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Abstract

We consider the problem of optimizing the asymptotic convergence rate of a parameter-dependent non-
reversible Markov chain. We begin with a single-parameter case studied by Diaconis, Holmes and Neal and
then introduce multiple parameters. We use nonsmooth analysis to investigate whether the presence of mul-
tiple parameters allows a faster asymptotic convergence rate, and argue that for a specific parameterization,
it does not, at least locally.
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1. Introduction

Markov Chain Monte Carlo (MCMC) is an important tool of scientific computing. In many
fields, including statistics, computer science and statistical physics, certain distributions are en-
countered which are difficult to sample from directly but for which a Markov chain that converges
to the distribution can be constructed more readily. There are many chains which converge to the
same distribution and an important question, much studied in recent years, is how to choose one
which “mixes” fast. For a reversible chain, a concrete bound for the convergence rate of the chain
in terms of the second largest eigenvalue modulus (SLEM), which we call the reduced spectral
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radius, of the transition matrix has been established [12, Proposition 3]. Thus, by optimizing this
quantity, which turns out to be a convex optimization problem and more specifically a semidefi-
nite programming problem [3], one can obtain the fastest mixing reversible chain with a specified
invariant distribution.

There has been some further work on the lines of [3]—most relevant is [2], which presents a
simple, self-contained example where the optimal Markov chain can be identified analytically.
Further, for a general reversible Markov chain, useful bounds are obtained on its eigenvalues and
their multiplicity by using subgroups of the associated symmetry group [1]. Finally, it has been
shown in [18] that the dual of the fastest-mixing problem has a natural geometric interpretation
as a minimum variance unfolding problem, which is in turn closely related to a dimensionality
reduction problem in machine learning [19]. All of this suggests an interest in generalization to
nonreversible chains.

In this direction, Diaconis et al. [11] and Chen et al. [9] have shown that certain reversible
chains can be speeded up by a process called “lifting,” that is, by splitting each state into sev-
eral states. In fact, Diaconis et al. in [11] constructed a nonreversible chain by a modification
of a reversible Metropolis chain and showed that for the uniform invariant distribution, the non-
reversible chain takes O(n) steps to achieve convergence in total variation distance while the
Metropolis chain takes O(n2) steps. But unlike in the reversible case, there is no concrete bound
for the convergence rate of a nonreversible chain in terms of the reduced spectral radius of the
transition matrix. However, recent work of Chung [10] establishes such a bound for the rate of
convergence in χ2 distance in terms of the least nonzero eigenvalue of the Laplacian of the di-
rected graph associated with a chain which is closely related to the original nonreversible chain.
Nevertheless, as is well-known, for any ergodic Markov chain with transition matrix K , the as-
ymptotic convergence rate of the chain depends on the reduced spectral radius of K (the largest
of the moduli of the eigenvalues not equal to 1, which is less than one for an ergodic chain).

Now let us consider the Diaconis-Holmes–Neal sampler introduced in [11], first with a single
parameter and then with multiple parameters; we are interested in minimizing its reduced spectral
radius, denoted by ρR , so as to optimize its asymptotic rate of mixing. Let the state space X =
{1,2, . . . , n}. When the desired distribution is uniform on X : π(x) = 1/n, the Metropolis chain
(with its underlying chain as the nearest neighbor random walk) converging to this distribution is
given by K(j, k) = 1/2 for k = j ± 1 where j, k ∈ X and K(1,1) = K(n,n) = 1/2. This walk
takes O(n2) transitions to reach stationarity, since using the central limit theorem it can be shown
that the walk will take on the order of d2 steps to travel a distance of order d . This “diffusive”
behavior was overcome by reconstructing the chain as shown in Fig. 1.

The stationary distribution of this nonreversible chain is uniform on the new state space, with
all states having probability 1

2n
. The marginal distribution of just the second component of the

state (ignoring the + or −) is therefore also uniform. This chain is thus an alternative to the
reversible chain as a way of sampling from the original state space.

Modifying the notation above, the states (+, j) and (−, j) can be replaced by j and
(2n − j + 1) respectively, in which case the state space of the nonreversible walk becomes
{1,2, . . . ,2n}. The walk can then be described equivalently as a Markov chain on {1,2, . . . ,2n}
with transition probabilities:

K
(
j, j + 1 (mod 2n)

) = 1 − 1
n
, 1 � j � 2n,

K(j,2n − j) = 1
n
, 1 � j � 2n − 1,

K(2n,2n) = 1 .

n
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Fig. 1. A Diaconis–Holmes–Neal sampler for uniform invariant distribution.

Writing this in matrix form, we obtain a 2n × 2n matrix:

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 − 1
n

1
n

0
1 − 1

n
1
n

. . .

...

1 − 1
n

1
n

1
n

1 − 1
n

... . . .
1
n

1 − 1
n

1
n

1 − 1
n

1
n

1 − 1
n

1 − 1
n

1
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The outline of the paper is as follows: in Section 2, we first introduce a single parameter into
the chain (following [11]) and derive a formula for the parameter value x0 that minimizes the
reduced spectral radius of its transition matrix. We then extend this analysis to an n-parameter
chain in Section 3 and conjecture that the additional degrees of freedom do not allow a faster
asymptotic convergence rate. Using nonsmooth optimization techniques, we verify a necessary
condition for x0 = [x0, . . . , x0︸ ︷︷ ︸

n

] to minimize ρR locally for specific values of n, and present an

argument as to why a sufficient condition cannot hold. However, when we apply the analysis
to an appropriately defined m = �n+1

2 �-parameter chain (Section 4), we show that it is possible
to verify, again for specific values of m, a sufficient condition proving that x = [x0, . . . , x0︸ ︷︷ ︸

m

]

minimizes ρR locally, and hence that it is not possible to obtain faster asymptotic convergence by
small changes to x. Beyond the specific result, this paper demonstrates the power of variational
analysis of spectral functions and its potential application to Markov chain optimization.

2. The one-parameter optimization problem

For the chain shown in Fig. 1, O(n) steps are necessary and suffice for convergence which
is much better than the O(n2) steps that are required for the reversible case. In this walk, the
transition probabilities are 1/n and (1 − 1/n); we now consider replacing these by x and (1 − x)

respectively (where 0 � x � 1), studying how the introduction of the parameter x affects the
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speed of convergence of the chain. We pose the question: for what value of the parameter x is
the best asymptotic convergence rate possible for this chain? Let us therefore analyze a one-
parameter family of chains on {1,2, . . . ,2n} with transition probabilities (1 � j � n):

K
(
j, j + 1 (mod 2n)

) = 1 − x, 1 � j � 2n,

K(j,2n − j) = x, 1 � j � 2n − 1,

K(2n,2n) = x.

The matrix K can now be written as:

K(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 − x x 0
1 − x x

. . .

...

1 − x x

x 1 − x
... . . .

x 1 − x

x 1 − x

x 1 − x

1 − x x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.1)

To be more general, let us consider K as a function mapping the real number set R to M2n,
the set of 2n × 2n complex matrices. Let ρR denote the reduced spectral radius of a stochastic
ergodic matrix. The best asymptotic rate of convergence is obtained by minimizing the composite
function ρR ◦ K (defined by (ρR ◦ K)(x) = ρR(K(x))) with respect to x. This can be done
analytically, as we now show. In [11], the following lemma has been proved about the unitary
similarity of K(x) to a block diagonal matrix.

