensure that Ŵ+ ⊇ conv{W+, vvT} and Ht � H+

t � Hmax
t . If a descent step was taken

(SB3b), update Ht so that Hmin
t � Ht � Hmax

t .

Note that it is possible that the conditions for a null step and a serious step are both satisfied.
This gives us some flexibility in the eigenvalue computation: in particular, as soon as the null step
criterion applies, we may terminate the eigenvalue computation and continue with a null step.
Only in the case where the null step criterion fails do we need to compute λmax to full precision.

Remark 1 The main work in evaluating f and updating P is the computation of λmax(C − ATy+).
In this computation, sparsity or other structural properties of C − ATy+ are exploited by an
iterative method of Lanczos type. It generates a sequence of Ritz pairs consisting of Ritz vectors
vi ∈ R

n, ‖vi‖ = 1, and corresponding Ritz values vT
i (C − ATy+)vi that converge to λmax(C −

ATy+) from below. Note that via Wi = vivT
i ∈ Wn each Ritz vector generates a linear minorant

satisfying fWi(y
+) ≤ f (y+). As soon as some Ritz value gives rise to a value fWi(y

+) fulfilling the
null step criterion (see Step SB3a above), the Ritz vector vi provides sufficient information to
proceed with a null step of the bundle method and neither the precise value λmax(C − ATy+) nor
a corresponding eigenvector needs to be computed. Otherwise the process is continued until the
maximum eigenvalue is well approximated together with a corresponding eigenvector; see step
SB3b.

To summarize, the evaluation of f in step SB2 results in a matrix V = (v1, . . .) of Ritz vectors
with v = v1 and associated Ritz values

vT
1 B+v1 ≥ vT

2 B+v2 ≥ · · ·
and V TV = I . Regardless of the null step or descent step decision, the matrix P is then updated.
For details we refer to [11,13]. In theory, satisfying the condition Ŵ+ ⊇ conv{W+, vvT} during

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 1
1:

49
 0

9 
A

pr
il 

20
14

 



860 C. Helmberg et al.

null steps suffices to ensure f (ŷ) → inf f over all descent steps by the standard analysis of bundle
methods [11].

In order to motivate our second-order enhancements to this algorithm, we first describe in the
following section a second-order method to minimize f (y). Then we will explain the changes to
Algorithm 1 which are needed to incorporate second-order information.

4. A second-order method to minimize f

It is well known that the maximum eigenvalue function λmax is differentiable around a given
matrix X ∈ Sn if and only if the maximum eigenvalue of X is simple. In this case, the formula for
the second derivative of λmax can be found, for example, in [17] and (less explicitly) in [16]. If, on
the other hand, the maximum eigenvalue of X has multiplicity r > 1, the maximum eigenvalue
function is smooth near X only if it is restricted to the submanifold of Sn consisting of matrices
whose maximum eigenvalue has multiplicity r. Thus, the key idea for second-order methods is to
model the second-order behaviour of the maximum eigenvalue function on such a manifold.

Using this idea, a second-order method to solve (1) (for the case b = 0) was given in [20],
based on a parameterization used for inverse eigenvalue problems by Friedland et al. [7] and also,
less directly, a second-order model for semidefinite constraints due to Fletcher [6]. Overton and
Womersley [23] and Shapiro and Fan [26] independently analysed the algorithm of Overton [20]
(extended to the case where the matrix depends smoothly, not necessarily affinely, on parame-
ters), establishing its local quadratic convergence under nondegeneracy assumptions. These two
approaches to proving quadratic convergence used quite different techniques; a third approach
may be found in [4]. Oustry [19] introduced the same quadratic model into a bundle method for
(1), proving global and local quadratic convergence under nondegeneracy assumptions, using yet
another analytical technique based on U-Lagrangian theory [18].

In order to understand the enhancements of the standard SB method, which are the main topic
of this paper, we now provide a brief description of Iteration 4 from Overton and Womersley [23],
which we rephrase in the terminology of this paper, and which we call the OW method. Let y∗ be
a unique minimizer of f (y) and let

C − ATy∗ = Q∗�∗(Q∗)T

be the spectral decomposition at y∗. Assume that λmax(C − ATy∗) has multiplicity r.
One iteration of the OW method can be described as follows. Let ŷ be the current iterate,

assumed to be close enough to y∗ such that λmax(C − ATŷ) has approximate multiplicity r.

Algorithm 2 (Second-order iteration from Overton and Womersley [23])

OW1 Compute the spectral decomposition

C − ATŷ = Q̂�̂Q̂T

with λ̂1 ≈ · · · ≈ λ̂r > λ̂r+1 ≥ · · · ≥ λ̂n and Q̂Q̂T = I , with Q̂ = [Q̂1 Q̂2], where the
columns of Q̂1 are eigenvectors corresponding to λ̂1, . . . , λ̂r and the columns of Q̂2 are
eigenvectors for the remaining eigenvalues.

OW2 Solve the least-squares problem

Ũ = argmin
U∈Sr

{‖b − A(Q̂1UQ̂T
1 )‖2 : tr U = 1}.

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 1
1:

49
 0

9 
A

pr
il 

20
14

 



Optimization Methods & Software 861

OW3 Define the m × m second-order matrix H(Ũ) by

H(Ũ)ij = 2 tr(AiQ̂1ŨQ̂T
1 AjQ̂2(λ̂1I − D2)

−1Q̂T
2 ), (9)

where D2 = diag(λ̂r+1, . . . , λ̂n).
OW4 Compute the new iterate y from

min
y∈Rm ,δ∈R

1

2
‖y − ŷ‖2

H(Ũ)
+ bTy + δ such that δI = Q̂T

1 (C − ATy)Q̂1

and set ŷ := y.

In Theorem 7 from Overton and Womersley [23] it is shown that under some regularity assump-
tions, this iteration converges quadratically to y∗, provided that the starting point ŷ is close
enough to y∗.

We close this section with two remarks.

Remark 2 The matrix H(Ũ) in (9) corresponds to the second-order formula from Overton and
Womersley [23], or more precisely the variant W̃ discussed there, and is also the formula used
in [20] (for a slightly different problem) and in [19]. Using the vec operator and the Kronecker
product, it is equivalent to

H(Ũ) = 2Ā(Q1 ⊗ Q2)(Ũ ⊗ (λ̂1I − D2)
−1)(Q1 ⊗ Q2)

TĀT, (10)

where ĀT = [vec(A1), . . . , vec(Am)] and D2 = diag(λ̂r+1, . . . , λ̂n).
Note, as pointed out in [12], the similarity of the structure of this matrix to that of the system

matrix that must be formed in primal–dual interior-point methods for SDP [28], the key difference
being that H(Ũ) is well defined in the limit as y → y∗ since the quantities being inverted in the
central factor do not converge to zero as long as the multiplicity r is estimated correctly. Note
also, however, that H(Ũ) will be singular whenever the rank of Ũ is smaller than r.

Remark 3 Below, we relax step OW4 as follows. The equation

δI = Q̂T
1 (C − ATy)Q̂1

imposes, to first-order, an eigenvalue of C − ATy with multiplicity r and value δ. We change it
to the semidefinite constraint

δI � Q̂T
1 (C − ATy)Q̂1

requiring that δ is at least as large as the largest eigenvalue of the matrix on the right-hand side.
Making this substitution, step OW4 becomes

min
y∈Rm

1

2
‖y − ŷ‖2

H(Ũ)
+ bTy + λmax(Q̂

T
1 (C − ATy)Q̂1),

which can be rewritten as

min
y∈Rm

max
U∈Sk

{
〈Q̂T

1 (C − ATy)Q̂1, U〉 + bTy + 1

2
‖y − ŷ‖2

H(Ũ)
: tr(U) = 1, U � 0

}
. (11)

This is now a problem of the form (5) with t = 0 and Q̂1 taking the role of the bundle P.
Step OW2 is based on the assumption that ŷ is close enough to the optimum y∗, so that r,

the multiplicity of the largest eigenvalue, is known a priori and the minimizing matrix Ũ is

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 1
1:

49
 0

9 
A

pr
il 

20
14

 



862 C. Helmberg et al.

positive definite by continuity (given a regularity assumption). In (11) we impose the semidefinite
constraint on U explicitly, following the philosphy of the SB method and allowing us to change
the multiplicity estimate r for the largest eigenvalue dynamically, as described below.

