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Abstract. We investigate the behavior of the BFGS algorithm with an exact line search on
nonsmooth functions. We show that it may fail on a simple polyhedral example, but that it apparently
always succeeds on the Euclidean norm function, spiraling into the origin with a Q-linear rate of
convergence; we prove this in the case of two variables. Dixon’s theorem implies that the result for
the norm holds for all methods in the Broyden class of variable metric methods; we investigate how
the limiting behavior of the steplengths depends on the Broyden parameter. Numerical experiments
indicate that the convergence properties for ‖x‖ extend to ‖Ax‖, where A is an n × n nonsingular
matrix, and that the rate of convergence is independent of A for fixed n. Finally, we show that
steepest descent with an exact line search converges linearly for any positively homogeneous function
that is C2 everywhere except at the origin, but its rate of convergence for ‖Ax‖ depends on the
condition number of A, in contrast to BFGS.
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1. Introduction. The analysis of variable metric methods with an exact line
search was pioneered by Powell, who showed in [Pow71] that the DFP (Davidon-
Fletcher-Powell) method converges on strongly convex C2 functions. That this anal-
ysis applies also to the BFGS (Broyden-Fletcher-Goldfarb-Shanno) method follows
from Dixon’s result [Dix72] that all methods in the Broyden class are equivalent on
smooth functions when an exact line search is used. Powell studied the nonconvex
smooth case in [Pow72], again assuming the use of an exact line search. He summa-
rized this work as follows: “The lemmas and theorems of this paper are the result of
about 18 months of intermittent work to try to explain and understand the behaviour
of the variable metric algorithm when f(x) is not convex. They make only a small
contribution to this problem, because all the lemmas depend on a condition which
may never be satisfied.” Several decades later, the convergence of variable metric
methods on nonconvex smooth functions remains poorly understood [LF01].

There has been little study of the behavior of variable metric methods on nons-
mooth functions. This paper studies the BFGS method using an exact line search on
some convex nonsmooth examples. After defining the algorithm in the next section,
we show in Section 3 that it can fail on a simple polyhedral function. By contrast,
in Section 4, we show that BFGS with an exact line search always succeeds on the
Euclidean norm function f(x) = ‖x‖ in two variables, spiraling into the origin with
a Q-linear rate 1/2 with respect to the number of line searches, independent of the
initial Hessian approximation. In Section 5, we give numerical evidence indicating
that this fact extends to f(x) = ‖Ax‖, where A is a nonsingular n × n matrix, with
a convergence rate that grows closer to one as n increases but that, remarkably, is
independent of A for fixed n.
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Dixon’s theorem applies to the Euclidean norm function, since the only point
where it is nonsmooth is the origin. In the strongly convex smooth case, it is known
that regardless of the Broyden parameter, the minimizing steplength converges to one,
and the convergence of the function values is superlinear. Neither property holds for
the norm, but experiments show that the steplengths converge. We investigate their
limiting value with respect to n and the Broyden parameter in Section 6.

The observed property that variable metric methods with an exact line search,
when applied to ‖Ax‖, generate a sequence of function values whose limiting be-
havior is independent of A is in stark contrast with the method of steepest descent.
Indeed, steepest descent with an exact line search is equivalent on ‖Ax‖ and its square,
xT AT Ax: convergence of the function values is linear with a rate equal to approxi-
mately 1−2/κ (equivalently, 1−4/κ for the squared function), where κ is the condition
number of AT A. In fact, steepest descent with an exact line search converges linearly
on any positively homogeneous function that is C2 everywhere except the origin: we
prove this in Section 7.

We make some concluding remarks in Section 8.

2. The Algorithm. The BFGS iteration for minimizing a function f : Rn → R
can be written as follows. As is standard, xk denotes the current point at iteration
k = 0, 1, . . ., the positive definite matrix Hk is the current estimate of the inverse
Hessian ∇2f(xk)−1, and we abbreviate the gradient ∇f(xk) to ∇fk.

Search direction: pk = −Hk∇fk;
Step length: xk+1 = xk + αkpk, where αk ≥ 0 is chosen by a line search;
Gradient increment: yk = ∇fk+1 −∇fk;
Inverse Hessian factor: Vk = I − (pT

k yk)−1pkyT
k ;

Inverse Hessian update: Hk+1 = VkHkV T
k + αk(pT

k yk)−1pkpT
k ;

Iteration count: k = k + 1.