Lemma 1. [11] For any x, the matrix K(x) is unitarily similar to a block diagonal matrix with
two one-dimensional blocks and (n − 1) two-dimensional blocks. The one-dimensional blocks
are D0(x) = 1 and Dn(x) = −(1 − 2x). The two-dimensional blocks (for 1 � h � n − 1) are

Dh(x) =
[

(1 − x)e
iπh
n x

x (1 − x)e− iπh
n

]
.

From this lemma, the eigenstructure of K(x) is immediately obvious. The eigenvalues of
blocks Dh can be obtained by solving a quadratic equation.

Lemma 2. The eigenvalues λ+,h(x) and λ−,h(x) of the matrix Dh(x) defined in Lemma 1 are

λ±,h(x) = (1 − x)

(
cos

πh

n
±

√
x2

(1 − x)2
− sin2

(
πh

n

))
.
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Let us see how these eigenvalues change as we vary the parameter x from 1
n

. First note that for

any h, λ+,h(x)λ−,h(x) = 1 − 2x. If x2

(1−x)2 < sin2(πh
n

), then λ+,h(x) and λ−,h(x) are complex

conjugates of each other. In that case, |λ+,h(x)| = |λ−,h(x)| = √
λ+,h(x)λ−,h(x). If the inequal-

ity above holds for all h (1 � h � n − 1), then the reduced spectral radius of the matrix K(x) is√
1 − 2x. So in order to decrease the reduced spectral radius, we should increase the parameter x.

As we do so, there comes a point when for some h, x2

(1−x)2 = sin2(πh
n

)—let us denote such

h as h0 and the parameter value x as x0 = sin(πh0/n)
1+sin(πh0/n)

. Indeed, this happens simultaneously for

h0 = 1 and h0 = n− 1. For both these h0, λ+,h0(x0) = λ−,h0(x0) = (1 − x0) cos πh0
n

. So we have
two double eigenvalues (that is, with algebraic multiplicity 2) at x0, one on the positive real axis
for h0 = 1 and the other on the negative real axis for h0 = n − 1, as illustrated in Fig. 2, where
the eigenvalues of the matrix K(x) are plotted for x = 1

n
(blue circles) and x = x0 (red crosses)

for n = 50. Note that in both cases (indeed for any value of x � x0), all the eigenvalues lie on a
circle except for two which are the one-dimensional blocks in the block diagonal form given by
Lemma 1.

As we increase x beyond x0, λ+,h0(x) and λ−,h0(x) are no longer complex conjugates but split
into real pairs satisfying λ+,h0(x)λ−,h0(x) = 1 − 2x. In that case, the reduced spectral radius is

Fig. 2. Eigenvalues of K(x) for x = 1
n (blue circles) and x = x0 (red crosses) for n = 50.
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no longer
√

1 − 2x but assumes the value λ+,1(x) = −λ+,n−1(x) >
√

1 − 2x0. At this point, it
is clear that the parameter value for which K(x) attains the minimum reduced spectral radius is

x0 = sin(π/n)

1 + sin(π/n)
. (2.2)

Figure 3 plots the reduced spectral radius of K(x) for different values of x around x0 ≈ 0.0239
for n = 128. This figure is a classic demonstration of the non-smoothness of ρR ◦K , whose right
derivative at x0 is ∞. Note that x0 is a sharp local minimizer of ρR ◦ K , that is, (ρR ◦ K)(x)

grows at least linearly with |x − x0|.
To summarize the one-parameter optimization problem, x0 (see (2.2)) locally minimizes

ρR ◦ K and hence achieves the optimal asymptotic convergence rate for the chain that we in-
troduced at the beginning of this section. Note that this result does not in anyway contradict the

result in [11] which says that the value x =
√

log n
n

is the optimal parameter value for the χ2 dis-
tance; in contrast, we are concerned with the total variation distance. As has already been noted
in [11], this is one of the few examples where the times for convergence in the two distances dif-
fer. The only thing that has been proved in [11] concerning the total variation distance is that for
x = 1/n, the chain takes O(n) steps to converge. This has been extended to the case when nx is
constant and when nx → ∞ as n → ∞ in [14]. While these results are concerned with the case
when n → ∞, we are interested in the behavior of the chain for fixed n, but after a sufficiently

Fig. 3. Plot of ρR(K(x)) vs. x around the optimizer x0 ≈ 0.0239 for n = 128.
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large number of time steps. The parameter value in (2.2) yields the chain which converges at a
faster rate than any other chain eventually.

3. The n-parameter optimization problem

We now ask the question: what happens if we introduce multiple parameters into the problem?
In particular, how does the optimal asymptotic convergence rate of the chain vary if, instead of
assuming a single parameter x for all the states, we assume there is a parameter xj for the
j th state (j = 1, . . . ,2n)? We notice that if all xj ’s are free, there is a problem. To start with,
the nonreversible chain was constructed as an alternative to the reversible chain as a way of
sampling from the original state space with the desired target distribution being uniform, that is,
we have to ensure that the stationary distribution of the new chain is also uniform. The stationary
distribution of a Markov chain is the left eigenvector of its transition matrix corresponding to
the eigenvalue 1. Note from (2.1) that K(x) has the left eigenvector e = [1,1, . . . ,1]T since the
column sum is 1 for each column, for any x. To ensure that e remains a left eigenvector even
when we introduce 2n parameters (so that the stationary distribution remains uniform), we need
to impose further constraints on {xj }. Imposing these constraints, the problem reduces to an n-
parameter one and the resulting chain is shown in Fig. 4. The map K now has the form (where
x = [x1, x2, . . . , xn]T ∈ R

n):

K(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 − x1 x1 0
1 − x2 x2

. . .

...

1 − xn−1 xn−1
xn−1 1 − xn−1

... . . .
x2 1 − x2

0 x1 1 − x1 0
xn 1 − xn

1 − xn xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.1)

We now consider the minimization of the composite function (ρR ◦ K)(x) with respect to
x ∈ R

n. Numerical experiments using the gradient sampling algorithm [7] show something quite
surprising: that even with n degrees of freedom, the results are the same as that obtained for
the one parameter case, that is, K(x1, x2, . . . , xn) attains the least reduced spectral radius when
xj = x0 for all j (where x0 is the optimizer for the one-parameter problem that we calculated
in Section 2; see (2.2)). Let us try and prove this observation, at least locally—by this we mean

Fig. 4. Nonreversible chain with n parameters.
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that if f : Rn → R is a function defined by f (x) = (ρR ◦ K)(x), then f has a local minimum at
x0 = [x0, x0, . . . , x0]T .

Since the function ρR ◦ K is nonsmooth (as we see in Fig. 3), standard smooth optimization
techniques do not apply and we resort to nonsmooth analysis to analyze ρR ◦ K . For technical
reasons, it is convenient to assume that K maps the complex space C

n to M2n. To be a little more
general, suppose f = g ◦ A, where A is any affine matrix function given by A(x) = A1(x) + A2
(with A1 being the ‘linear’ part and A2 the ‘constant’ part of A), mapping C

n to M2n, and g is
any continuous function mapping M2n to R. In what follows, we make use of the terminology
subdifferential (set of subgradients) denoted by ∂ , horizon subdifferential (set of horizon subgra-
dients) denoted by ∂∞ and subdifferentially regular, all standard notions of nonsmooth analysis,
as are the nonsmooth chain rule and other known facts we use below; see [16, Chapters 8 and 10];
[5,15].