The full second-order iteration involves several operations which are acceptable only for small
problems. A full spectral decomposition, as required in OW1, limits the size n of the primal space
to n ≈ 1000. The second-order matrix H(Ũ) of order m × m is generically dense, even if the Ai

are sparse. This puts a limit on m, as is the case for interior-point methods. In the next section we
describe an extension of the SB method that incorporates second-order information efficiently.

5. Incorporating second-order information into the SB method

In this section we give several ways to define the scaling matrix Ht in the SB method (Algorithm 1)
using second-order information, inspired by the OW method (Algorithm 2).

The SB method is driven by the n × k bundle matrix P, which is used in step SB1 to solve
(7) yielding U+ and the new candidate solution y+ = y(PU+PT). In constrast the OW iterations
are based on the spectral decomposition of C − ATŷ, given by the orthogonal eigenvector matrix
Q̂. In order to incorporate second-order information into the SB method, we aim at using Q̂ to
define the scaling matrix Ht . To maintain computational efficiency we also would like to avoid a
full factorization to get Q̂. Thus we extend the original SB method by including, in addition to
the bundle matrix P, a matrix Q of order n × 
, where k ≤ 
 ≤ n, which contains approximate
eigenvectors of C − ATy. The matrix Q will play the role of a truncated approximation to Q̂ in
the OW method. The modified SB method is therefore driven by the bundle P and the matrix Q of
approximate eigenvectors of C − ATy at the candidate solution y. Both P and Q will be updated
in each iteration to yield P+ and Q+.

We now provide an overview of the modifications to the SB method which allow us to include
second-order information in the scaling matrix Ht . Mathematical justifications and implementation
details will be described in the following subsections. At the beginning of each iteration of the
modified spectral bundle (MSB) method in Algorithm 3 below we have the following data:
ŷ . . . current centre of stability with objective function value f (ŷ),
P . . . n × k bundle matrix with PTP = I ,
Q . . . n × 
 eigenvector estimates of C − ATy with QTQ = I at the current candidate solution y,
Ht 	 0 . . . scaling matrix.
At the beginning we set y ← ŷ, Q ← P.

Algorithm 3 (MSB method)

MSB1 (Determine a new candidate solution y+).
Compute U+ as in (7). Set W+ = PU+PT and y+ = ŷ − H−1

t (b − AW+); see (6).

MSB2 (Evaluation of f (y+)).
For B+ := C − ATy+ use a Lanczos type method to generate Ritz vectors V = (v1, . . .) and Ritz
values vT

1 B+v1 ≥ vT
2 B+v2 ≥ . . . .

MSB3 (Null step or descent step).
Decide on whether to take a null step or a descent step as in Algorithm 1.

MSB4 (Update P, Q and Ht).

MSB4a (Estimate eigenvectors q̄i and eigenvalues λ̄i of B+).
Let V̄ be an orthonormal basis of [Q V ]. Compute an eigenvalue decomposition of V̄ TB+V̄ =

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 1
1:

49
 0

9 
A

pr
il 

20
14

 



Optimization Methods & Software 863

S�̄ST with STS = I and �̄ = diag(λ̄i) with λ̄1 ≥ λ̄2 ≥ · · · and set Q̄ = (q̄1, . . .) = V̄S. Thus
λ̄i = q̄T

i B+q̄i. For details see Section 5.1.

MSB4b (Multiplicity estimate).
Determine an estimate for the multiplicity r of λmax(B+). Details are given in Section 5.2.

MSB4c (Update P and Q).
Use P and Q̄ to get an update P+ for P and use Q̄ to get an update Q+ for Q. Set P ← P+, Q ← Q+.
Details are given in Section 5.3.

MSB4d (Minimum norm approximate subgradient).
Partition Q = [Q1 Q2] where Q1 is n × r. Solve

Ũ = argmin
U∈Sr

{‖b − A(Q1UQT
1 )‖2 : tr U = 1, U � 0}. (12)

This corresponds to step OW2 of Algorithm 2, except that a semidefinite constraint is included in
(12); see Remark 3.

MSB4e (Update the scaling matrix Ht).
Set Ht to an approximation of the second-order matrix H(Ũ) defined in (10) as explained below
in Section 5.4. This corresponds to step OW3, as explained in Remark 2. The matrix Ht is then
used in the next iteration in step MSB1; see also Remark 3.

Summarizing, the new candidate solution y+ is determined through the bundle P and the scaling
matrix Ht which mimicks the second-order term H(Ũ) in step OW4; compare in particular (11)
and (5).A quadratic SDP of the form (7) has to be solved. In contrast toAlgorithm 2 we avoid a full
spectral decomposition of B+, approximating only the largest eigenvalues of B+; see MSB4a. The
update of Ht requires the solution of an additional quadratic SDP to get the matrix Ũ which forms
the basis for the second-order matrix H(Ũ); see (10), and the variants described in Section 5.4
below.

5.1 Approximate eigenvalues and eigenvectors

The evaluation of f at y+ is done approximately, as explained in Section 3, using a Lanczos-type
algorithm. It produces an approximation to λmax(B+) together with a set of Ritz vectors, which
are collected in the matrix V , where V TV = I . We combine the new Ritz vectors and the matrix
Q into a new matrix Q̄ as follows. First, let V̄ form an orthonormal basis of [Q V ]. We determine
the eigenvalue decomposition of the projected matrix V̄ TB+V̄ , given as

S�̄ST = V̄ TB+V̄ ,

with STS = I , �̄ = diag(λ̄i) and λ̄1 ≥ λ̄2 ≥ · · · , and set Q̄ = V̄S. Thus �̄ = Q̄TB+Q̄. Note that,
if the iterative eigenvalue solver returned a true eigenvector for λmax(B+), then λ̄1 = λmax(B+). In
any case, by continuity of the eigenspaces, the largest {λ̄i} will become highly accurate estimates of
the largest eigenvalues of B+ whenever y converges. Thus, these values are employed as estimates
for λi(B+).

5.2 Estimating the eigenvalue multiplicity

A key challenge is to devise a stable approach for determining a good estimate of the multiplicity r
of the maximum eigenvalue. In theory (see [12]), once the algorithm is close enough to an optimal
solution y∗, there will be a gap of significant relative size between λr and λr+1.

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 1
1:

49
 0

9 
A

pr
il 

20
14

 



864 C. Helmberg et al.

In practice, however, even quite complex schemes based on observing the ratio (λr −
λr+1)/(λ1 − λr+1) fail quite regularly. For example, it might happen that the multiplicity esti-
mate r stabilizes at a certain value for several iterations and then suddenly drops to r = 1. Such
misclassifications have dire consequences for the performance of the bundle method, increasing
the number of null steps dramatically. Instead, we estimate the multiplicity using the following
two ingredients.

