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Simple stochastic models and direct nonlinear numerical simulations of three-dimensional
internal waves are combined in order to understand the strong horizontal particle dis-
persion at second order in wave amplitude that arises when small-amplitude internal
waves are exposed to weak dissipation. This is contrasted with the well-known results for
perfectly inviscid internal waves, in which such dispersion arises only at fourth order in
wave amplitude.

1. Introduction

We report on a somewhat surprising numerical result and on its tentative theoretical
explanation in connection with our previous studies of particle dispersion by random
waves in Bühler & Holmes-Cerfon (2009) and Holmes-Cerfon et al. (2011) (hereafter
HBF). These studies addressed the fundamental question as to how non-breaking small-
amplitude gravity waves can contribute to the irreversible quasi-horizontal spreading
of particles along stratification surfaces at very small scales, all with an eye towards
applications in oceanography. In common with previous studies of similar questions (e.g.,
Herterich & Hasselmann (1982), Sanderson & Okubo (1988), Weichman & Glazman
(2000), Balk et al. (2004); Balk (2006)), we modelled the linear wave field as a stationary
random process with a power spectrum that is strictly zero at zero frequency, which
implies that the linear velocity field cannot by itself give rise to any diffusion in the sense
of Taylor (1921) (cf. § 2 below). The physical motivation for this assumption was that the
frequency of inertia–gravity waves is bounded from below by the Coriolis parameter f ,
which provides a natural non-zero frequency cut-off everywhere away from the equator.

This implied that particle diffusion could arise only via advection by the wave-induced
Lagrangian-mean flow at second order in wave amplitude. Specifically, if in terms of the
non-dimensional wave amplitude a≪ 1 the usual wave energy E0 and the wave-induced
Lagrangian-mean flow are O(a2), then the leading-order diffusivity D, which is quadratic
in the advecting velocity, satisfiesD = O(a4), i.e.,D ∝ E2

0 . Our implicit presumption was
that this result, which was derived assuming unforced and inviscid random waves, would
continue to hold approximately for waves that are maintained in a prescribed stationary
state by the combination of weak forcing and damping, provided only that the damping
rate α, say, is reasonably small compared to the frequencies of the waves.

† Author to whom correspondence should be addressed.
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However, recent direct nonlinear numerical simulations of internal waves in the three-
dimensional rotating Boussinesq system (detailed below in § 4) instead robustly produced
values for D that were in fact proportional to E0, and not to E2

0 as predicted by theory.
This held even for quite weak wave damping and forcing (e.g., the damping rate is only 2%
of the wave frequency in the typical case displayed in figure 3 below). Notably, for small
wave amplitude a ≪ 1 the numerically observed O(a2) particle diffusion was therefore
much stronger than the O(a4) diffusivity predicted by the inviscid theory.

Our subsequent attempt at understanding this surprising result is based on the se-
quence of simple stochastic models for forced–dissipative waves enumerated in § 3. These
simple models allow detailed investigations into the interplay between damping and dif-
fusion and they show clearly that adding damping is a singular perturbation to the
previous inviscid theory: any fixed nonzero amount of damping leads to a diffusivity
D that is proportional to the wave energy E0 = O(a2) rather than O(a4) in the limit
of small wave amplitude a ≪ 1. In hindsight this result is perhaps less surprising, be-
cause the lack of particle diffusion at O(a2) in the inviscid theory relied crucially on
the exquisite reversibility of linear particle displacements, which is lost if any nonzero
amount of damping is introduced. This is the physical basis for the singular perturbation
that we observed, i.e., the dramatic change from weak, O(a4) particle diffusion to strong,
O(a2) particle diffusion induced by the introduction of weak dissipation.

The paper is organized as follows. The kinematics of Taylor diffusivity are summarized
in § 2 and the simple stochastic models are discussed in § 3. The numerical simulations
are detailed and compared to predictions from the simple models in § 4, which includes
an explicit scaling law for D in § 4.3. Concluding comments are offered in § 5.

2. Kinematics of Taylor diffusivity

The diffusivity of Taylor (1921) as a measure of particle dispersion is the simplest
quantity that is relevant to understanding the spreading of passive tracers within a fluid
body. The basic theory applies to the time-evolution of a Cartesian particle coordinate
X(t) defined as

dX(t)

dt
= u(t), X(0) = 0, ⇒ X(t) =

∫ t

0

u(s) ds. (2.1)

Here u(t) is the corresponding Cartesian component of the velocity field, which is clearly
the Lagrangian velocity field following the fluid particle. We will assume throughout that
u(t) is a stationary zero-mean random function with covariance function

C(s) = C(−s) = E[u(t)u(t+ s)] such that
1

2

d

dt
E[X2] =

∫ t

0

C(s) ds. (2.2)

Here E denotes probabilistic expectation. Assuming this integral converges as t → ∞,
this yields the definition of the diffusivity D, i.e,

D =

∫ ∞

0

C(s) ds =
1

2
Ĉ(0) such that E[X2] ∼ 2Dt for large t. (2.3)

The second form for D uses the power spectrum Ĉ(ω) defined via the Fourier transform

Ĉ(ω) =

∫ +∞

−∞

e−iωsC(s) ds and C(s) =
1

2π

∫ +∞

−∞

e+iωsĈ(ω) dω. (2.4)
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Finally, if we define the Lagrangian auto-correlation time scale as

τ =

∫ ∞

0

C(s)

C(0)
ds =

1

2

Ĉ(0)

C(0)
=

D

E[u2]
then D = E[u2] τ. (2.5)

At fixed E[u2] the diffusivity D is simply proportional to τ .