Proposition 1 (Chain Rule [16, Chapter 10]). If g is subdifferentially regular at A(x) = A1(x)+
A2 and the affine map A satisfies

A∗
1Y = 0 and Y ∈ ∂∞g

(
A(x)

) ⇒ Y = 0,

then the composite map f = g ◦ A is subdifferentially regular at x with subdifferential ∂f (x) =
A∗

1∂g(A(x)). Here A∗
1 denotes the adjoint of the linear operator x �→ A1(x) w.r.t. the standard

real inner product on M2n, namely, 〈X,Y 〉 = Re trX∗Y .

Proposition 2. [15, Section 9] If the active eigenvalues of X, that is, those whose modulus equals
ρ(X), the spectral radius of X, are all nonderogatory, that is, have geometric multiplicity one,
then ρ is subdifferentially regular at X.

Proposition 3. [5, Proposition 4.3] A necessary condition for x to locally minimize f at x is
0 ∈ ∂f (x). Furthermore, suppose that f is subdifferentially regular at x. Then 0 ∈ int ∂f (x) if and
only if x is a sharp local minimizer, that is, there exists a δ > 0 such that f (x + z) − f(x) � δ‖z‖
for all sufficiently small z ∈ C

n.

From Proposition 3, it follows that if ρR ◦ K is subdifferentially regular at x0 and 0 ∈
int ∂(ρR ◦ K)(x0), then x0 is a sharp local minimizer of ρR ◦ K and if 0 /∈ ∂(ρR ◦ K)(x0),
then x0 is not even a local minimizer. To make use of this proposition, we need to characterize
the subgradients of ρR ◦ K at x0. Since the characterization of the subgradients of the spectral
radius function ρ (as opposed to ρR) is known [8], in order to apply the chain rule, it is conve-
nient to write the function ρR ◦K equivalently as the spectral radius of an affine matrix function.
To be more precise, we write ρR ◦ K as ρ ◦ Ξ ◦ K , where the map Ξ : M2n → M2n is an affine
function that takes a 2n × 2n matrix with a simple eigenvalue 1 and returns another 2n × 2n

matrix with the eigenvalue 1 changed to 0, keeping the other eigenvalues unchanged. Since we
are only concerned with x ∈ C

n for which K(x) is stochastic and ergodic, from the structure of
the map K , we know that K(x) has 1 as a simple eigenvalue with the corresponding right and
left eigenvectors being e = [1,1, . . . ,1]T and eT respectively—we then show that it suffices, for
the equivalence of ρ ◦ Ξ ◦ K and ρR ◦ K , to define Ξ simply as

Ξ(X) =
(

I − 1

2n
eeT

)
X = LX, (3.2)

where L is fixed to be the 2n × 2n matrix (I − 1 eeT ).
2n
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Lemma 3. If Ξ,K are defined as in (3.2) and (3.1) respectively, then the map ρ ◦ Ξ ◦ K is
identical to ρR ◦ K on {x ∈ C

n: K(x) is stochastic and ergodic}.

Proof. Let x ∈ C
n be such that K(x) is stochastic and ergodic. If P ∈ M2n is a matrix that

reduces K(x) to its Jordan form J̃ , that is, P −1K(x)P = J̃ , then we show that P also reduces
Ξ(K(x)) to a Jordan matrix J which is identical to J̃ except that the 1 × 1 block corresponding
to the simple eigenvalue 1 is changed to 0. Indeed, with e1 = [1,0, . . . ,0]T , we have

K(x) = P J̃P −1 = P

⎡
⎢⎢⎢⎣

1 0 · · · 0
0
... J ′
0

⎤
⎥⎥⎥⎦P −1

= Pe1e
T
1 P −1 + P

⎡
⎢⎢⎢⎣

0 0 · · · 0
0
... J ′
0

⎤
⎥⎥⎥⎦P −1 = 1

2n
eeT + PJP −1. (3.3)

In the equation above, Pe1e
T
1 P −1 = 1

2n
eeT because the first column of P and the first row

of P −1 are multiples of e and eT respectively. Thus, from (3.3) and the fact that eT is the
left eigenvector of K(x) corresponding to the eigenvalue 1, we see that K(x) − 1

2n
eeT =

(I − 1
2n

eeT )K(x) = Ξ(K(x)) = PJP −1. This shows that the map Ξ defined as in (3.2), when
applied to a stochastic ergodic matrix K(x), leaves its eigenvalues other than 1 unchanged, and
hence ρ ◦ Ξ ◦ K is indeed identical to ρR ◦ K . �

To characterize the subgradients of ρ ◦ Ξ ◦ K at x0, we make use of Proposition 1 and apply
the chain rule with A ≡ Ξ ◦ K and g ≡ ρ. To do so, we need to characterize the subgradients
of g at A(x0), that is, the subgradients of ρ at (Ξ ◦ K)(x0) = Ξ0, which we do in the following
section.

3.1. Characterizing ∂ρ(Ξ0) and ∂∞ρ(Ξ0)

Recall that Ξ0 = Ξ(K(x0)) where x0 = [x0, x0, . . . , x0]T and x0 is given by (2.2). Since we
know the eigenvalues of K0 (from Lemma 2), it follows that Ξ0 has two real double eigenvalues,
λ1 and λn−1, two real simple eigenvalues, 0 and λn, and the rest occur in complex conjugate
pairs, λj and λ̄j for j = 2, . . . , n − 2 (assume n > 3). The Jordan form of Ξ0 is given by

J = Diag

(
0,

[
λ1 1
0 λ1

]
, λ2, λ̄2, . . . , λn−2, λ̄n−2,

[
λn−1 1

0 λn−1

]
, λn

)
, (3.4)

where, in the notation of Lemma 2, λh = λ+,h(x0) and λ̄h = λ−,h(x0), 1 � h � n − 1. Let 	 =
λ1 = |λ2| = · · · = |λn−2| = −λn−1; then we have 	 > −λn > 0. Thus all the eigenvalues of Ξ0
are active, except 0 and λn. All the eigenvalues of Ξ0 (in particular, the active ones) have a single
Jordan block each and hence are nonderogatory.
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As in (3.3), let P be a matrix that transforms Ξ0 to its Jordan canonical form, that is, Ξ0 =
PJP −1. Applying Theorems 4.2 and 6.1 from [8], any Y ∈ ∂ρ(Ξ0) satisfies

P ∗YP −∗ = W = Diag

(
0,

[
θ1 0
τ1 θ1

]
, θ2, θ

′
2, . . . , θn−2, θ

′
n−2,

[
θn−1 0
τ2 θn−1

]
,0

)
. (3.5)

The application of Theorems 5.2 and 5.3 from [8] (specialized to the spectral radius function)
yields the following conditions1:

(1) θj = σj λj

	
, j = 1,2, . . . , n − 1 and θ ′

j = σ ′
j λ̄j

	
, j = 2, . . . , n − 2, where σj and σ ′

j are non-
negative real numbers that satisfy 2σ1 + σ2 + σ ′

2 + · · · + σn−2 + σ ′
n−2 + 2σn−1 = 1.

(2) Re τ1λ
2
1 � −σ1	, Re τ2λ

2
n−1 � −σn−1	.