As a first estimate, r should at least embrace all eigenvalues of B+ within a relative precision,
say τ , of λmax (We used τ = 10−6.). The resulting lower bound based on the λ̄i is

r = max{j ∈ {1, . . . , k} : λ̄1 − λ̄i ≤ τ(|λ̄1| + 1) ∀i = 1, . . . , j}.
Secondly, we use the optimizer U+ of (7) in step SB1 based on the following intuition. Once

we are close enough to an optimal solution y∗, the matrix W+ = PU+PT approaches an optimal
solution of (2), so the columns of P approach the eigenspace of λmax(C − ATy∗). The rank of W+,
or equivalently U+, therefore serves as another estimate for the multiplicity r. As long as k, the
number of columns in P, is at least r∗, the actual multiplicity of λmax(C − ATy∗), this provides
another reasonable estimate for r. In order to identify the nonzero eigenvalues of U+ we make use
of the idea of Tapia indicators [5] as follows. In solving (7) by an interior-point method, let U ′ be
the last iterate before the algorithm terminates with the solution U+ and denote the corresponding
eigenvalues by λi(U ′) and λi(U+) sorted nonincreasingly for i = 1, . . . , k. Generically, the ‘active’
eigenvalues converge to some fixed positive value while inactive ones converge to zero with the
same speed as the barrier parameter, so the criterion estimates the decrease from λi(U ′) to λi(U+).
In our implementation the barrier parameter is typically reduced by some value in (0, 0.3], leading
to the rather simple estimate

r̄ = max{j ∈ {1, . . . , k} : λi(U
+) ≥ 0.8 λi(U

′) ∀i = 1, . . . , j}.
The final multiplicity estimate is then

r = max{r̄, r}.

5.3 The update mechanism for P and Q in step MSB4c

We recall that in the SB method the columns of P should contain approximate eigenvectors for
the largest eigenvalue of C − ATy at the current and possibly previous iterates. Thus, to update
P we use the old bundle P and also the eigenvector estimates for B+ in Q̄. Here are the details for
the update of the n × k bundle matrix P to a matrix P+.

(1) First we include min(r + 3, k) eigenvectors wi of PU+PT corresponding to its largest
eigenvalues.

(2) Second we also consider including additional eigenvectors wi of PU+PT, by investigating
their contribution to the second-order matrix H. For inclusion of the eigenvector wi in P+, we
consider as an indicator for the importance of the ith eigenvector to the model the contribution
of the corresponding q̄i to the trace of H if q̄i appears as a column of Q̄2,

ρi =
m∑

h=1

q̄T
i AhPU+PTAhq̄i(λ̄1 − λ̄i)

−1.

We include wi in P+ if ρi is large enough. Assuming prescaled ‖Ah‖ = 1 for all h = 1, . . . , m
we include wi in P+ if ρi > m, i.e. if the average contribution to each diagonal element of H
is at least one.

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 1
1:

49
 0

9 
A

pr
il 

20
14

 



Optimization Methods & Software 865

(3) Finally, we include 5 columns of Q̄ corresponding to the largest eigenvalue estimates λ̄i.

The total number of columns included from P in (1) and (2) is denoted kP and will be used in
Section 5.4.3, and the total number of columns of P and Q added from (1), (2) and (3) is denoted
k+. Since the columns from Q are not orthogonal to the ones from P, the resulting set must be
orthogonalized.

A straightforward update for Q would simply be to use Q̄. Since we also have computational
efficiency in mind, we select only a subset of the columns of Q̄, based on the following intuition.
In view of the definition of H(Ũ), it seems reasonable to discard eigenvectors corresponding to
eigenvalues significantly smaller than the largest.

The update of Q will be denoted Q+, and is thus formed by taking some, but not all, vectors of Q̄
as follows. The updated matrix Q+ is chosen to contain the first k+ and at least na further columns
of the matrix Q̄ for some adaptive parameter na ∈ N described in Section 5.4.2. Furthermore, we
drop all indices i > k+ + na with

λ̄i < λ̄1 − min{10−2(1 + |λ̄1|), 10(λ̄1 − λ̄r+1)}.
Of the remaining ones we keep the first few with contribution ρi > m/10 to H. Because the

computation of the ρi is quite involved, this is restricted to the update on descent steps.

5.4 Four choices of H inspired by the second-order method

We now describe four variants for choosing H, the first one being the full Newton method which is
then, for the sake of computational efficiency, approximated and simplified, the final simplification
being a diagonal scaling heuristic.

The SB method is started without scaling, i.e. initially H = 0 so Ht = tI with t being updated
as described in [11]. From the beginning, however, the bundle update scheme of Section 5.3 is
employed, so that all required information is available once scaling is started. Scaling is used
once a relative precision of 10−2 has been reached, i.e. when f (ŷ) − fW+(y+) ≤ 10−2(|f (ŷ)| + 1).
From then on, a new scaling matrix H is formed at every descent step and Ht is set to H + tI .
During null steps, however, Ht � H+

t is required to ensure convergence. To meet this, H is not
altered during null steps.

5.4.1 The full second-order model

This variant implements the full second-order model as explained in Section 4. We compute the
full spectral decomposition C − ATŷ = Q̂�̂Q̂T. We also compute Ũ as well as H = H(Ũ) as
defined in (12) and (9). Also, the bundle P is replaced by P = Q̂1, so in fact the bundle update
scheme of the previous section would only be needed for null steps.

Even though H(Ũ) may be singular, Ht = H + tI is positive definite because t > 0 provides the
necessary regularization. Still, a large t might be appropriate when H = 0 but may hinder progress
in the presence of a full Newton matrix H. Therefore, when H is nonzero for the first time, we
reinitialize t by the following heuristic. Let t̃ denote the minimal value of t over all iterations up
to this point, then t ← max{10−3 · mini H(Ũ)ii, min{10−3, t̃/10}}. During subsequent null steps
the heuristic for choosing t as described in [11] is used but the t of the next descent step is not
allowed to exceed 10 times the value of the previous t.

The eigenvalue decomposition requires O(n3) operations and takes roughly 5 times the compu-
tation time of a dense Cholesky factorization. For large structured problems this exceeds the work
required for computing an extremal eigenvalue via Lanczos methods significantly. The cost of
computing H(Ũ) is comparable in cost to forming the system matrix in semidefinite interior-point

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 1
1:

49
 0

9 
A

pr
il 

20
14

 



866 C. Helmberg et al.

methods and is typically by far the most expensive step unless m is small or the Ai have very special
structure. The Cholesky factorization of H(Ũ) is also required, to define the coefficient matrices
in the quadratic SDP which must be solved in (11). This amounts to O(m3) arithmetic operations.
Because a new H(Ũ) and its factorization must be computed for each descent step, the iterations of
interior-point methods can be expected to be at least as fast. Thus, from a computational perspec-
tive the bundle method with full second-order scaling is not suitable for large-scale semidefinite
optimization and cannot be expected to be able to compete with interior-point methods even for
medium scale problems.

5.4.2 A low-rank variant of the second-order model

In practice, as explained in Section 3, it is impractical to compute all eigenvalues of B+ = C −
ATy+, so we assume in this subsection that only the matrix Q = (q1, . . . , q
) (with 
 < n) together
with the corresponding approximate eigenvalues λ̄i = qT

i B+qi is available. This eliminates the
possibility of using the full second-order model. However, partitioning Q = [Q1, Q2] with Q1

consisting of the first r columns and Q2 consisting of the remaining columns and splitting � =
diag(λ̄) into D1 and D2 correspondingly, suggests how to replace the full second-order model
by a low-rank approximation. Using Q1, the matrix Ũ in (12) can be computed as before. The
computation of H(Ũ) in (10) now reads

H(Ũ) = 2Ā(Q1 ⊗ Q2)(Ũ ⊗ (λ̄1I − D2)
−1)(Q1 ⊗ Q2)

TĀT,

which is a low-rank approximation because Q has less than n columns. Even if the dimension
of D2 is kept small, it is tempting to reduce the rank further by eliminating small eigenvalues of
Ũ ⊗ (λ̄1I − D2)

−1. These are λi(Ũ)/(λ̄1 − λ̄j) which may be small in comparison to the largest
choice with i = 1 and j = r + 1.

Computationally, however, the approximation seems to profit more from first computing the
QR decomposition of

Ā(Q1 ⊗ Q2) =: QĀRĀ (13)

and then computing the spectral factorization

2RĀ(Ũ ⊗ (λ̄1I − D2)
−1)RT

Ā = Q′
H̄�H̄Q′T

H̄ .