In practice, the update to H does not use matrix-matrix multiplication, but
exploits the fact that Vk has rank one and therefore the update can be computed in
O(n2) operations.

Consider a conceptual version of this iteration for a possibly nonsmooth function
f , with the step length αk chosen by exact line search: in other words, αk exactly
minimizes the function α 7→ f(xk +αpk). In this case, the BFGS method breaks down
if (as will often be the case) the function f is not differentiable at xk+1, since then
∇fk+1 is undefined.

To avoid this difficulty we proceed as follows. Suppose the function f is locally
Lipschitz and Clarke regular1 at the iterate xk+1. Since the line search stopped at
xk+1, the directional derivative f ′(xk+1; pk) is nonnegative. But Clarke regularity
implies there is a Clarke subgradient g (a limit of convex combinations of gradients
at points near xk) such that gT pk = f ′(xk+1; pk): we then choose ∇fk+1 arbitrarily
from the set of such subgradients. If f is smooth at xk+1, then as usual ∇fk+1 is
simply ∇f(xk+1). More generally, if f is a pointwise maximum of smooth functions
f1, f2, . . . , fm, and

fj(xk+1 + εpk) > fi(xk+1 + εpk) for all small ε > 0 and i 6= j,

then this definition gives ∇fk+1 = ∇fj(xk+1).

1Assuming f is locally Lipschitz and directionally differentiable everywhere, Clarke regularity
simply amounts to upper semicontinuity of the directional derivative x 7→ f ′(x; p) for every fixed
direction p. All convex functions are Clarke regular.
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3. Failure on a Convex Polyhedral Example. An important difference from
the smooth case is that, as in bundle methods, the conceptual nonsmooth BFGS
iteration described above can take “null steps”. Consider the following example.

Example 3.1. We consider the convex polyhedral function

f(z) = max{2|z1|+ z2, 3z2},

which is clearly unbounded below. We begin with initial data

x0 =
[

9
7

]
, H0 =

[
2 1
1 1

]
, k = 0.

Easy calculations give

∇f0 =
[

2
1

]
, p0 = −

[
5
3

]
, α0 = 2, x1 =

[
−1

1

]
, ∇f1 =

[
−2

1

]
.

We then obtain

y0 =
[
−4

0

]
, pT

0 y0 = 20, V0 =
[

0 0
−0.6 1

]
, H0 =

[
2.5 1.5
1.5 1.42

]
.

Moving to the next iteration, k = 1, we find

p1 =
[

3.5
1.58

]
, α1 = 0, x2 =

[
−1

1

]
.

This is a null step. 2

Clearly, the occurrence of the null step at iteration k = 1 in the above example is
insensitive to small changes in the definitions of the linear functions of which f is a
pointwise maximum, or in the initial data.

Unfortunately, as the following result makes plain, each time the BFGS iteration
takes a null step in a search direction linearly independent of all previous search
directions corresponding to null steps, the space of possible future search directions
contracts.

Proposition 3.2 (null steps). If the BFGS iteration takes a null step at iteration
k (that is, αk = 0), then the corresponding gradient increment yk lies in the null space
of all future inverse Hessian approximations Hj (for j > k) and is orthogonal to all
future search directions pj.
Proof We proceed by induction on the index j. First notice

V T
k yk =

(
I − (pT

k yk)−1ykpT
k

)
yk = 0,

Since αk = 0, we deduce Hk+1yk = 0, and furthermore

yT
k pk+1 = −yT

k Hk+1∇fk+1 = 0.

Our claimed result therefore holds when j = k + 1.
Suppose, inductively, that the result holds for some value of the index j > k :

that is, Hjyk = 0 and pT
j yk = 0. We then deduce

V T
j yk =

(
I − (pT

j yj)−1yjp
T
j

)
yk = yk,
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so

Hj+1yk = VjHjV
T
j yk + αj(pT

j yj)−1pjp
T
j yk = 0,

and furthermore

yT
k pj+1 = −yT

k Hj+1∇fj+1 = 0.

The result now follows by induction. 2

As a consequence of this property, the BFGS iteration with exact line search may
jam at a nonoptimal point. Our previous example, which we continue next, is a case
in point.