Noting that λ1 = 	 and λn−1 = −	, the necessary and sufficient conditions for Y ∈ ∂ρ(Ξ0) can
be summarized as:

P ∗YP −∗ = W

= Diag

(
0,

[
σ1 0
τ1 σ1

]
,
σ2λ2

	
,
σ ′

2λ̄2

	
, . . . ,

σn−2λn−2

	
,
σ ′

n−2λ̄n−2

	
,

[−σn−1 0
τ2 −σn−1

]
,0

)
,

(3.6)

where σj (for j = 1,2, . . . , n − 1) and σ ′
j (for j = 2,3, . . . , n − 2) satisfy

σj , σ
′
j ∈ R, σj , σ

′
j � 0, 2σ1 + σ2 + σ ′

2 + · · · + σn−2 + σ ′
n−2 + 2σn−1 = 1 (3.7)

and Re τ1 � −σ1/	, Re τ2 � −σn−1/	. (3.8)

Furthermore, using subdifferential regularity of ρ at Ξ0, ∂∞ρ(Ξ0) is exactly the recession cone
of ∂ρ(Ξ0), so the necessary and sufficient conditions for Y∞ ∈ ∂∞ρ(Ξ0) are:

P ∗Y∞P −∗ = W∞ = Diag

(
0,

[
0 0
τ1 0

]
,0, . . . ,0,

[
0 0
τ2 0

]
,0

)
, (3.9)

with

Re τ1 � 0 and Re τ2 � 0. (3.10)

Since ∂ρ(Ξ0) and ∂∞ρ(Ξ0) are characterized in terms of the Jordan form of Ξ0, the first step to
form ∂ρ(Ξ0) and ∂∞ρ(Ξ0) is to reduce Ξ0 to its Jordan form.

1 That these conditions are necessary for Y to be a regular subgradient of ρ at Ξ0 is proved in [8, Section 5-6]. That
they completely characterize regular subgradients follows from an argument parallel to that of [8, Theorem 7.2] given for
the spectral abscissa (maximum of the real parts of the eigenvalues). Subdifferential regularity of the spectral abscissa at
matrices whose active eigenvalues are nonderogatory is established in [8, Theorem 8.2], and its extension to the spectral
radius is explained in [15, Section 9]. Subdifferential regularity of a function at a point implies that all its subgradients
at that point are regular. The relationship between regularity of a lower level set {x: f (x) � f0} and subdifferential
regularity of f is explained in [16, Proposition 10.3]; see also [6, Proposition 3.3].
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3.2. Reduction of Ξ0 to Jordan form

We have shown in the proof of Lemma 3 that the same matrix P reduces both K0 = K(x0)

and Ξ0 = Ξ(K(x0)) to their respective Jordan forms. To reduce Ξ0 to its Jordan form, we can
instead, therefore, construct a P that reduces K0 to its Jordan form, by using results from [11],
as we now show. The block-diagonal matrix Diag(Dh,0), where Dh,0 = Dh(x0) are the blocks
described in Lemma 1, has the same Jordan canonical form as K0. Hence, the matrix P that
transforms K0 to its Jordan form J can be written as the product of two matrices FE, where F

is the matrix that transforms K0 to Diag(Dh,0) and E is the matrix that transforms Diag(Dh,0)

to J . The matrix F has been given in the proof of Lemma 1 in [11] and is described as follows.

3.2.1. Computation of F

Let us denote the standard Discrete Fourier Transform (DFT) vectors (given N samples) as
φj (k) = e2πikj/N and ψj (k) = 1

N
e−2πikj/N where 0 � k � N − 1 and i = √−1. So each φj and

ψj is an N -dimensional vector (the DFT of a series xk with N samples x0, x1, . . . , xN−1 is de-
noted as Xk and it also has N samples. The forward transform is defined as Xn = ∑N−1

k=0 xkψn(k)

and the inverse transform is defined as xn = ∑N−1
k=0 Xkφn(k)). The matrices Φ and Ψ formed by

the 2N column vectors φ0, φ1, . . . , φN−1 and ψ0,ψ1, . . . ,ψN−1 respectively, satisfy the relation
Φ = Ψ −1. In fact, the matrices 1√

N
Φ and

√
NΨ are both unitary matrices and are hermitian

conjugates of each other.
Now let N = 2n and define a permutation, fj , of vector 1√

2n
φj as fj (k) = 1√

2n
e2πij (k+1)/2n

(0 � k � 2n − 1). The matrix F = [f0 f1 f−1 . . . fn−1 f−(n−1) fn] (note that f−i =
f2n−i ) is the one that transforms K0 to the block-diagonal matrix Diag(Dh,0), that is, F−1K0F =
Diag(Dh,0). See the proof of Lemma 1 in [11] for more details. We can see that F can be written
as 1√

2n
Q1ΦQ2 where Q1 and Q2 are permutation matrices such that

• Q1 on pre-multiplication permutes rows cyclically as: · · ·2 → 1 → 2n → 2n − 1 · · · (j → k

means that row j goes to row k upon permutation), and
• Q2 on post-multiplication inserts (2n − j)th column between j th and (j + 1)th columns

for j = 1, . . . , n − 1, that is, a matrix [c0 c1 c2 . . . c2n−2 c2n−1] with ci ’s as column
vectors, upon post-multiplication with Q2 becomes [c0 c1 c2n−1 c2 . . . cj c2n−j cj+1 . . .

cn−1 cn+1 cn].

3.2.2. Computation of E

To reduce Diag(Dh,0) to its Jordan form is simpler since it involves manipulating 2 × 2 and
1 × 1 matrices. As we see from the structure of the Jordan form J in (3.4), D1,0 and Dn−1,0 have
a single 2 × 2 Jordan block and D2,0, . . . ,Dn−2,0 have diagonal matrices as their Jordan forms.
If Eh reduces Dh,0 (for 1 � h � n − 1) to its Jordan form, then the block-diagonal matrix E =
Diag(Eh), for h = 0,1, . . . , n with E0 = 1 and En = 1, is the matrix that reduces Diag(Dh,0) to
its Jordan form.

The 2×2 matrix D1,0 takes the simple form D1,0 = 1
1+s

[ (c+is) s

s (c−is)

]
, where c = cos(π

n
), s =

sin(π
n
). Let V1 = 1√

2

[ 1 1
−i i

]
. Then V −1

1 D1,0V1 = [ λ1 2ix0
0 λ1

]
. To reduce this to a standard Jor-

dan block, we consider the product of V1 with a diagonal matrix D(0) = [ 2ix0 0
0 1

]
. Then

it is clear that (V1D
(0))

−1
D1,0(V1D

(0)) = [ λ1 1 ]
. Also, Dn−1,0 = 1 [ (−c+is) s ]

and
0 λ1 1+s s −(c+is)
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(V1D
(0))

−1
Dn−1,0(V1D

(0)) = [ λn−1 1
0 λn−1

]
, that is, V1D

(0) reduces Dn−1,0 as well to its Jordan
form.

For 2 � h � n − 2, Dh,0 = 1
1+s

[ ch+ish s

s ch−ish

]
where ch = cos(πh

n
) and sh = sin(πh

n
). From

Lemma 2, we know that the eigenvalues of Dh,0 are λh and λ̄h where λh = 1
1+s

(ch + i

√
s2
h − s2)

(for h = 1,2, . . . , n − 1, s2
h − s2 � 0 and hence

√
s2
h − s2 is real). The matrix of eigenvectors Eh

satisfying E−1
h Dh,0Eh = [ λh 0

0 λ̄h

]
is

Eh =
[

s√
2shαh

s√
2shβh

− αhi√
2shαh

− βhi√
2shβh

]
,

where αh = sh −
√

s2
h − s2 and βh = sh +

√
s2
h − s2.

3.2.3. Computation of P −1

Since F = 1√
2n

Q1ΦQ2 and each of the three matrices Q1, 1√
2n

Φ and Q2 is unitary, F is also

unitary and hence F−1 = F ∗. The matrix E = Diag(Eh) is a block-diagonal matrix that involves
2 × 2 blocks E1,E2, . . . ,En−2,En−1 and 1 × 1 blocks E0,En and hence E−1 = Diag(E−1

h ).
Therefore P −1 = Diag(E−1

h )F ∗.