Instead of using

H̄ = QH̄�H̄QT
H̄ with QH̄ := QĀQ′

H̄ ,

we use a low rank approximation obtained by deleting from �H̄ all eigenvalues (�H̄)ii < δ̃λmax(H̄)

for a parameter δ̃ ∈ (0, 1) (we use δ̃ = 10−6). Calling the corresponding submatrices �H̃ and QH̃
we finally have the approximation

H(Ũ) ≈ H̃ = QH̃�H̃QT
H̃

.

In this scaling approach, the bundle is updated as described in Section 5.3 also after descent steps.
Note that the dimension of D2 and the number of columns in Q2 depend directly on the number

of columns 
 provided by this update. Due to the high computational cost involved in a large 
,
in particular in view of the QR decomposition (13), the rules for including more columns in the
update Q+ are rather stringent but work sufficiently well initially. In some cases, in particular if
higher accuracy levels are required, the rules are too restrictive leading to a poor scaling matrix
H̃ which leads to a large number of null steps between consecutive descent steps. In such cases
the lower bound na on the number of columns in Q2 is increased by the following heuristic rule.

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 1
1:

49
 0

9 
A

pr
il 

20
14

 



Optimization Methods & Software 867

Initially na = 5, and whenever at least h > 20 null steps proceed a descent step, na is increased
by �h/20� as long as na does not exceed n/10.

Regarding the regularization in Ht = H̃ + tI by t > 0 for low-rank scaling, we first reinitialize
t to the minimal value of t over all previous iterations before H̃ is computed for the first time.
During subsequent iterations the heuristic of Helmberg and Kiwiel [11] for choosing t is used, but
to increase stability in view of a less accurate H, the t of the next descent step is not allowed to
exceed the previous descent step value by a factor of 4

3 or to be reduced by more than a factor of 2
3 .

Because H̃ is already given by its eigenvalue decomposition, the inverse of Ht could be applied
explicitly in a numerically stable way via a representation of QH̃ by Householder vectors. In
practice, however, exploiting the low rank structure by a Sherman-Morrison variant proved
computationally more efficient on our test instances.

5.4.3 A low-rank approximation with PU+PT replacing Q1ŨQT
1

For large r, the quadratic SDPs to determine U+ in step SB1 and to compute Ũ in (12) are
computationally quite involved. We will now argue that the solution U+ of SB1 can be used to
construct increasingly accurate solutions to (12) without actually solving (12).

While [22] stresses the importance of computing Ũ, it can be shown as in [8] that all cluster
points of Q1ŨQT

1 as well as of those PU+PT that result in descent steps are optimal solutions to
the primal program (2). Indeed, because b − A(Q1ŨQ1) as well as b − A(PU+P) goes to zero,
all cluster points are feasible for (2). Therefore optimality for (2) follows from complementarity
as Q1 and P converge to the active subspace of optimal solutions of (3). If the primal optimal
solution is unique rewriting (10) allows us to conclude

H(Ũ) =2Ā[(Q1ŨQT
1 ) ⊗ (Q2(λ̄1I − D2)

−1QT
2 )]ĀT

≈2Ā[(PU+PT) ⊗ (Q2(λ̄1I − D2)
−1QT

2 )]ĀT

once ‖Q1ŨQT
1 − PU+PT‖ is small enough. Instead of solving (12) it might therefore suffice to

approximate Q1ŨQT
1 by PU+PT. Recall that we include kP columns from P in P+, see Section 5.3.

In this variant we therefore replace Q1ŨQT
1 by P(

∑kP
i=1 λi(U+)uiuT

i )PT, where the ui denote
the eigenvectors for λi(U+). Equivalently, Q1 is replaced by Q̃1 = P · [u1, . . . , ukP ]. The matrix
Q2 is formed from Q by extracting the columns kP + 1 through 
 as the gain of including in H
second-order information with respect to directions already contained in the bundle P seems to
be negligible: the nonpolyhedral bundle model P gives this information already.

This variant basically makes no use of the first kP columns of Q. Otherwise, we proceed exactly
as in Section 5.4.2.

5.4.4 Using the diagonal of the low-rank approximation

In terms of computational efficiency diagonal scaling has many advantages even compared to
the low-rank approach. Indeed, the diagonal of a low rank approximation can be computed
directly without forming the matrix Ā(Q1 ⊗ Q2), so the need for the computationally involved
QR-factorization (13) is eliminated. Also, the coefficients of the quadratic SDP (7) can be deter-
mined much faster. Furthermore, a diagonal H allows us to employ the highly efficient approach
of Helmberg and Kiwiel [11] for implementing box constraints on y. Because of these advantages
we decided to also test diagonal scaling based on the diagonal of the low rank approxima-
tion. In particular, using the notation of Section 5.4.3, the diagonal element for i ∈ {1, . . . , m}

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 1
1:

49
 0

9 
A

pr
il 

20
14

 



868 C. Helmberg et al.

is computed by

Hii = 2tr

(
AiP

(
kP∑

i=1

λi(U
+)uiu

T
i

)
PTAiQ2(λ̄1I − D2)

−1QT
2

)
,

where we now use all eigenvalues and eigenvectors of U+ that are kept in the bundle in the hope of
improving the quality of the approximation PU+PT of Q1ŨQ1. The choice of all other parameters
is identical to that of the previous subsection. Surprisingly, the same scheme for choosing t again
seems to produce very good results.

5.5 Computational limitations with a large bundle

Let us look more closely at the linear algebra involved in solving the quadratic SDPs (7). The
primal objective may be expressed as

d + cT
Pu − 1

2 uTQPu,

where

d = bTŷ − 1
2 bTH−1

t b, cP = APH−1
t b + vec(PTCP − PTATŷP), QP = AT

PH−1
t AP,

and

u = vec(U), AP = [(vec(PTAiP))T]i=1,...,m.

In order for the scaled variants of the SB method to be effective it is important that k, the number
of columns of P, be at least r∗, the optimal multiplicity. However, this means that each step of the
interior-point method solving the quadratic SDPs involves factorizing a positive-definite matrix
of order k(k + 1)/2 (recall that the original m dual variables have been eliminated in (7) by using
(6)). For m constraints a reasonable estimate of the dimension of the optimal subspace is r∗ ≈ √

m,
because there always exists an optimal primal solution whose rank is bounded by this number
[1,24]. Solving the primal–dual KKT-system of a standard primal–dual interior-point method
for semidefinite programming requires factorizing a matrix of order m. So, if the cost of one
interior-point iteration is dominated by this factorization and if r∗ ≈ √

m, solving one quadratic
SDP is almost as expensive as solving the original problem by an interior point method. In our
computational experiments the update scheme for P of Section 5.3 leads to a moderate increase
of k towards r∗ over time, so that the fast initial progress of bundle methods is preserved, i.e.
solutions of moderate accuracy are obtained significantly faster than by interior-point methods.
However, good progress at higher accuracy levels seems to require k ≥ r∗.

Therefore the scope of problems where the proposed scaled versions of the SB method may
indeed outperform interior-point methods in computing rather accurate solutions is restricted to
problems where either the optimal multiplicity r∗ is known to be small or where m is small and the
cost of interior-point methods is dominated by the cost of factorizing the primal and dual matrix
variables. This can also be observed for our test instances in the next section.

6. Numerical results

The scaling methods were implemented within the ConicBundle (CB) callable library [10] in
C++ and tested on Intel(R) Core(TM) i7 CPU 920 machines with 8 MB cache and 12 GB RAM
under openSUSE Linux 11.1 (x86_64) in single processor mode. As test instances we generated

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 1
1:

49
 0

9 
A

pr
il 

20
14

 



Optimization Methods & Software 869

several general random sparse SDP problems satisfying the constant trace property as well as
semidefinite relaxations of max-cut problems corresponding to Ising spin glasses [27] on three
dimensional toroidal grids with edge weights chosen randomly from {−1, 1}.

