1) Consider the linear heat equation \(u_t - u_{xx} = 0 \) on the interval \(0 < x < 1 \), with boundary condition \(u = 0 \) at \(x = 0,1 \) and initial condition \(u = 1 \).

 (a) Interpret \(u \) as the value of a suitable double-barrier option.

 (b) Express \(u(t, x) \) as a Fourier sine series, as explained in Section 3.

 (c) At time \(t = 1/100 \), how many terms of the series are required to give \(u(t, x) \) within one percent accuracy?

2) Consider the SDE \(dy = f(y)dt + g(y)dw \). Let \(G(x,y,t) \) be the fundamental solution of the forward Kolmogorov PDE, i.e. the probability that a walker starting at \(x \) at time 0 is at \(y \) at time \(t \). Show that if the infinitesimal generator is self-adjoint, i.e.

 \[-(fu)_x + \frac{1}{2}(g^2u)_{xx} = fu_x + \frac{1}{2}g^2u_{xx},\]

then the fundamental solution is symmetric, i.e. \(G(x,y,t) = G(y,x,t) \).

3) Consider the stochastic differential equation \(dy = f(y,s)ds + g(y,s)dw \), and the associated backward and forward Kolmogorov equations

 \[u_t + f(x,t)u_x + \frac{1}{2}g^2(x,t)u_{xx} = 0 \quad \text{for } t < T, \text{ with } u = \Phi \text{ at } t = T \]

 and

 \[\rho_s + (f(z,s)\rho)_z - \frac{1}{2}(g^2(z,s)\rho)_{zz} = 0 \quad \text{for } s > 0, \text{ with } \rho(z) = \rho_0(z) \text{ at } s = 0. \]

Recall that \(u(x,t) \) is the expected value (starting from \(x \) at time \(t \)) of payoff \(\Phi(y(T)) \), whereas \(\rho(z,s) \) is the probability distribution of the diffusing state \(y(s) \) (if the initial distribution is \(\rho_0 \)).

 (a) The solution of the backward equation has the following property: if \(m = \min_z \Phi(z) \) and \(M = \max_z \Phi(z) \) then \(m \leq u(x,t) \leq M \) for all \(t < T \). Give two distinct justifications: one using the maximum principle for the PDE, the other using the probabilistic interpretation.

 (b) The solution of the forward equation does not in general have the same property; in particular, \(\max_z \rho(z,s) \) can be larger than the maximum of \(\rho_0 \). Explain why not, by considering the example \(dy = -yds \). (Intuition: \(y(s) \) moves toward the origin; in fact, \(y(s) = e^{-s}y_0 \). Viewing \(y(s) \) as the position of a moving particle, we see that
particles tend to collect at the origin no matter where they start. So \(\rho(z, s) \) should be increasingly concentrated at \(z = 0 \).) Show that the solution in this case is \(\rho(z, s) = e^s \rho_0(e^s z) \). This counterexample has \(g = 0 \); can you also give a counterexample using \(dy = -y ds + \epsilon dw \)?

4) On planet Dough a risky asset \(S_t \) evolves according to the diffusion equation

\[
dS_t = a(S_t) \, dt + b(S_t) \, dW_t
\]

while a risk-free asset \(X_t \) evolves according to

\[
dx_t = c(X_t) \, dt.
\]

Here \((a, b, c) \) are arbitrary functions, which generalize the usual log-normal model in which we had \(a = \mu S_t \), \(b = \sigma S_t \), and \(c = r X_t \). Adapt the derivation of the Black–Scholes equation to this more general case and find the PDE that determines the fair price of a derivative \(V_t = v(S_t, t) \) on this planet. Is the drift term \(a(S_t) \) important on this planet?

5) Consider the solution of

\[
u_t + a u_{xx} = 0 \quad \text{for} \quad t < T, \quad \text{with} \quad u = \Phi \quad \text{at} \quad t = T
\]

where \(a \) is a positive constant. Recall that in the stochastic interpretation, \(a \) is \(\frac{1}{2} g^2 \) where \(g \) represents volatility. Let’s use the maximum principle to understand qualitatively how the solution depends on volatility.

(a) Show that if \(\Phi_{xx} \geq 0 \) for all \(x \) then \(u_{xx} \geq 0 \) for all \(x \) and \(t \). (Hint: differentiate the PDE.)

(b) Suppose \(\bar{u} \) solves the analogous equation with \(a \) replaced by \(\bar{a} > a \), using the same final-time data \(\Phi \). We continue to assume that \(\Phi_{xx} \geq 0 \). Show that \(\bar{u} \geq u \) for all \(x \) and \(t \). (Hint: \(w = \bar{u} - u \) solves \(w_t + \bar{a} w_{xx} = f \) with \(f = (a - \bar{a}) u_{xx} \leq 0 \).)

6) Consider the standard finite difference scheme

\[
\frac{u((m + 1)\Delta t, n\Delta x) - u(m\Delta t, n\Delta x)}{\Delta t} = \frac{u(m\Delta t, (n + 1)\Delta x) - 2u(m\Delta t, n\Delta x) + u(m\Delta t, (n - 1)\Delta x)}{(\Delta x)^2}
\]

for solving \(u_t - u_{xx} = 0 \). The stability restriction \(\Delta t < \frac{1}{2} \Delta x^2 \) leaves a lot of freedom in the choice of \(\Delta x \) and \(\Delta t \). Show that

\[
\Delta t = \frac{1}{6} \Delta x^2
\]

is special, in the sense that the numerical scheme has errors of order \(\Delta x^4 \) rather than \(\Delta x^2 \). In other words: when \(u \) is the exact solution of the PDE, the left and right sides of (3) differ by a term of order \(\Delta x^4 \). [Comment: the argument sketched in the Section 3 Addendum shows that if \(u \) solves the PDE and \(v \) solves the finite difference scheme then \(|u - v| \) is of order \(\Delta x^2 \) in general, but it is smaller – of order \(\Delta x^4 \) – when \(\Delta t = \frac{1}{6} \Delta x^2 \).]