3.3. Application of the chain rule

Now we apply the chain rule and try to verify the local optimality of x0 for the function ρ ◦
Ξ ◦K , where K,Ξ are given by (3.1), (3.2) respectively, and ρ is the spectral radius function. But
in order to do so, we need to verify whether the conditions specified in Proposition 1 hold. First
of all, ρ needs to be subdifferentially regular at (Ξ ◦ K)(x0) = Ξ0; this holds by Proposition 2
because all the active eigenvalues of Ξ0 are nonderogatory. The second condition specified by
Proposition 1 involves the adjoint of the linear part of A = Ξ ◦ K – from the definitions of K

and Ξ in (3.1) and (3.2) respectively, we see that (Ξ ◦K)(x) = L(K1(x)+K2), where K1 is the
linear part of the affine map K and whose structure is as shown below:

K(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −x1 x1 0
−x2 x2

. . .

...

−xn−1 xn−1
xn−1 −xn−1

... . . .

x2 −x2
0 x1 −x1 0
xn 1 − xn

1 − xn xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.11)
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From this, it is obvious that the linear part of the affine map Ξ ◦ K is just Ξ ◦ K1. The second
condition specified by Proposition 1 can now be written as:

(Ξ ◦ K1)
∗(Y ) = 0, Y ∈ ∂∞ρ(Ξ0) ⇒ Y = 0, (3.12)

where ∂∞ is the horizon subdifferential. It is a standard property of the adjoint that (Ξ ◦ K1)
∗ =

K∗
1 ◦ Ξ∗. Also, since Ξ(X) = LX, it is clear that

Ξ∗(Y ) = L∗Y =
(

I − 1

2n
eeT

)
Y.

If Z = Ξ∗(Y ), then Zi,j = Yi,j − 1
2n

∑2n
i=1 Yi,j . From (3.11), it is not hard to see that K∗

1 is given
by:

K∗
1 (Z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z1,2n−1 − Z1,2 + Z2n−2,2 − Z2n−2,2n−1
Z2,2n−2 − Z2,3 + Z2n−3,3 − Z2n−3,2n−2

...

Zj,2n−j − Zj,j+1 + Z2n−j−1,j+1 − Z2n−j−1,2n−j

...

Zn−1,n+1 − Zn−1,n + Zn,n − Zn,n+1
Z2n,2n − Z2n,1 + Z2n−1,1 − Z2n−1,2n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.13)

In the equation above, if Z = Ξ∗(Y ) for some Y ∈ M2n, then substituting Zi,j = Yi,j −
1

2n

∑2n
i=1 Yi,j , we obtain:

K∗
1

(
Ξ∗(Y )

) = (Ξ ◦ K1)
∗(Y )

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1,2n−1 − Y1,2 + Y2n−2,2 − Y2n−2,2n−1
Y2,2n−2 − Y2,3 + Y2n−3,3 − Y2n−3,2n−2

...

Yj,2n−j − Yj,j+1 + Y2n−j−1,j+1 − Y2n−j−1,2n−j

...

Yn−1,n+1 − Yn−1,n + Yn,n − Yn,n+1
Y2n,2n − Y2n,1 + Y2n−1,1 − Y2n−1,2n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.14)

Furthermore, from (3.9) we see that any Y∞ ∈ ∂∞ρ(Ξ0) satisfies

Y∞ = P −∗W∞P ∗ = F−∗E−∗W∞E∗F ∗ = FE−∗W∞E∗F ∗,

for some W∞ of the form shown in (3.9) with its elements satisfying (3.10). Since we have all the
matrices in symbolic form, it is just a matter of performing multiplication and verifying whether
condition (3.12) holds. Multiplication of so many matrices by hand is tedious and so we could
resort to Maple. But we run into trouble at the first step because the matrices are of size 2n × 2n

and n is indeterminate.
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There is an approach, outlined in [13], to treat matrices with variable dimension symbolically.
But this approach is very limited as a general computational proof technique because one can
only prove basic theorems about matrices, such as, for example, that the product of a matrix and
the identity matrix is the matrix itself. In particular, this approach is woefully inadequate for the
complicated problem that we have at hand; instead, we fix 2n to some value, but this value of n

is used only to define the matrix—all subsequent computations are symbolic.
Performing the computation of (3.14) in Maple for various fixed values of n yields the struc-

ture of (Ξ ◦ K1)
∗(Y∞) as follows:

(Ξ ◦ K1)
∗(Y∞) =

⎡
⎢⎢⎣

α1τ1 + α′
1τ2

α2τ1 + α′
2τ2

...

αnτ1 + α′
nτ2

⎤
⎥⎥⎦ , (3.15)

where αj , α′
j (j = 1, . . . , n) are complex constants (that is, dependent on only n) and τ1, τ2

respectively satisfy the conditions on a horizon subgradient, namely (3.10). Now, equating
(Ξ ◦ K1)

∗(Y∞) to the zero vector 0 ∈ C
n yields a system of n equations in 2 variables τ1 and

τ2 and it can be verified empirically (in Maple) that this system has only the trivial solution
τ1 = τ2 = 0 (assume n � 2). This means that W∞ = 0 and in turn Y∞ = 0 which verifies the
condition (3.12) required for applying the chain rule. Keep in mind that we have only proved that
the condition holds for specific values of 2n such as 50, 100, etc., but we conjecture that it holds
in general, as we now state.

Conjecture 1. For K1,Ξ defined by (3.11), (3.2) respectively, the horizon subdifferential condi-
tion (3.12) holds for all n � 2.

Assuming that Conjecture 1 holds, we can apply the chain rule (Proposition 1) to characterize
∂(ρ ◦ Ξ ◦ K)(x0) = ∂(ρR ◦ K)(x0) and then check whether 0 ∈ int ∂(ρR ◦ K)(x0). From the
chain rule, ρ ◦ Ξ ◦ K is subdifferentially regular at x0 and

∂(ρ ◦ Ξ ◦ K)(x0) = (Ξ ◦ K1)
∗(∂ρ((Ξ ◦ K)(x0)

)) = (Ξ ◦ K1)
∗(∂ρ(Ξ0)

)
.

Also, Y ∈ ∂ρ(Ξ0) if and only if Y is of the form given in (3.6), (3.7) and (3.8), in which case,
(Ξ ◦ K1)

∗(Y ) has the following structure:

(Ξ ◦ K1)
∗(Y ) =

⎡
⎢⎢⎢⎢⎣

α
(1)
1 τ1 + α

(2)
1 τ2 + β

(1)
1 σ1 + β

(2)
1 σ2 + β

(2)′
1 σ ′

2 + · · · + β
(n−2)′
1 σ ′

n−2 + β
(n−1)
1 σn−1

α
(1)
2 τ1 + α

(2)
2 τ2 + β

(1)
2 σ1 + β

(2)
2 σ2 + β

(2)′
2 σ ′

2 + · · · + β
(n−2)′
2 σ ′

n−2 + β
(n−1)
2 σn−1

...