The general random sparse instances were generated for given n (order of X and Z), m (number
of constraint matrices Ai), p (number of nonzeros per row) and different seeds for the random
number generators. Starting with the weighted adjacency matrix A of a connected random graph
with an expected number of np edges and edge weights uniformly distributed in [− 1

2 , 1
2 ], and a

uniform random vector dZ ∈ [0, 10]n + 1, a dual slack matrix Z is set to Z = Diag(dZ + A1) − A
(Z is not enforced to be positive definite).A primal matrix X is formed by X = EET + Diag(dX) for
a uniform random vector dx ∈ [0, 10]n + 1, where each element of E ∈ R

n×�n/4� is drawn from the
standard normal distribution. This X determines the right-hand side b0 = tr X of the trace constraint
A0 = I in 〈A0, X〉 = b0. For each Ai, i ∈ {1, . . . , m}, a principal submatrix is selected consisting of
p distinct indices from 1, . . . , n uniformly at random; its elements are chosen uniformly at random
from −100, . . . , 100; the Ai are then normalized to Frobenius norm 1, so that there should be no
obvious improvement by pure diagonal scaling. The right-hand side is set to b = AX ensuring
primal feasibility. Finally a vector y ∈ R

m is drawn from the standard normal distribution and the
cost matrix is set to C = Z + ATy. Dual feasibility, a duality gap of zero and primal attainment
are guaranteed by the trace constraint. The computational results indicate that all problems have
dual optimal solutions.

For comparison the problems were also solved with SDPT3-4.0 beta [30] and the old version
of the SB code SB described in [9]. SDPT3 is a primal dual interior point package which provides
special support for sparsity and solves the Newton system by a preconditioned conjugate gradient
approach achieving excellent results also for rather large-scale instances.

To illustrate the results, Figures 3–9 give performance profiles in the style suggested in [3] for
comparing the cumulative number of problems that have been solved by each method to precision
10−4 (left) and 10−6 (right), respectively, within the time given on the abscissa. The methods are

• the conic bundle code (CB-ns) with the bundle update of Section 5.3 but no scaling (Ht = tI),
• the full Newton version (CB-fN) described in Section 5.4.1,
• the low rank approximation of Newton (CB-lrN) of Section 5.4.2,
• its approximated variant (CB-alrN) of Section 5.4.3,
• the diagonal version (CB-diag) employing the diagonal scaling heuristic of Section 5.4.4,
• the interior-point code (SDPT3),
• and the old SB code .

In order to circumvent, in these comparisons, the inherent difficulties of bundle methods to
terminate precisely at a desired precision on the basis of the rather weak stopping criterion (8), we
let all codes solve the problems to a relative precision εopt = 10−8 and then use the best objective
value f ∗ over all codes as a reference value in order to determine afterwards for each code the
computation time needed until the first descent step or iterate satisfies f (y) − f ∗ ≤ ε(|f ∗| + 1)

for ε = 10−4 and ε = 10−6, respectively. For ε = 10−6 more detailed information is given in
Tables 1–6. These list, for each method and a canonical grouping of the instances, mean and
variance of computation time in seconds, the number of descent steps and the total number of
function evaluations/iterations.

Before discussing these statistics, it is worth taking a detailed look at the relative performance
of codes (CB-fn)–(CB-diag) on a rather typical example with n = 500 and m = 500 as provided
in Figures 1 and 2. Figure 1 displays the evolution of the relative gap (f (ŷ) − f ∗)/(|f ∗| + 1) versus
bundle iterations and CPU-seconds, respectively. For the full Newton version (CB-fn), second-
order convergence may be observed around iteration 60, but the computation time of each single
iteration is excessive in comparison to the other variants. There is no indication of superlinear

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 1
1:

49
 0

9 
A

pr
il 

20
14

 



870 C. Helmberg et al.

Table 1. Small random SDPs: average and variance of computation time rounded to seconds for reaching a relative
precision of 10−6 over 15 instances per row (5 for each p ∈ {3, 5, 7}).

n m CB-ns CB-fN CB-lrN CB-alrN CB-diag SDPT3 SB

100 100 0.6 (0.246) 0.3 (0.132) 0.4 (0.109) 0.4 (0.127) 0.5 (0.473) 0.6 (0.424) 1.9* (1.82)
300 100 2.3 (1.07) 1.9 (0.679) 1.4 (0.58) 1.5 (0.742) 1.2 (0.602) 1.3 (0.313) 2.5 (1.22)
500 100 7.0 (3.54) 7.7 (4.01) 4.2 (2.67) 4.3 (3) 3.8 (4.22) 3.7 (0.515) 7.2 (5.78)
100 500 6.1 (1.7) 6.1 (3.09) 8.2 (1.97) 6.1 (1.36) 5.6 (1.99) 2.7 (1.53) 1319* (1.32×103)
300 500 9 (4.95) 22 (24) 9 (2.5) 8 (2.43) 5 (1.03) 6 (4.29) 12 (4.01)
500 500 14 (7.24) 33 (13.8) 11 (3.41) 10 (3.15) 7 (1.96) 9 (4.91) 16 (9.59)
100 1000 47 (21) 94 (47.8) 61 (19.9) 46 (15.7) 45 (21.7) 7 (3.34) 2794* (1.04×103)
300 1000 26 (6.93) 90 (64.3) 35 (5.96) 27 (5.02) 19 (2.53) 19 (16.1) 383* (473)
500 1000 32 (19.7) 146 (71.7) 36 (14.1) 30 (12.6) 19 (2.97) 25 (17.9) 300* (521)

Note: ∗Not all instances achieved the required precision.

Table 2. Small random SDPs: average and variance of the number of descent steps for reaching a relative precision of
10−6 over 15 instances per row (5 for each p ∈ {3, 5, 7}).

n m CB-ns CB-fN CB-lrN CB-alrN CB-diag SDPT3 SB

100 100 37 (6.11) 20 (3.44) 33 (6.86) 33 (6.09) 38 (21.3) 11 (0.573) 43* (10.4)
300 100 43 (5.96) 22 (4.7) 38 (8.5) 39 (9.86) 37 (8.65) 13 (0.49) 53 (10.2)
500 100 58 (12.7) 27 (6.67) 50 (11.1) 51 (11.2) 52 (20) 14 (0.611) 69 (25.1)
100 500 42 (5.44) 27 (3.07) 42 (5.56) 42 (5.3) 50 (15.4) 11 (0.499) 48* (3.35)
300 500 59 (11.1) 34 (5.04) 56 (10.2) 57 (11.3) 57 (11.6) 13 (0.806) 54 (6.3)
500 500 66 (11.5) 37 (5.23) 62 (12.2) 63 (12.4) 59 (15.9) 14 (0.596) 64 (15.6)
100 1000 51 (7) 32 (3.25) 50 (8.13) 49 (8.26) 60 (17.9) 10 (0.249) 55* (2.46)
300 1000 59 (6.76) 36 (5.84) 59 (6.81) 59 (6.31) 60 (7.8) 12 (0.442) 55* (3.26)
500 1000 67 (10.8) 42 (5.44) 67 (11.2) 67 (11.1) 67 (10.5) 13 (0.442) 58* (3.64)

Note: ∗Not all instances achieved the required precision.