Example 3.3. Picking up Example 3.1 where we left it, we next find

∇f1 =
[

0
3

]
, y1 =

[
2
2

]
, pT

1 y1 = 10.16, V1 =
[

0.31 . . . −0.68 . . .
−0.31 . . . 0.68 . . .

]
.

Hence we obtain

H2 = (0.27 . . .)
[

1 −1
−1 1

]
, p2 = (0.27 . . .)

[
3

−3

]
,

so, as we expect by the previous result, H2y1 = 0 and pT
2 y1 = 0. It is easy to

check that the next iterate x3 is zero, so we have made progress reducing the value
of the function f . However, at this point, the iteration jams. Any future search
direction pj (for j > 2) must satisfy pT

j y1 = 0, so must be a multiple of the vector
[1,−1]T . However, at zero, neither of the vectors ±[1,−1]T is a descent direction, so
the iteration makes no further progress. Nonetheless, zero is not optimal: indeed, the
vector [0,−1]T is a descent direction there. 2

In conclusion, applying the BFGS iteration with an exact line search to a poly-
hedral convex function may fail.

4. Success on the Euclidean Norm. We now turn to the analysis of BFGS
with an exact line search on the Euclidean norm f = ‖ · ‖. For this function the
only point of nonsmoothness is the origin, so breakdown cannot take place unless the
method generates the exact solution, as it will on the first iteration if H0 is a multiple
of the identity.

We have

∇fk =
xk

‖xk‖
and pk = −Hkxk

‖xk‖
.

Using an exact line search, the step αk is characterized by the relationship

0 = pT
k xk+1 = pT

k (xk + αkpk),

so

αk = − pT
k xk

‖pk‖2
=

xT
k Hkxk

xT
k H2

kxk
‖xk‖,
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and

xk+1 = xk −
xT

k Hkxk

xT
k H2

kxk
Hkxk.

Notice

‖xk+1‖2 = ‖xk‖2 −
(xT

k Hkxk)2

xT
k H2

kxk
.

Furthermore,

yk =
xk+1

‖xk+1‖
− xk

‖xk‖
,

so

pT
k yk = −pT

k xk

‖xk‖
=

xT
k Hkxk

‖xk‖2
.

We next introduce some notation for the normalized iterates:

uk =
xk

‖xk‖
, βk = ‖xk‖, qk =

pk

‖pk‖
, and σk = qT

k uk.

With this notation we have

pk = −Hkuk, αk = −σkβk

‖pk‖
and

xk+1

‖xk‖
= uk − σkqk.

Hence,

uk+1 = γ−1
k (uk − σkqk), where γk = βk+1β

−1
k =

√
1− σ2

k.

Furthermore,

yk = uk+1 − uk and pT
k yk = −pT

k uk.

Thus we have the updates

Vk = I + σ−1
k qk(uk+1 − uk)T and Hk+1 = VkHkV T

k + βkqkqT
k

As a final simplification, define

Wk =
Hk

βk
and rk =

pk

βk
. (4.1)

The iteration now becomes the following.
Algorithm 4.2. At iteration k = 0, 1, 2, . . ., given the unit vector uk ∈ Rn and

the positive-definite matrix Wk, we compute

rk = −Wkuk

qk =
rk

‖rk‖
σk = qT

k uk

γk =
√

1− σ2
k

uk+1 =
1
γk

(uk − σkqk)

Vk = I +
qk(uk+1 − uk)T

σk

Wk+1 =
1
γk

(
VkWkV T

k + qkqT
k

)
.
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(If γk = 0, the algorithm terminates.)
Define two orthogonal matrices

R =

[
1
2

√
3

2

−
√

3
2

1
2

]
and S =

[
0 1
−1 0

]
.

Then for any vector u ∈ R2, the vectors Ru and Su are obtained by rotating u
clockwise through angles π

3 and π
2 respectively. Notice that R and S commute.

Theorem 4.3. Consider BFGS with exact line search applied to the Euclidean
norm in R2. Suppose the algorithm does not terminate. Then the sequence of iterates
{xk} converge to zero at Q-linear rate 1

2 . More precisely, for some strictly positive
constant τ , we have

‖xk‖ ∼
τ

2k
as k →∞.

The iterates eventually rotate around zero with consistent orientation, either clockwise
or counterclockwise, through an angle of magnitude approaching π

3 . The step αk

satisfies

αk →
1
4

as k →∞.