α
(1)

τ + α
(2)

τ + β
(1)

σ + β
(2)

σ + β
(2)′

σ ′ + · · · + β
(n−2)′

σ ′ + β
(n−1)

σ

⎤
⎥⎥⎥⎥⎦
n 1 n 2 n 1 n 2 n 2 n n−2 n n−1
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=

⎡
⎢⎢⎢⎣

α
(1)
1 α

(2)
1 β

(1)
1 β

(2)
1 β

(2)′
1 . . . β

(n−2)
1 β

(n−2)′
1 β

(n−1)
1

α
(1)
2 α

(2)
2 β

(1)
2 β

(2)
2 β

(2)′
2 . . . β

(n−2)
2 β

(n−2)′
2 β

(n−1)
2

...

α
(1)
n α

(2)
n β

(1)
n β

(2)
n β

(2)′
n . . . β

(n−2)
n β

(n−2)′
n β

(n−1)
n

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ1
τ2
σ1
σ2
σ ′

2
...

σn−2
σ ′

n−2
σn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≡ Cϑ, (3.16)

where C is the coefficient matrix of complex constants and the entries in

ϑ = [τ1, τ2, σ1, σ2, σ
′
2, . . . , σn−2, σ

′
n−2, σn−1]T (3.17)

satisfy (3.7) and (3.8). We summarize (3.7) and (3.8) by the conditions:

σj � 0, j = 1, . . . , n − 1
σ ′

j � 0, j = 2, . . . , n − 2
2σ1 + σ2 + σ ′

2 + · · · + σn−2 + σ ′
n−2 + 2σn−1 = 1

Re τ1 � −σ1/	

Re τ2 � −σn−1/	

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.18)

where σj , σ
′
j ∈ R and τ1, τ2 ∈ C. For convenience, we define

F ≡ {
ϑ : ϑ is of the form (3.17) and its elements satisfy (3.18)

}
. (3.19)

For each ϑ ∈ F , we have Cϑ ∈ ∂(ρ ◦Ξ ◦K)(x0) and conversely, any vector in ∂(ρ ◦Ξ ◦K)(x0)

can be written as Cϑ for some ϑ ∈F .
Now, let us investigate whether 0 ∈ ∂(ρ ◦ Ξ ◦ K)(x0). If 0 /∈ ∂(ρ ◦ Ξ ◦ K)(x0), then from

Proposition 3, we could conclude that x0 is not a local optimizer for the function ρ ◦ Ξ ◦ K . The
problem of deciding whether 0 ∈ ∂(ρ ◦ Ξ ◦ K)(x0) reduces to finding a vector ϑ ∈ F such that
Cϑ = 0. This is a linear programming (LP) feasibility problem. By solving this LP using a linear
programming package, for example, SeDuMi [17], it is found that there is indeed a vector ϑ ∈ F
satisfying Cϑ = 0 and hence it follows that 0 ∈ ∂(ρ ◦ Ξ ◦ K)(x0). Again, this is not a proof for
all n—we have just verified that the result holds for specific values of 2n such as 50, 100, etc.

Now that we have verified that 0 ∈ ∂(ρ ◦ Ξ ◦ K)(x0), the next step is to check whether 0 ∈
int ∂(ρ ◦ Ξ ◦ K)(x0). An interesting observation is that the coefficient matrix C has only �n+1

2 �
distinct rows, that is, the remaining rows are duplicates of rows from this set. More specifically,
if C(j, :) denotes the j th row of C then C(j, :) = C(n − 1 − j, :) for j = 1,2, . . . , �n−1

2 � and
C(n − 1, :) = C(n, :). This can be explained by the structure of a matrix Y ∈ ∂ρ(Ξ0)—any such
Y has the property that Y ∗ commutes with Ξ0 (Theorem 2.1, [8]). It is not hard to see that any
matrix Y ∗ which commutes with Ξ0 has the following structure:

Y ∗ =
[

M N

N M

]
⇒ Y =

[
M∗ N∗
N∗ M∗

]
, (3.20)
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where M,N are n×n complex matrices. Given such a matrix Y , from (3.14), the j th element of
γ = (Ξ ◦ K1)

∗(Y ) satisfies

γj = Yj,2n−j − Yj,j+1 + Y2n−j−1,j+1 − Y2n−j−1,2n−j

= Yn+j,n−j − Yn+j,n+j+1 + Yn−j−1,n+j+1 − Yn−j−1,n−j

= Yn−j−1,n+j+1 − Yn−j−1,n−j + Yn+j,n−j − Yn+j,n+j+1

= γn−j+1, (3.21)

for j = 1,2, . . . , �n−1
2 �. The sequence of equalities above holds because of the special struc-

ture of Y in (3.20). It also follows, similarly, that γn−1 = γn. Since (Ξ ◦ K1)
∗(Y ), for any

Y ∈ ∂ρ(Ξ0), can be written as Cϑ for some vector ϑ ∈ F , the sequence of equalities above
holds for the rows of C as well, that is, C(j, :) = C(n − j − 1, :), for j = 1, . . . , �n−1

2 �, and
C(n − 1, :) = C(n, :).

With this knowledge of the structure of (Ξ ◦ K1)
∗(Y ) for any Y ∈ ∂ρ(Ξ0), we now prove in

the following lemma that 0 cannot belong to the interior of ∂(ρ ◦ Ξ ◦ K)(x0).

Lemma 4. Assuming that Conjecture 1 holds, x0 is not a sharp local minimizer of the function
ρ ◦ Ξ ◦ K for n > 1.

Proof. From the chain rule, assuming Conjecture 1, we know that

∂(ρ ◦ Ξ ◦ K)(x0) = (Ξ ◦ K1)
∗(∂ρ((Ξ ◦ K)(x0)

))
.

For any Y ∈ ∂ρ(Ξ0), we have seen that the column vector (Ξ ◦ K1)
∗(Y ) has at most �n+1

2 �
distinct rows. Thus the space generated by vectors (Ξ ◦ K1)

∗(Y ) for Y ∈ ∂ρ(Ξ0) has complex
dimension at most �n+1

2 � < n for n > 1 and hence there cannot be a sphere in C
n of some radius

ε > 0 which lies completely inside it. Therefore, 0 /∈ int (Ξ ◦ K1)
∗(∂ρ(Ξ0)) or equivalently,

0 /∈ int ∂(ρ ◦ Ξ ◦ K)(x0). An immediate result from Proposition 3 is that x0 is not a sharp local
minimizer of ρ ◦ Ξ ◦ K . �

Nonetheless, x0 could still be a local minimizer of ρ ◦ Ξ ◦ K (without being a sharp one) as
is suggested by the experiments with gradient sampling.

4. The �n+1
2 �-parameter optimization problem

The presence of the duplicate components in any vector γ ∈ S = ∂(ρ ◦ Ξ ◦ K)(x0) raises the
question whether we might obtain a sharp local minimizer if we reduce the number of parameters
to eliminate the duplicate rows in γ . Let x(m) denote the vector [x, x, . . . , x]T ∈ C

m, and define
a mapping h̄ : Cm → C

n as follows:

h̄
([x1, x2, . . . , xm]T )
=

{ [x1, . . . , xm−2, xm−1, xm−2, . . . , x1, xm, xm]T , if n is odd,
T

(4.1)
[x1, . . . , xm−2, xm−1, xm−1, xm−2, . . . , x1, xm, xm] , if n is even.
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The reason for defining h̄ in this fashion is that the structure of ∂(ρ ◦ Ξ ◦ K)(x0), as we
have seen in the last section, stipulates that every vector γ ∈ ∂(ρ ◦ Ξ ◦ K)(x0) can be written
as h̄(γ ′) for some γ ′ ∈ C

m. To state more formally in terms of h̄, what we would like to know
is this: is 0(m) in the interior of S ′ = h̄−1(S) = h̄−1(∂(ρ ◦ Ξ ◦ K)(x0))? We answer this in the
affirmative and also show that if 0(m) ∈ intS ′, then 0(m) ∈ int ∂(ρ ◦ Ξ ◦ K(m))(x0

(m)), where
K(m) : Cm → M2n is the affine map corresponding to an m = �n+1

2 �-parameter Markov chain.
This particular m-parameter chain is obtained from the original n-parameter one by restricting
the parameters appropriately, namely, xj = xn−1−j for j = 1,2, . . . , �n−1

2 � and xn−1 = xn and
is shown in Fig. 5, when n is even. When n is odd, the chain corresponding to K(m) is shown in
Fig. 6.