Table 3. Small random SDPs: average and variance of the number of oracle calls for reaching a relative precision of
10−6 over 15 instances per row (5 for each p ∈ {3, 5, 7}).

n m CB-ns CB-fN CB-lrN CB-alrN CB-diag SDPT3 SB

100 100 75 (25.6) 44 (24.9) 49 (15.8) 52 (15.6) 54 (31.3) 11 (0.573) 255 (504)
300 100 155 (60.4) 75 (44.2) 104 (41.4) 110 (49.1) 86 (29.3) 13 (0.49) 279 (171)
500 100 314 (135) 95 (44.6) 195 (102) 199 (108) 163 (132) 14 (0.611) 464 (399)
100 500 83 (18.8) 68 (27.8) 69 (13.7) 68 (12.6) 76 (20.7) 11 (0.499) 119,453* (1.03×105)
300 500 178 (110) 142 (132) 125 (46.3) 127 (54.4) 107 (32.3) 13 (0.806) 289 (207)
500 500 295 (211) 180 (129) 187 (99.9) 188 (99.8) 143 (75.5) 14 (0.596) 532 (462)
100 1000 117 (35.6) 90 (25.4) 96 (21) 97 (22.6) 113 (34) 10 (0.249) 213,306* (3.65×104)
300 1000 151 (41.8) 110 (59.8) 123 (23.3) 124 (24.1) 118 (19.9) 12 (0.442) 25,553* (3.58×104)
500 1000 238 (159) 152 (65.1) 177 (83.8) 178 (86.7) 148 (37) 13 (0.442) 15,803* (3.12×104)

Note: ∗Not all instances achieved the required precision.

convergence of the low rank and diagonal scaling variants, yet in terms of computation time they
clearly outperform the full Newton approach, with the diagonal approach requiring the fewest
iterations of the three. The differences in the multiplicity estimates, illustrated in Figure 2, are
negligible. All methods arrive at the correct estimate within roughly 60 iterations and do not
deviate from this in the sequel.

Figures 3–5 display small to medium sized problems with n ∈ {100, 300, 500}, where the full
second-order approach does not take too long to run, the results being grouped so that instances
with m = 100 are shown in Figure 3 (for these the observed multiplicity r ranged from 4 to 7),
m = 500 in Figure 4 (9 ≤ r ≤ 18), and m = 1000 in Figure 5 (16 ≤ r ≤ 28). This grouping is

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 1
1:

49
 0

9 
A

pr
il 

20
14

 



Optimization Methods & Software 871

Table 4. Large random SDPs: Average and variance of computation time in seconds for reaching a relative precision of
10−6 over 15 instances per row (5 for each p ∈ {3, 4, 5}).

n m CB-ns CB-lrN CB-alrN CB-diag SDPT3 SB

1000 1000 53 (22.2) 52 (20.5) 46 (16.3) 28 (7.78) 35 (6.02) 94 (48.2)
2000 1000 169 (78.9) 113 (35.7) 108 (34.6) 65 (13.6) 183 (27.6) 196 (105)
3000 1000 852* (764) 359 (238) 347 (240) 147 (69.3) 567 (133) 1109* (1.05×103)
4000 1000 1019 (576) 479 (218) 468 (226) 307 (407) 1228 (172) 1195 (764)
5000 1000 2216* (1.51×103) 1026 (866) 1098 (973) 479 (376) 2459 (390) 3366* (2.7×103)
6000 1000 3891* (3.43×103) 2016 (2.3×103) 2091 (2.44×103) 659 (609) 3934 (499) 4915* (4.35×103)

1000 3000 351 (92.3) 509 (138) 409 (102) 257 (58.9) 105 (41.2) 8561* (3.76×103)
2000 3000 593 (398) 619 (276) 529 (249) 285 (103) 278 (86) 5374* (5.57×103)
3000 3000 837 (381) 786 (240) 679 (211) 347 (90.4) 726 (167) 12,868* (4.65×103)
4000 3000 1819 (1.6×103) 1229 (614) 1107 (600) 502 (199) 1515 (384) 9809* (4.74×103)
5000 3000 1826 (867) 1394 (595) 1272 (571) 596 (259) 2638 (364) 7610* (4.9×103)
6000 3000 2624 (1.61×103) 1651 (831) 1592 (854) 736 (274) 4631 (935) 5104* (2.54×103)

1000 5000 1635 (506) 2216 (425) 1723 (341) 1178 (205) 251 (102) 17,719* (7.22×103)
2000 5000 1908 (1.62×103) 2083 (950) 1721 (913) 958 (248) 482 (157) 14,859* (5.9×103)
3000 5000 1420 (505) 1675 (449) 1363 (362) 869 (247) 1062 (286) 26,909* (1.69×104)
4000 5000 2059 (923) 2224 (998) 1829 (640) 1037 (404) 1746 (269) 39,761* (1.69×104)
5000 5000 3214 (2.18×103) 3207 (2.76×103) 2753 (2.35×103) 1201 (421) 3073 (448) 51,811* (1.56×104)
6000 5000 4084 (2.88×103) 3796 (2.66×103) 3079 (1.55×103) 1463 (514) 5277 (1.13×103) 68,310* (3.3×104)

Note: ∗Not all instances achieved the required precision.

Table 5. Max-Cut on h × h × h grids: average and variance of computation time in seconds for reaching a relative
precision of 10−6 over five instances for each value of h.

h n = m CB-ns CB-lrN CB-alrN CB-diag SDPT3 SB

10 1000 3 (0.554) 5 (0.533) 4 (0.546) 3 (0.345) 14 (0.0326) 3 (0.388)
15 3375 41 (4.45) 94 (6.17) 69 (4.31) 37 (2.57) 411 (1.25) 42 (5.25)
20 8000 308 (27.3) 882 (36.9) 727 (40.1) 273 (22.7) 4668 (6.02) 268 (34.8)
25 15,625 1821 (260) 5142 (389) 3916 (247) 1395 (88.6) 52,917 (499) 1602 (200)

Table 6. Max-Cut on h × h × h grids: average and variance of the number of oracle calls for reaching a relative precision
of 10−6 over 5 instances for each value of h.

h n = m CB-ns CB-lrN CB-alrN CB-diag SDPT3 SB

10 1000 53 (9.41) 46 (3.01) 44 (2.45) 52 (5.88) 11 (0) 55 (8.91)
15 3375 136 (8.13) 101 (2.33) 98 (2.94) 123 (3.32) 12 (0) 171 (28.9)
20 8000 251 (7.86) 189 (4.12) 186 (3.72) 227 (5.71) 12 (0) 290 (38)
25 15,625 452 (49.1) 307 (10.1) 307 (8) 373 (6.99) 13 (0) 555 (78.1)

motivated by the fact that for relative precision requirements beyond 10−3 the decisive parameter
for the performance of the SB method relative to interior-point methods is the number of constraints
m. In particular, the plots of Figure 5 show that for most SB variants the order of the semidefinite
matrix n is less relevant than m; in part this might also be due to the surprising observation that for
these instances and constant m the values of r decrease with increasing n. The plots also confirm
that for increasing m and increasing precision the interior-point approach SDPT3 becomes more
attractive. While CB-fN is reasonably competitive for instances with small n ∈ {100, 300} and
m = 100, it performs poorly in terms of computation time in spite of its rather small number
of oracle calls (Table 3). On the other hand CB-diag clearly outperforms CB-alrN and CB-lrN
in computation time, the real surprise being that it also needs fewer oracle calls quite regularly
(Table 3). CB-alrN is a bit faster than CB-lrN, both need roughly the same number of oracle

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 1
1:

49
 0

9 
A

pr
il 

20
14

 



872 C. Helmberg et al.

0 20 40 60 80 100 120 140 160 180 200

100

10–1

10–2

10–3

10–4

10–5

10–6

10–7

10–8

101

Relative precision versus iterations

Iterations

R
el

at
iv

e 
pr

ec
is

io
n 

in
 lo

ga
rit

hm
ic

 s
ca

le

100

10–1

10–2

10–3

10–4

10–5

10–6

10–7

10–8

101

R
el

at
iv

e 
pr

ec
is

io
n 

in
 lo

ga
rit

hm
ic

 s
ca

le

CB−fN
CB−lrN
CB−alrN
CB−diag

0 2 4 6 8 10 12 14 16 18 20

Relative precision versus CPU−seconds

CPU−seconds

CB−fN
CB−lrN
CB−alrN
CB−diag

Figure 1. Evolution of the relative optimality gap for an example with n = 500 and m = 500.