Furthermore, the inverse Hessian approximation Hk satisfies

spectrum(Hk) ∼ 1
2k
{3 +

√
3, 3−

√
3}.

In terms of Algorithm 4.2 (in the case n = 2), if the algorithm does not terminate,
then we have the following properties. As k →∞,

σk → −
√

3
2

, γk →
1
2
, ‖rk‖ → 2

√
3.

Furthermore, there exists a unit vector u ∈ R2 such that exactly one of the following
two cases holds.

(i) (Clockwise case) As k →∞,

R−kuk → u, qk = Suk+1,

R−kWkRk → [u Su]
[

3 −
√

3
−
√

3 3

]
[u Su]T .

In particular, the vectors uk eventually rotate clockwise through an angle ap-
proaching π

3 .
(i) (Counterclockwise case) As k →∞,

Rkuk → u, qk = S−1uk+1,

RkWkR−k → [u S−1u]
[

3 −
√

3
−
√

3 3

]
[u S−1u]T .

In particular, the vectors uk eventually rotate counterclockwise through an
angle approaching π

3 .
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Since both the matrices [u Su] and [u S−1u] are orthogonal, in either case the
eigenvalues of the matrix Wk approach 3±

√
3.

Proof We first make some observations independent of the dimension n, specifically

σk < 0, γk ≥ 0, qT
k uk+1 = 0, uT

k uk+1 = γk.

Furthermore, we have

Vkqk = 0

Vkuk+1 =
1− γk

σk
qk + uk+1

V T
k uk+1 = uk+1

V T
k qk =

1− γk

σk
uk+1.

Henceforth we assume n = 2. The set {qk, uk+1} is then an orthonormal basis for
R2, so using the above relationships gives

Vk =
(1− γk

σk
qk + uk+1

)
uT

k+1. (4.4)

Our initial aim is to find a recurrence relationship for the sequence {γk}. To this end,
assume the iteration does not terminate, and define another sequence

µk = uT
k+1Wkuk+1 > 0.

Then

rk+1 = −Wk+1uk+1 = − 1
γk

VkWkuk+1 = −µk

γk

(1− γk

σk
qk + uk+1

)
, (4.5)

so the vector qk+1 is the vector

−1− γk

σk
qk − uk+1 (4.6)

normalized. The above vector has norm√(1− γk

σk

)2

+ 1 =
√

2
1 + γk

,

so

σk+1 = uT
k+1qk+1 = −

√
1 + γk

2
.

We deduce our desired recurrence relationship:

γk+1 =

√
1− γk

2
. (4.7)

The continuous function f : [0, 1] → R defined by

f(γ) =

√
1− γ

2
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has derivative on the interval [0, 1) given by

f ′(γ) = − 1
4f(γ)

< 0.

Hence f is decreasing on this interval, and so is f ′. Clearly f maps the interval [0, 1]
onto the interval I = [0, 1√

2
]. For γ ∈ I,

|f ′(γ)| = −f ′(γ) ≤ −f ′
( 1√

2

)
< −f ′

(7
8

)
= 1,

Thus f is a contraction mapping on I, so for any initial point γ0 ∈ [0, 1], the
iteration(4.7) converges to the unique fixed point of f , namely 1

2 . We can even specify
the rate of convergence:

γk+1 − 1
2

γk − 1
2

=
γk+1 − f( 1

2 )
γk − 1

2

→ f ′
(1

2

)
= −1

2
. (4.8)

Next, consider the sequence βk = ‖xk‖. From the relationship βk+1 = γkβk, we
deduce

log(2k+1βk+1)− log(2kβk) = log(2γk).,

Hence, by induction, we obtain

2k+1βk+1 = β0 +
k∑

j=0

log(2γk).

Since log(2γk) ∼ 2γk − 1 as k → ∞, we deduce from the limit (4.8) that the series∑
log(2γk) is eventually alternating, with terms of decreasing magnitude, so con-

verges. Since βk > 0 for all k, we deduce that the sequence {2kβk} converges to some
limit τ ∈ R++.

Since uT
k+2uk+1 = γk+1, we deduce

uk+2 = γk+1uk+1 ± σk+1qk.