If we can prove that 0(m) ∈ int ∂(ρ ◦ Ξ ◦ K(m))(x0
(m)), then from Proposition 3, it follows

that x
(m)
0 is a sharp local minimizer of the function ρ ◦ Ξ ◦ K(m). What we intend to show is that

although x0 is not a sharp local minimizer for the n-parameter chain, x
(m)
0 is indeed a sharp local

minimizer for the m = �n+1
2 �-parameter nonreversible chain shown in Fig. 5 or Fig. 6 depending

on whether n is even or odd. The situation here is analogous to that of the function f : R2 → R

given by f ([x1, x2]T ) = |x1 + x2| at the point [0,0]T . The subdifferential of f at [0,0]T is
∂f ([0,0]T ) = {[x, x]T : x ∈ [−1,1]}. Though the point [0,0]T is not a sharp local minimizer of
the function f , the point 0 is nevertheless a sharp local minimizer if we restrict the domain of f

to the line x1 = x2, thus reducing it to a one-dimensional problem.
The way the affine map K(m) has been constructed ensures that for every x ∈ C

m, K(m)(x) =
K(h̄(x)), where K is the affine map corresponding to the n-parameter chain. We first show that
0(m) ∈ int h̄−1(S) and then show that this implies that 0(m) ∈ int ∂(ρ ◦ Ξ ◦ K(m))(x0

(m)). To do
so, we prove the following result which states that 0(m) ∈ intA for a convex set A ⊆ C

m, if the
scalar 0 is in the interior of each “component” of A taken individually.

Fig. 5. Nonreversible chain with m parameters when n = 2m.

Fig. 6. Nonreversible chain with m parameters when n = 2m − 1.
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Lemma 5. Let A ⊆ C
m be a convex set; the components Aj , Ãj ⊆ R for j = 1,2, . . . ,m are

defined by c ∈Aj if [0, . . . ,0︸ ︷︷ ︸
j−1

, c,0, . . . ,0︸ ︷︷ ︸
m−j

]T ∈A and c ∈ Ãj if [0, . . . ,0︸ ︷︷ ︸
j−1

, ic,0, . . . ,0︸ ︷︷ ︸
m−j

]T ∈ A where

i = √−1. If 0 ∈ intAj ∩ int Ãj for j = 1,2, . . . ,m, then 0(m) ∈ intA.

Proof. To prove that 0(m) ∈ intA, we need to prove that there is a sphere of radius δ for some
δ > 0 with the origin as the center that lies entirely in A. Since 0 ∈ intAj for each j , ∃ εj > 0
such that [−εj , εj ] ∈ Aj or equivalently, εj ej ,−εj ej ∈ A where ej denotes the unit vector in
the direction of the positive j th real axis. Likewise, since 0 ∈ int Ãj , we have ε̃j ẽj ,−ε̃j ẽj ∈ Ãj

where ẽj denotes the unit vector in the direction of the positive j th imaginary axis. The convex
hull of the set of points {±ε1e1,±ε1ẽ1,±ε2e2,±ε2ẽ2, . . . ,±εmem,±εmẽm}, H, is a polyhedron
in C

m with 0(m) ∈ intH. Since A is a convex set, the convex hull H ⊆ A. Thus 0(m) ∈ intA. �
We have S ′ = h̄−1(S) = {C′ϑ : ϑ ∈ F} where C′ is formed by removing the duplicate rows

from the matrix C, that is, C′ is given by

C′ =

⎡
⎢⎢⎢⎢⎣

C(1, :)
C(2, :)

...

C(m − 1, :)
C(n, :)

⎤
⎥⎥⎥⎥⎦ ,

and F is defined in (3.19). To show that 0(m) ∈ intS ′, we make use of Lemma 5, showing that
0 ∈ intS ′

j ∩ int S̃ ′
j for j = 1,2, . . . ,m, where S ′

j and S̃ ′
j are the components of S ′, as defined

in Lemma 5. Note that from the definition of F , it is clear that it is a convex set. Since S ′ =
{C′ϑ : ϑ ∈ F} is the result of a linear transformation on a convex set, it follows that S ′ is also
convex.

For j = 1, . . . ,m, the real j th component of S ′ is, by definition, S ′
j = {Re (C′(j, :)ϑ)}, where

ϑ ∈ F and ϑ also satisfies the following conditions:

Im (C′(j, :)ϑ) = 0,

C′(k, :)ϑ = 0, k = 1,2, . . . ,m and k �= j.

}
(4.2)

The question of whether 0 ∈ intS ′
j can be settled by solving the following two LPs:

maxϑ Re
(
C′(j, :)ϑ)

, ϑ ∈F , ϑ subject to (4.2) (4.3)

and min
ϑ

Re
(
C′(j, :)ϑ)

ϑ ∈F , ϑ subject to (4.2). (4.4)

Note that (4.3) finds the maximum element smax in S ′
j and (4.4), the minimum smin. The fact that

S ′ is convex implies that S ′
j is also convex. Hence S ′

j = [smin, smax] and if smin < 0 and smax > 0,

then 0 ∈ intS ′
j . We can similarly check whether 0 ∈ int S̃′

j by modifying the LPs above replacing
Re by Im and vice versa. It has been verified numerically for particular values of 2n (such as 50,
100, etc.), using SeDuMi, that 0 ∈ intS ′

j ∩ int S̃j
′
for j = 1,2, . . . ,m and hence Lemma 5 can be

applied to assert that 0(m) ∈ intS ′. Again we conjecture that this holds for any n.
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Conjecture 2. For any m � 2, 0(m) is in the interior of S ′ = h̄−1(S) = h̄−1(∂(ρ ◦ Ξ ◦ K)(x0)).

The only thing that remains is to show how ∂(ρ ◦ Ξ ◦ K(m))(x0
(m)) and S ′ are related and

conclude that 0(m) ∈ int ∂(ρ ◦ Ξ ◦ K(m))(x0
(m)) follows from the fact that 0(m) ∈ intS ′. We can

apply the chain rule again to obtain ∂(ρ ◦ Ξ ◦ K(m))(x0
(m)), for which we have to verify the

horizon subdifferential condition (3.12) with K1 replaced by K
(m)
1 , where K

(m)
1 is the ‘linear’

part of the affine map K(m), that is, we have to verify the condition:

(
Ξ ◦ K

(m)
1

)∗
(Y ) = 0, Y ∈ ∂∞ρ(Ξ0) ⇒ Y = 0. (4.5)

From the definition of K(m), we can easily deduce, for any Y ∈ M2n, the expression for
(Ξ ◦ K

(m)
1 )∗(Y ) from that of (Ξ ◦ K1)

∗(Y ). Indeed, if (Ξ ◦ K1)
∗(Y ) = [γ1, γ2, . . . , γn]T , then

(
Ξ ◦ K

(m)
1

)∗
(Y ) =

{ [2γ1,2γ2, . . . ,2γm−2, γm−1,2γm]T , if n is odd,

[2γ1,2γ2, . . . ,2γm]T , if n is even.
(4.6)

For any Y∞ ∈ ∂∞ρ(Ξ0), if (Ξ ◦ K1)
∗(Y ) has the form shown in (3.15), then we can write the

expression for (Ξ ◦ K
(m)
1 )∗(Y∞) using (4.6). We equate (Ξ ◦ K

(m)
1 )∗(Y∞) to the zero vector

0(m) ∈ Cm and proceed, as we did before in the n-parameter case, to show that this implies
Y∞ = 0. This verifies the horizon subdifferential condition (4.5) for specific values of m � 2,
and we conjecture that this holds for general m.