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7

8

9

10

11
Eigenvalue multiplicity estimate

First 70 iterations

E
st

im
at

ed
 m

ul
tip

lic
ity

CB−fN

CB−lrN

CB−alrN

CB−diag

Figure 2. Evolution of the multiplicity estimate during the first 70 iterations.

101 1010

5

10

15

20

25

30

35

40

45
Time required for relative precision 0.0001

CPU−seconds in logarithmic scale

N
um

be
r 

of
 p

ro
be

lm
s 

so
lv

ed

CB−ns

CB−fN

CB−lrN

CB−alrN

CB−diag

SDPT3

SB
0

5

10

15

20

25

30

35

40

45
Time required for relative precision 1e−06

CPU−seconds in logarithmic scale

N
um

be
r 

of
 p

ro
be

lm
s 

so
lv

ed

CB−ns

CB−fN

CB−lrN

CB−alrN

CB−diag

SDPT3

SB

Figure 3. Results for small instances with m = 100 constraints (five instances per choice of n ∈ {100, 300, 500} and
p ∈ {3, 5, 7}).

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 1
1:

49
 0

9 
A

pr
il 

20
14

 



Optimization Methods & Software 873

0

5

10

15

20

25

30

35

40

45
Time required for relative precision 0.0001

CPU−seconds in logarithmic scale

N
um

be
r 

of
 p

ro
be

lm
s 

so
lv

ed

CB−ns
CB−fN
CB−lrN
CB−alrN
CB−diag
SDPT3
SB

101103102101 0

5

10

15

20

25

30

35

40

45
Time required for relative precision 1e−06

CPU−seconds in logarithmic scale

N
um

be
r 

of
 p

ro
be

lm
s 

so
lv

ed

CB−ns
CB−fN
CB−lrN
CB−alrN
CB−diag
SDPT3
SB

Figure 4. Results for medium instances with m = 500 constraints (five instances per choice of n ∈ {100, 300, 500} and
p ∈ {3, 5, 7}).

1031021010

5

10

15

20

25

30

35

40

45
Time required for relative precision 0.0001

CPU−seconds in logarithmic scale

N
um

be
r 

of
 p

ro
be

lm
s 

so
lv

ed

CB−ns
CB−fN

CB−lrN
CB−alrN
CB−diag

SDPT3
SB

1021010

5

10

15

20

25

30

35

40

45
Time required for relative precision 1e−06

CPU−seconds in logarithmic scale

N
um

be
r 

of
 p

ro
be

lm
s 

so
lv

ed

CB−ns
CB−fN

CB−lrN
CB−alrN
CB−diag

SDPT3
SB

Figure 5. Results for medium instances with m = 1000 constraints (five instances per choice of n ∈ {100, 300, 500}
and p ∈ {3, 5, 7}).

calls. Note that CB-diag is clearly better than CB-ns with respect to time and calls, but CB-alrN
may well be outperformed by CB-ns as m increases in spite of the significant difference in oracle
calls, as the additional cost of low-rank scaling is considerable. In general, all CB variants seem
to be preferable to the old SB code whose performance deteriorates quickly for higher precision
requirements and increasing m.

Figures 6–8 illustrate the development of computation time for increasing matrix sizes n ∈
{1000 · i : i = 1, . . . , 6} grouped by instances with m = 1000 (Figure 6, 8 ≤ r ≤ 16), m = 3000
(Figure 7, 17 ≤ r ≤ 29), and m = 5000 (Figure 7, 23 ≤ r ≤ 40). For these instances CB-fN is no
longer an option and therefore it is excluded from these tests. The advantage of CB-diag, however,
becomes even more apparent as the order of the matrices increases. The additional effort of low
rank scaling already pays off for rather moderate precision requirements. This is even more so if
the number of constraints is increased, as can be seen in Figure 7, where m = 3000 and matrix
sizes range in n ∈ {1000 · i : i = 1, . . . , 6}. SB is not competitive, failing to obtain the desired
precision almost all the time, while once again we see confirmed that the advantage of SDPT3
for larger m is diminishing with increasing matrix order n.

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 1
1:

49
 0

9 
A

pr
il 

20
14

 



874 C. Helmberg et al.

1 103 1031021021010

10

20

30

40

50

60

70

80

90
Time required for relative precision 0.0001

CPU−seconds in logarithmic scale

N
um

be
r 

of
 p

ro
be

lm
s 

so
lv

ed

CB−ns
CB−lrN
CB−alrN
CB−diag
SDPT3
SB

0

10

20

30

40

50

60

70

80

90
Time required for relative precision 1e−06

CPU−seconds in logarithmic scale

N
um

be
r 

of
 p

ro
be

lm
s 

so
lv

ed

CB−ns
CB−lrN
CB−alrN
CB−diag
SDPT3
SB

Figure 6. Results for big instances with m = 1000 constraints (five instances per choice of n ∈ {1000 · i : i = 1, . . . , 6}
and p ∈ {3, 4, 5}).

0

10

20

30

40

50

60

70

80

90
Time required for relative precision 0.0001

CPU−seconds in logarithmic scale

N
um

be
r 

of
 p

ro
be

lm
s 

so
lv

ed

CB−ns
CB−lrN
CB−alrN
CB−diag
SDPT3
SB

103 104
0

10

20

30

40

50

60

70

80

90
Time required for relative precision 1e−06

CPU−seconds in logarithmic scale

N
um

be
r 

of
 p

ro
be

lm
s 

so
lv

ed

CB−ns
CB−lrN
CB−alrN
CB−diag
SDPT3
SB

102103102

Figure 7. Results for big instances with m = 3000 constraints (five instances per choice of n ∈ {1000 · i : i = 1, . . . , 6}
and p ∈ {3, 4, 5}).

105 103 1041041030

10

20

30

40

50

60

70

80

90
Time required for relative precision 0.0001

CPU−seconds in logarithmic scale

N
um

be
r 

of
 p

ro
be

lm
s 

so
lv

ed

CB−ns
CB−lrN
CB−alrN
CB−diag
SDPT3
SB

0

10

20

30

40

50

60

70

80

90
Time required for relative precision 1e−06

CPU−seconds in logarithmic scale

N
um

be
r 

of
 p

ro
be

lm
s 

so
lv

ed

CB−ns
CB−lrN
CB−alrN
CB−diag
SDPT3
SB

Figure 8. Results for big instances with m = 5000 constraints (five instances per choice of n ∈ {1000 · i : i = 1, . . . , 6}
and p ∈ {3, 4, 5}).

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 1
1:

49
 0

9 
A

pr
il 

20
14

 



Optimization Methods & Software 875

0

2

4

6

8

10

12

14

16

18

20
Time required for relative precision 0.0001

CPU−seconds in logarithmic scale

N
um

be
r 

of
 p

ro
be

lm
s 

so
lv

ed

CB−ns
CB−lrN
CB−alrN
CB−diag
SDPT3
SB

104103102101104103102101 0

2

4

6

8

10

12

14

16

18

20
Time required for relative precision 1e−06

CPU−seconds in logarithmic scale

N
um

be
r 

of
 p

ro
be

lm
s 

so
lv

ed

CB−ns
CB−lrN
CB−alrN
CB−diag
SDPT3
SB

Figure 9. Results for SDP-relaxations of max-cut instances of Ising spin glasses on toroidal n = h × h × h grids (five
instances per h ∈ {10, 15, 20, 25}).

Finally, Figure 9 and Tables 5 and 6 present the results for computing the SDP relaxation of max-
cut for Ising spin glasses on h × h × h grids for h ∈ {10, 15, 20, 25} (for h = 30, SDPT3 failed
due to memory problems); the observed value of r was roughly h for instances corresponding to
h. For these instances the code SB was known to perform quite well and the main purpose here is
to show that none of this good performance is lost in the case of CB-diag. SDPT3 cannot compete
with the bundle approaches, but also CB-lrN and CB-alrN fall off considerably in comparison to
the diagonal variants in spite of their smaller number of oracle calls (Table 6).

