Recall the Fourier transform pair

\[\hat{f}(k) = \int_{-\infty}^{+\infty} f(x) \exp(-ikx) \, dx, \quad f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{f}(k) \exp(+ikx) \, dk \]

(1)

and the basic Fourier representation of the delta function

\[\int_{-\infty}^{+\infty} \exp(ikx) \, dk = 2\pi \delta(x). \]

(2)

1. Convolution rule

Given \(f(x) \) and \(g(x) \) the convolution operator \(*\) is defined as

\[h(x) = f(x) * g(x) = \int_{-\infty}^{+\infty} f(x-s)g(s) \, ds. \]

(3)

Show from the definition that the convolution is symmetric (i.e., \(f * g = g * f \)) and that

\[\hat{h}(k) = \hat{f}(k) \hat{g}(k). \]

(4)

2. Fourier transform and regularity

Consider the function \((l > 0 \text{ is some constant})\)

\[f(x) = \begin{cases}
0 & x < 0 \\
x & 0 < x < l \\
2l - x & l < x < 2l \\
0 & 2l < x
\end{cases}. \]

(5)

Based on the regularity of \(f(x) \), what power-law decay for large \(|k|\) do you expect for \(\hat{f}(k) \)? Compute \(\hat{f}(k) \) and verify your expectation. Repeat these two steps for the derivatives \(g(x) = f'(x) \) and \(h(x) = g'(x) \). How is \(\hat{g}(k) \) related to the Fourier transform of a unit block of width \(l \) computed in class?

3. Stationary phase for group velocity and dispersive caustic

Recall the integral

\[u(x,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{u}_0(k) \exp(i[kx - \omega(k)t]) \, dk \]

(6)

for a dispersive wave problem with dispersion function \(\omega(k) \) and initial conditions \(u(x,0) = u_0(x) \). As in class, for compactly supported initial data at the origin, seek an asymptotic evaluation of \(u \) along a ray with fixed \(c = x/t \) for large \(t = 1/\epsilon \). This brings in the wavenumber \(k_0 \) such that \(\omega'(k_0) = c \). Find the leading-order term of the solution if \(\omega''(k_0) = 0 \) and \(\omega'''(k_0) \neq 0 \) (you do not need to compute the numerical value of this term exactly, but you need to find its dependence on \(t = 1/\epsilon \) and \(\omega'''(k_0) \)). This is an example of a dispersive caustic. Does the solution along the caustic ray decay faster or slower than in the non-caustic case \(\omega''(k_0) \neq 0 \)?

Where in this group-velocity derivation (caustic or not) did you use the assumption that \(u_0(x) \) is compact? Hint: consider the size of

\[\frac{d\hat{u}_0}{dk} = \int_{-\infty}^{+\infty} -ix \, u_0(x) \exp(-ikx) \, dx. \]

(7)