Conjecture 3. If K
(m)
1 is the linear part of the affine map K(m), where K(m)(x) is the transition

matrix corresponding to the Markov chain in Figs. 5 or 6 (depending on whether n is even or
odd) and Ξ is defined by (3.2), the horizon subdifferential condition (4.5) holds for all m � 2.

If Conjecture 3 holds, then we can apply the chain rule and write ∂(ρ ◦ Ξ ◦ K(m))(x0
(m)) =

(Ξ ◦ K
(m)
1 )∗(∂ρ(Ξ0)). Hence, letting A ≡ ∂(ρ ◦ Ξ ◦ K(m))(x0

(m)) = (Ξ ◦ K
(m)
1 )∗(∂ρ(Ξ0)), we

note from (4.6) that the components Aj and S ′
j (j = 1,2, . . . ,m), of A and S ′ = h̄−1(S) respec-

tively, are related as follows:

Aj =
{
S ′

j , if n is odd and j = m − 1,

2S ′
j , otherwise.

(4.7)

Similarly, Ãj and S̃ ′
j (j = 1,2, . . . ,m) are related by:

Ãj =
⎧⎨
⎩ S̃ ′

j , if n is odd and j = m − 1,

2S̃ ′
j , otherwise.

(4.7′)

Therefore, 0 ∈ intS ′
j implies that 0 ∈ intAj and 0 ∈ int S̃ ′

j implies that 0 ∈ int Ãj . It has been

verified that 0 ∈ intS ′
j ∩ int S̃ ′

j (j = 1,2, . . . ,m), in the development leading to Conjecture 2,

and hence it follows that 0 ∈ intAj ∩ int Ãj for j = 1,2, . . . ,m. Further, each vector in A is
related to a vector in S ′ by a simple linear relation (see (4.6)). Since S ′ is convex, it follows
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that A = ∂(ρ ◦ Ξ ◦ K(m))(x0
(m)) is also convex. Thus the conditions for applying Lemma 5 are

satisfied, so we can apply it to assert that 0(m) ∈ int ∂(ρ ◦ Ξ ◦ K(m))(x0
(m)). This completes the

proof of our main result:

Theorem 1. If Conjectures 2 and 3 hold, then x
(m)
0 is a sharp local minimizer of the function

ρ ◦ Ξ ◦ K(m), and hence of ρR ◦ K(m) as well, for all m = �n+1
2 � � 2.

It would be instructive to illustrate this approach to verify optimality for a small value of n.
The smallest value of n for which the problem is nontrivial is n = 4 (and hence m = 2) – in
which case, the matrix Ξ0 has two active real double eigenvalues and a pair of active complex
conjugate eigenvalues (as well as the inactive eigenvalues λ0 = 0 and λ3). By the procedure
outlined before, to prove optimality of x0

(m) for ρ ◦ Ξ ◦ K(m), we would need to solve 8 LPs.
But since n is small, we can instead devise a more direct approach, as we now show.

For n = 4,m = 2, the subdifferential ∂(ρ◦Ξ ◦K(m))(x0
(m)) = C′ϑ , where ϑ = [τ1, τ2, σ1, σ2,

σ ′
2, σ3]T satisfies the conditions (on the lines of (3.17) and (3.18)):

σj � 0, j = 1,2,3
σ ′

2 � 0
2σ1 + σ2 + σ ′

2 + 2σ3 = 1
Re τ1 � −σ1/	

Re τ2 � −σ3/	

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.8)

and C′ is found in Maple to be

C′ =
[

ζ + ζ i η + ηi −ζ −ζ −ζ −η

η + ηi ζ + ζ i −η −ζ −ζ −ζ

]
,

where ζ =
√

2+1
4 and η =

√
2−1
4 . Thus any vector u in ∂(ρ ◦ Ξ ◦ K(m))(x0

(m)) can be expressed
as:

u =
[

(ζ + ζ i)τ1 + (η + ηi)τ2 − ζσ1 − ζσ2 − ζσ ′
2 − ησ3

(η + ηi)τ1 + (ζ + ζ i)τ2 − ησ1 − ζσ2 − ζσ ′
2 − ζσ3

]
,

for some [τ1, τ2, σ1, σ2, σ
′
2, σ3] satisfying (4.8). To verify whether 0(m) ∈ ∂(ρ ◦Ξ ◦K(m))(x0

(m)),
we need to solve the following system of equations:

ζ Re τ1 + η Re τ2 − ζσ1 − ζσ2 − ζσ ′
2 − ησ3 = 0

−ζ Im τ1 − η Im τ2 = 0

η Re τ1 + ζ Re τ2 − ησ1 − ζσ2 − ζσ ′
2 − ζσ3 = 0

−η Im τ1 − ζ Im τ2 = 0,
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which, upon rewriting, yields⎡
⎢⎢⎣

ζ 0 η 0
0 −ζ 0 −η

η 0 ζ 0
0 −η 0 −ζ

⎤
⎥⎥⎦
⎡
⎢⎢⎣

Re τ1
Im τ1
Re τ2
Im τ2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ζσ1 + ζσ2 + ζσ ′
2 + ησ3

0
ησ1 + ζσ2 + ζσ ′

2 + ζσ3
0

⎤
⎥⎥⎦ (4.9)

We arbitrarily fix σ1 = 0, σ2 = 1/2, σ ′
2 = 1/2, σ3 = 0, so as to satisfy the first three conditions

in (4.8). If we now solve Eq. (4.9) for τ1, τ2, we obtain real values for τ1, τ2, namely, τ1 = τ2 =
ζ

ζ+η
= 3 + 2

√
2 > 0. This means that we have produced a vector ϑ = [τ1, τ2, σ1, σ2, σ

′
2, σ3]T

satisfying (4.8) and such that C′ϑ = 0, which implies that 0(m) ∈ ∂(ρ ◦ Ξ ◦ K(m))(x0
(m)),

for m = 2. Now to prove 0(m) ∈ int ∂(ρ ◦ Ξ ◦ K(m))(x0
(m)), we use an argument analogous to

the one used in [4] to prove sharp optimality for a stabilization problem in control theory. The
idea is that since the coefficient matrix in (4.9) is nonsingular (its determinant is exactly 1

8 ),
the solution of the linear equation (defining τ1, τ2) is continuous w.r.t. small perturbations in
the right-hand side of (4.9). By introducing small perturbations in that vector, we can see
that [±δ,0]T , [0,±δ]T , [±δi,0]T , [0,±δi]T lie in ∂(ρ ◦ Ξ ◦ K(m))(x0

(m)) for sufficiently small
δ > 0. By Lemma 5, this proves that 0(m) ∈ int ∂(ρ ◦ Ξ ◦ K(m))(x0

(m)) for n = 4,m = 2.
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