7. Conclusions

The proposed diagonal scaling technique based on a low rank approximation of the second-
order approach of Overton and Womersley [23] significantly improves the performance of the
SB method [13] and, surprisingly, also requires fewer evaluations on the instances considered
than our approaches based on the low-rank approximation itself. It allows computing solutions
within relative precision of 10−6 routinely. It appears to be faster than the original SB method
even for precision requirements of 10−4. In comparison with the excellent package SDPT3 [30]
(a primal dual interior-point method employing a preconditioned conjugate gradient solver) the
scaled SB approach seems to be competitive to superior in computing solutions with a precision
requirement of 10−6 whenever the number of constraints m is not significantly bigger than the
order n of the matrix. The advantage turns toward SDPT3 if the relative size of m increases while it
turns towards the scaled SB approach when precision requirements decrease. The main advantages
of the SB method are its quick computation of low precision approximations to optimal solutions,
its applicability to very large-scale problems and its suitability for combinatorial cutting plane
algorithms due to its advantageous restart properties. The new diagonal scaling variant achieves
higher precision and increased robustness and efficiency as well.

Acknowledgement

We thank Henry Wolkowicz for the encouragement to experiment with Tapia indicators for identifying the multiplicity r.

Funding

This work was supported by the National Science Foundation [grant number DMS-1016325].

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 1
1:

49
 0

9 
A

pr
il 

20
14

 



876 C. Helmberg et al.

References

[1] A.I. Barvinok, Problems of distance geometry and convex properties of quadratic maps, Discret Comput. Geom. 13
(1995), pp. 189–202.

[2] J. Cullum, W.E. Donath, and P. Wolfe, The minimization of certain nondifferentiable sums of eigenvalues of symmetric
matrices, Math. Program. Study 3 (1975), pp. 25–55.

[3] E. Dolan and J. Moré, Benchmarking optimization software with performance profiles, Math. Program. 91(2) (2002),
pp. 201–213.

[4] A. Edelman, T.A. Arias, and S.T. Smith, The geometry of algorithms with orthogonality constraints, SIAM J. Matrix
Anal. Appl. 20(2) (1999), pp. 303–353.

[5] A.S. El-Bakry, R.A. Tapia, andY. Zhang. A study of indicators for identifying zero variables in interior-point methods,
SIAM Rev. 36(1) (1994), pp. 45–72.

[6] R. Fletcher, Semi-definite matrix constraints in optimization, SIAM J. Control Optim. 23(4) (1985), pp. 493–513.
[7] S. Friedland, J. Nocedal, and M.L. Overton, The formulation and analysis of numerical methods for inverse eigenvalue

problems, SIAM J. Num. Anal. 24 (1987), pp. 634–667.
[8] C. Helmberg, Semidefinite programming for combinatorial optimization. Habilitations-schrift TU Berlin, Jan. 2000;

ZIB-Report ZR 00-34, Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takustraße 7, 14195 Berlin, Germany,
October 2000.

[9] C. Helmberg, Numerical evaluation of SBmethod, Math. Program. 95(2) (2003), pp. 381–406.
[10] C. Helmberg, ConicBundle 0.3. Fakultät für Mathematik, Technische Universität Chemnitz, 2009. Available at

http://www.tu-chemnitz.de/∼helmberg/ConicBundle.
[11] C. Helmberg and K.C. Kiwiel, A spectral bundle method with bounds, Math. Program. 93(2) (2002), pp. 173–194.
[12] C. Helmberg and F. Oustry, Bundle methods to minimize the maximum eigenvalue function, in Handbook of Semidef-

inite Programming: Theory, Algorithms and Applications, R. Saigal H. Wolkowicz, and L. Vandenberghe, eds.,
Kluwer, Boston, MA, 2000, pp. 307–337.

[13] C. Helmberg and F. Rendl, A spectral bundle method for semidefinite programming, SIAM J. Optim. 10 (2000), pp.
673–696.

[14] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I+II, Grundlehren der
mathematischen Wissenschaften, Vol. 305/306, Springer, Berlin, 1993.

[15] F. Jarre, An interior-point method for minimizing the maximum eigenvalue of a linear combination of matrices,
SIAM J. Control Optim. 31(5) (1993), pp. 1360–1377.

[16] T. Kato, Perturbation Theory for Linear Operators, Grundlehren der mathematischen Wissenschaften, Vol. 132, 2nd
corr. print. of the 2nd ed., Springer, Berlin, 1984.

[17] P. Lancaster, On eigenvalues of matrices dependent on a parameter, Numer. Math. 6 (1964), pp. 377–387.
[18] F. Oustry, The U-Lagrangian of the maximum eigenvalue function, SIAM J. Optim. 9 (1999), pp. 526–549.
[19] F. Oustry, A second-order bundle method to minimize the maximum eigenvalue function, Math. Program. 89 (2000),

pp. 1–33.
[20] M.L. Overton, On minimizing the maximum eigenvalue of a symmetric matrix, SIAM J. Matrix Anal. Appl. 9(2)

(1988), pp. 256–268.
[21] M.L. Overton, Large-scale optimization of eigenvalues, SIAM J. Optim. 2(1) (1992), pp. 88–120.
[22] M.L. Overton and R.S. Womersley, On the sum of the largest eigenvalues of a symmetric matrix, SIAM J. Matrix

Anal. Appl. 13 (1992), pp. 41–45.
[23] M.L. Overton and R.S. Womersley, Second derivatives for optimizing eigenvalues of symmetric matrices, SIAM J.

Matrix Anal. Appl. 16 (1995), pp. 697–718.
[24] G. Pataki, On the rank of extreme matrices in semidefinite programming and the multiplicity of optimal eigenvalues,

Math. Oper. Res. 23(2) (1998), pp. 339–358.
[25] H. Schramm and J. Zowe, A version of the bundle idea for minimizing a nonsmooth function: Conceptual idea,

convergence analysis, numerical results, SIAM J. Optim. 2 (1992), pp. 121–152.
[26] A. Shapiro and M.K.H. Fan, On eigenvalue optimization, SIAM J. Optim. 5(3) (1995), pp. 552–569.
[27] C. De Simone, M. Diel, M. Jünger, P. Mutzel, G. Reinelt, and G. Rinaldi, Exact ground states of Ising spin glasses:

New experimental results with a branch-and-cut algorithm. J. Stat. Phys. 80 (1995), pp. 487–496.
[28] M.J. Todd, A study of search directions in primal-dual interior-point methods for semidefinite programming, Optim.

Methods Softw. 11 (1999), pp. 1–46.
[29] M.J. Todd, Semidefinite optimization, Acta Numer. 10 (2001), pp. 515–560.
[30] K.-C. Toh, M.J. Todd, and R.H. Tütüncü, SDPT3 version 4.0 beta, National University of Singapore, February 2009;

software available at http://www.math.nus.edu.sg/∼mattohkc/sdpt3.html (May 21, 2010).

D
ow

nl
oa

de
d 

by
 [

N
ew

 Y
or

k 
U

ni
ve

rs
ity

] 
at

 1
1:

49
 0

9 
A

pr
il 

20
14

 

http://www.tu-chemnitz.de/$sim $helmberg/ConicBundle
http://www.math.nus.edu.sg/~mattohkc/sdpt3.html

	Introduction
	Eigenvalue optimization and constant trace SDPs
	The SB method
	A second-order method to minimize f
	Incorporating second-order information into the SB method
	Approximate eigenvalues and eigenvectors
	Estimating the eigenvalue multiplicity
	The update mechanism for P and Q in step MSB4c
	Four choices of H inspired by the second-order method
	Computational limitations with a large bundle

	Numerical results
	Conclusions
	Acknowledgement