To decide which case is true, we simply need to check the sign of the quantity

qT
k uk+2 = qT

k

1
γk+1

(uk+1 − σk+1qk+1),

which equals the sign of qT
k qk+1, or equivalently, using the expression (4.6), of the

quantity

qT
k

(
− 1− γk

σk
qk − uk+1

)
= − 1− γk

σk
> 0.

We thus deduce

uk+2 = γk+1uk+1 − σk+1qk. (4.9)

We next derive a recurrence relationship for the sequence {µk}. From equation
(4.9), we observe

V T
k uk+2 = γk+1V

T
k uk+1 − σk+1V

T
k qk =

(
γk+1 − σk+1

1− γk

σk

)
uk+1
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and

qT
k uk+2 = −σk+1.

We now obtain the recurrence relationship that we need for the sequence {µk}:

γkµk+1 = γkuT
k+2Wk+1uk+2

= uT
k+2

(
VkWkV T

k + qkqT
k

)
uk+2

= (V T
k uk+2)T Wk(V T

k uk+2) + (qT
k uk+2)2

= µk

(
γk+1 − σk+1

1− γk

σk

)2

+ σ2
k+1.

Since we know γk → 1
2 and σk → −

√
3

2 , we deduce

µk+1 − λkµk → β for some sequence λk → 0, (4.10)

where β = 3
2 . We now make the following assertion.

Claim: Any sequence of numbers {µk} satisfying the property (4.10) must converge
to β.

Proof of claim. First note that, by making the change of variables µ̂k = µk − β, we
can without loss of generality assume β = 0. Fix any ε > 0. There exists an integer
k̄ > 0 such that, for all integers k ≥ k̄, we have |µk+1 − λkµk| < ε and |λk| < ε, and
hence |µk+1| < ε + ε|µk|. By induction, we deduce

|µk̄+m| < εm|µk̄|+
ε(1− εm)

1− ε

for all integers m > 0. Letting m →∞ shows

lim sup
k→∞

|µk| ≤
ε

1− ε
.

The claim now follows, since ε is arbitrary.

We have therefore shown µk → 3
2 . From equation (4.5), we see

‖rk+1‖ =
µk

γk

√
2

1 + γk
→ 2

√
3.

The definition (4.1) implies ‖rk‖ = ‖pk‖/βk. Hence the step αk satisfies

αk = −σkβk

‖pk‖
= − σk

‖rk‖
→ 1

4
.

The next part of the argument is most easily viewed in the complex plane, so let
us define three sequences of complex numbers of modulus one corresponding to the
unit vectors uk:

ûk = (uk)1 + (uk)2
√
−1

q̂k = (qk)1 + (qk)2
√
−1

wk =
ûk+1

ûk
.
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We know uT
k uk+1 → 1

2 , and furthermore, by equation (4.9),

uT
k uk+2 = γk+1γk − σk+1σk → −1

2
.

We therefore obtain

Re wk = Re
ûk+1

ûk
= uT

k uk+1 = γk →
1
2

Re(wkwk+1) = Re
ûk+2

ûk
= uT

k uk+2 → − 1
2
.

The first limit implies

|Im wk| →
√

3
2

.

But notice

(Im wk+1)(Im wk) = (Re wk+1)(Re wk)− Re(wkwk+1) → 3
4

Hence in fact

either Im wk →
√

3
2

or Im wk → −
√

3
2

.

In the first case, the points ûk (or equivalently, the unit vectors uk) eventually always
rotate counterclockwise, by an angle of magnitude approaching π

3 . The second case
is analogous, but with clockwise orientation.

Consider the counterclockwise case first. Write

wk = eθk

√
−1, where θk ∈ [0, 2π).

We therefore have wk = cos−1 γk. If we now fix any number ρ in the interval ( 1
2 , 1),

then from the linear convergence property (4.8) we know∣∣∣γk −
1
2

∣∣∣ < ρk, for all sufficiently large k.

Since the function cos−1 has Lipschitz constant less than 2 around the point 1
2 , we

deduce ∣∣∣θk −
π

3

∣∣∣ < 2ρk, for all sufficiently large k. (4.11)

Now consider the sequence of complex unit vectors yj = û6j . Notice, for any positive
integers j ≤ l we have

|yl − yj | =
∣∣∣ yl

yj
− 1

∣∣∣ =
∣∣∣ û6l

û6j
− 1

∣∣∣ =
∣∣∣ 6l−1∏

k=6j

wk − 1
∣∣∣.

However, providing j is sufficiently large, inequality (4.11) implies

∣∣∣ 6l−1∑
k=6j

θk − 2(l − j)π
∣∣∣ < 2

6l−1∑
k=6j

ρk = 2ρ6j 1− ρ6(l−j)

1− ρ
→ 0,

10



as j →∞, and hence

6l−1∏
k=6j

wk = e
√
−1
P6l−1

k=6j θk → 1.

Thus the sequence {yj} is Cauchy, so converges. Consequently, for some complex
number û of modulus one, we have û6j → û as j → ∞. More generally, for any
positive integer m we have, as j →∞,

û6j+m = û6j

6j+m−1∏
k=6j

wk → ûem π
3

√
−1,

so

e−(6j+m) π
3

√
−1û6j+m → û.

Putting together the cases m = 0, 1, 2, 3, 4, 5 gives

e−k π
3

√
−1ûk → û, as k →∞.

The clockwise case is almost identical, with π
3 replaced by −π

3 .
Since the unit vectors qk and uk+1 are orthogonal, we know that one of the two

cases q̂k = ±ûk+1

√
−1 holds. By equation (4.9), q̂k = ûk+1

√
−1 holds if and only if

ûk+2 = γk+1ûk+1 − σk+1ûk+1

√
−1,

or equivalently

wk+1 = γk+1 − σk+1

√
−1.

In that case, the vector ûk+2 is obtained from ûk+1 by counterclockwise rotation. To
summarize, in the counterclockwise case we have q̂k = ûk+1

√
−1 for all sufficiently

large k; in the clockwise case, we have instead q̂k = −ûk+1

√
−1

Converting our conclusions back to R2, we deduce the existence of a unit vector
u ∈ R2 with the following property: either

R−kuk → u and qk = Suk+1, as k →∞

(the clockwise case), or

Rkuk → u and qk = S−1uk+1, as k →∞

(the counterclockwise case).
Equation (4.4) shows

Wk+1 =
µk

γk

(1− γk

σk
qk + uk+1

)(1− γk

σk
qk + uk+1

)T

+
1
γk

qkqT
k

= [uk+1 qk]

[
µk

γk
( 1−γk

σk
)2 + 1

γk

µk

γk
( 1−γk

σk
)

µk

γk
( 1−γk

σk
) µk

γk

]
[uk+1 qk]T .

Using the fact that the matrices R and S commute, we obtain, in the clockwise case

R−(k+1)Wk+1R
k+1 → [u Su]

[
3 −

√
3

−
√

3 3

]
[u Su]T ,
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and in the counterclockwise case

Rk+1Wk+1R
−(k+1) → [u S−1u]

[
3 −

√
3

−
√

3 3

]
[u S−1u]T ,

as k → ∞. Our claims about Wk now follow, and those about the inverse Hessian
approximation Hk follow from the definition (4.1). 2

The following example illustrates well a typical limit cycle.
Theorem 4.12. (Spiraling Iterates) Suppose Algorithm 4.2 is initiated with the

values

u0 =
[

1
0

]
, W0 =

[
3 −

√
3

−
√

3 3

]
.

Then in each iteration k = 0, 1, 2, . . ., we have

uk = Rku0, qk = Rk

[
−
√

3
2

1
2

]

σk = −
√

3
2

, γk =
1
2

Wk = RkW0R
−k.

The proof is a routine but lengthy induction on k, and is omitted.
Corollary 4.13 (spiral behavior). Consider BFGS with exact line search ap-

plied to the Euclidean norm in R2, initialized by

x0 =
[

1
0

]
and H0 =

[
3 −

√
3

−
√

3 3

]
The method generates a sequence of vectors xk that rotate clockwise through an angle
of π

3 and shrink by a factor 1
2 at each iteration.

5. Numerical Experiments for the Norm. We do not know how to extend
the analysis given in the previous section to n > 2. However, numerical experiments
implementing the BFGS iteration using the known minimizing steplength αk indicate
that similar results surely hold, not only for f(x) = ‖x‖, but also for f(x) = ‖Ax‖,
where A is a nonsingular matrix. Remarkably, the convergence of the function values
fk = ‖Axk‖ is observed to be asymptotically Q-linear with rates that are closer to
1 for larger n but independent of A for fixed n. In Figure 5.1, the top left and top
right panels show the evolution of fk for the cases A = I and A = diag(1, . . . , 1/n)
respectively, for typical runs for n = 2, 4, 8 and 16, with both x and H initialized
randomly. The bottom two panels display estimated Q-linear convergence rates for the
sequence {fk} for varying n, again for A = I and A = diag(1, . . . , 1/n), respectively.
Each asterisk plots the mean of 10 observed convergence rates, each computed by a
least squares fit to a different randomly initialized sequence. Each approximation to
a sequence {fk} was made using 40% of the iterates, excluding the first half to avoid
the transient initial behavior, and excluding the final 10% to avoid contamination
from rounding errors. Since the convergence rates are close to 1 for large n, we plot

12



Fig. 5.1. Convergence of BFGS with an exact line search on f(x) = ‖Ax‖. Top left: plots
function values for typical runs for n = 2, 4, 8 and 16 and A = I. Bottom left: plots − log2(1 − r)
against log2(n) where r is the estimated Q-linear convergence rate for the sequence of function
values, averaged over 10 runs, for A = I. Top and bottom right: same for A = diag(1, . . . , 1/n).

− log2(1− r) against log2(n), where r is the average estimated convergence rate. The
observed rates grow surprisingly consistently with n, somewhat faster than 1−1/

√
2n.

Furthermore, the rate of convergence is apparently independent of H0 unless the
method terminates at the origin.

The evolution of the exact steplengths αk, for the same runs with n = 2, 4, 8 and
16, is shown in the top left and right panels of Figure 5.2. Again, there is essentially no
difference in the limiting behavior between the cases A = I and A = diag(1, . . . , 1/n).
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Fig. 5.2. Convergence of BFGS with an exact line search on f(x) = ‖Ax‖. Top left: plots the
exact steplengths for n = 2, 4, 8 and 16 and A = I. Bottom: eigenvalues of Hk for the case n = 16,
A = I. Top and bottom right: same for A = diag(1, . . . , 1/n) .

In both cases αk converges to the same limits, and these limits decrease as n increases.
Note that the limiting behavior of the eigenvalues of Hk does depend on A, as is seen
by comparing the lower left and right panels of Figure 5.2, which plot the eigenvalues
of Hk for the case n = 16. In both cases, the eigenvalues of Hk converge to zero, but
in the case A = I (bottom left), the convergence is Q-linear and, when the eigenvalues
are scaled so the largest is fixed to one, the scaled eigenvalues converge to quantities
that are independent of the initial x and H (not shown). For A = diag(1, . . . , 1/n)
this is not the case; the eigenvalues converge to zero but not Q-linearly (bottom right),
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Fig. 6.1. Limiting steplengths for the Broyden family using an exact line search on f(x) =
‖Ax‖. Top and bottom left: plots the limiting steplengths as a function of the Broyden parameter φ
for A = I with n = 2 and n = 16 respectively. Top and bottom right: same for A = diag(1, . . . , 1/n).

and the scaled eigenvalues of Hk do not converge. It is quite remarkable that BFGS
automatically produces a sequence Hk whose limiting behavior is dependent on A but
that results in a sequence fk that converges Q-linearly to zero at a rate independent
of A, for fixed n. Of course, this independence is familiar for smooth functions, for
which convergence is superlinear in nondegenerate cases.

6. Limiting Steplengths for the Broyden Family on the Norm. Dixon’s
theorem [Dix72], that all variable metric methods in the Brodyen family generate
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the same sequence of iterates {xk} when an exact line search is used, applies to the
Euclidean norm function without modification. As is well known [NW06, Chap. 6],
the Broyden family of updates is defined by a parameter φ: when φ = 0, the Broyden
update reduces to BFGS, while for φ = 1, we obtain DFP. The sequence of inverse
Hessian approximations {Hk} does depend on φ, as does the sequence of steplengths
{αk}.

Numerical experiments on f(x) = ‖Ax‖, where A is an n×n nonsingular matrix,
show that the steplengths αk converge for all φ ∈ [0, 1], and Figure 6.1 shows their
limiting values as a function of φ. The top and bottom left panels show results for
A = I with n = 2 and n = 16 respectively, and the top and bottom right panels
show the same for A = diag(1, . . . , 1/n). As previously, the results are apparently
independent of A. Each blue circle shows the experimentally determined limiting
steplength, averaged over 10 randomly initialized runs. Experiments were carried out
for φ ranging from −0.5 to 1.5. When φ < 0, the updated matrix Hk may not be
positive definite, and hence αk may be negative; nonetheless, as long as Hk is never
exactly singular, the steplengths converge to a positive value. For values of φ that are
sufficiently large, the steplengths diverge.

The solid red curve plots the function 1/(2 − n(φ − 1), which approximates the
limiting steplength well for n = 2 and seems to be a reasonably good upper bound
when n > 2. This implies, in the case φ = 0 (BFGS), that 1/(2 + n) is an upper
bound on the limiting steplength, which is consistent with the results reported in
Section 5. For the case φ = 1 (DFP), the upper bound is 1/2. The results might
suggest that DFP is more favorable for use with an inexact line search as fewer steps
would be needed, at least on this example. However, this conclusion overlooks the fact
that the limiting steplength diverges when φ is not much greater than 1, specifically
somewhat more than the pole in the upper bound formula, φ = 1+2/n. This indicates
a possible instability for DFP, which is perhaps not surprising, given its well known
poor performance, with respect to BFGS, for smooth functions [NW06].

7. Steepest Descent on Homogeneous Functions. The apparent property
that the limiting behavior of variable metric methods with an exact line search on
‖Ax‖ is independent of A is in stark contrast with the method of steepest descent on
the same function, as we now show.

Theorem 7.1. Consider a continuous function f : Rn → R that is positively
homogeneous. Suppose f is strictly positive and twice continuously differentiable on
Rn \ {0}. Define numbers

M = max{‖∇2f(x)‖ : f(x) = 1},
m = min{‖∇f(x)‖ : f(x) = 1}.

Then, from any initial point, the method of steepest descent with exact line search
either terminates or converges with Q-linear rate at least

ρ =
1

1 + m2

2M

.

Proof The set {x ∈ Rn : f(x) = 1} is compact, since otherwise it contains a sequence
(xk) satisfying ‖xk‖ → ∞, and then, for any cluster point x̄ of the normalized sequence
‖xk‖−1xk, continuity and positive homogeneity would imply the contradiction f(x̄) =
0. Hence the number M is finite. Positive homogeneity implies the relationships

∇f(λx) = ∇f(x) and ∇2f(λx) =
1
λ
∇2f(x) for all 0 6= x ∈ Rn, λ > 0.
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In particular, we also see m > 0: otherwise, ∇f must vanish at some nonzero point x,
and hence throughout the open line segment (0, x), implying that f must be constantly
zero on this line segment.

Consider any point x satisfying f(x) = 1, and define a vector g = ∇f(x) and a
function h : R → R by h(t) = f(x − tg). It then suffices to prove minh ≤ ρ. By
way of contradiction, suppose h(t) > ρ for all numbers t ∈ R. Then h(0) = 1 and
h′(t) = −gT∇f(x− tg), and hence h′(0) = −‖g‖2. Furthermore, for all t we have

h′′(t) = gT∇2f(x− tg)g ≤ M

f(x− tg)
‖g‖2 <

M‖g‖2

ρ
,

For all t > 0 we deduce

h′(t) < h′(0) +
M‖g‖2

ρ
t =

(M

ρ
t− 1

)
‖g‖2,

and hence

h(t) < 1 +
(M

2ρ
t2 − t

)
‖g‖2.

Putting t = ρ/M then gives

minh < 1− ρ

2M
‖g‖2 ≤ 1− ρm2

2M
= ρ,

which is a contradiction. 2

In the case f(x) = ‖Ax‖, we know from the equivalence of steepest descent with
an exact line search to the squared function xT AT Ax that (κ−1)/(κ+1) is an upper
bound on the convergence rate, where κ is the condition number of AT A [Lue84]. The
theorem gives the somewhat weaker upper bound 1/(1 + 1/(4κ)).

8. Conclusions. The polyhedral example makes it clear that BFGS with an
exact line search cannot be recommended for general use in the nonsmooth case. On
the other hand, the Euclidean norm example demonstrates a rather surprising and
consistent behavior of a remarkable algorithm that remains poorly understood several
decades after its introduction. Our interest in the algorithm is largely motivated by
our conclusion that BFGS with an inexact line search does have a useful role to play
in the minimization of nonsmooth functions, a position we explore in detail in [LO08].
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