3. Simple stochastic models for forced–dissipative velocity fields

We consider three simple, exactly solvable linear stochastic differential equation (SDE)
models for the forced–dissipative evolution of a wavelike Lagrangian velocity field u.
Common to these models is that there is a one-parameter family of possible combinations
of forcing and dissipation parameters that maintain the same variance E[u2], but change
the time scale τ and therefore the diffusivityD. This is the key step in order to understand
the direct numerical simulations of forced–dissipative waves that follow in § 4. The three
models are gently increasing in complexity and relevance, and the third model, which
encompasses the other two in suitable limits, provides the best theoretical guidance for
understanding the full internal wave problem.

3.1. Ornstein–Uhlenbeck process

The Ornstein–Uhlenbeck (OU) process for u(t) is defined by the SDE

du

dt
+ αu = βξ with E[ξ] = 0 and E[ξ(t1)ξ(t2)] = δ(t1 − t2). (3.1)

Here the constant parameters α > 0 and β quantify the damping rate and forcing
strength, respectively. Strictly speaking, the white noise forcing ξ(t) is not a function
but a distribution, and it merely serves as a convenient shorthand for the increment of
the Wiener process dW = ξ dt that necessarily appears in the general theory of SDEs
(e.g. Gardiner 1997). This is sufficient for the simple additive noise examples we are
studying here, but would have to be reconsidered in the case of multiplicative noise,
where β depends on u. The OU process has a stationary distribution with (see §6.1)

Ĉ(ω) =
β2

ω2 + α2
and C(s) =

β2

2α
e−α|s|. (3.2)

The variance is E[u2] = C(0) = β2/2α and hence for the OU process constant variance
of u implies the one-parameter family β2 ∝ α. It then follows from (2.3) and (2.5) that

Ornstein–Uhlenbeck: D =
β2

2α2
=

(
β2

2α

)
1

α
⇒ τ =

1

α
. (3.3)

This illustrates the well-known fact that the OU auto-correlation time scale τ is equal to
the damping time scale 1/α. In particular, as the damping rate goes to zero the diffusivity
at fixed variance goes to infinity.

As a model for forced–dissipative linear waves the OU process neatly illustrates the
general point that D is not fixed, but depends on the modelling choice for the damping
rate α. However, the absence of any intrinsic wave dynamics in the evolution equation
for u(t) rather limits the direct utility of the OU process for the problem at hand. The
two following models improve on this point.

3.2. Linear harmonic oscillator

The linear harmonic oscillator (LHO) is defined by the second-order equation

d2u

dt2
+ α

du

dt
+ ω2

0u = βω0ξ (3.4)
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where the new parameter ω0 > 0 is the natural frequency of the undamped oscillator and
β measures the white noise forcing strength as before (the factor ω0 has been inserted to
keep the units of β the same as in (3.1)). Damped oscillatory motion occurs for values of
α below the threshold α = 2ω0. The case of weak damping, in which α≪ ω0, is perhaps
the most relevant in practice, but we can actually calculate all our results here without
restriction on the size of α. In particular, we obtain (see §6.1)

Ĉ(ω) =
β2ω2

0

(ω2 − ω2
0)

2 + α2ω2
and D =

β2

2ω2
0

. (3.5)

Remarkably, the diffusivity is independent of α in this expression. However, what is
relevant for us here is the diffusivity at fixed variance of u, and for this we need the
covariance function, which for α < 2ω0 is

C(s) =
β2

2α
e−

α|s|
2

{
cos (γ s) +

α

2γ
sin (γ |s|)

}
with γ =

√∣∣∣∣ω2
0 −

α2

4

∣∣∣∣. (3.6)

In the complementary case α > 2ω0 the functions (cos, sin) are replaced by (cosh, sinh),
respectively. Either way the variance is again E[u2] = C(0) = β2/2α and we obtain

Linear harmonic oscillator: D =
β2

2ω2
0

=

(
β2

2α

)
α

ω2
0

⇒ τ =
α

ω2
0

. (3.7)

This remarkable formula shows that at fixed ω0 and E[u2] the diffusivity is proportional
to the damping rate α and accordingly goes to zero as α → 0. This limit is consistent
with the earlier argument that a freely evolving linear wave with nonzero frequency (i.e.,
ω0 > 0) has D = 0. However, we also see that any amount of damping, no matter how
small, breaks this condition and delivers a nonzero D according to (3.7).

Now, as a model for a linear wave velocity u the LHO improves on the OU process
by introducing a natural wave frequency ω0. Still, in a fluid-dynamical model one would
add random forcing in the equation for du/dt, whereas in the LHO equation the forcing
acts on d2u/dt2 instead. This leads us to the third model.

3.3. Inertial oscillations

The third model is based on the inertial oscillations of a horizontally homogeneous sin-
gle fluid layer relative to a state of rest in a rotating frame of reference with Coriolis
parameter f , say. The horizontal velocity vector u = (u, v) and the governing SDEs are

du

dt
+ αu − fv = βξ1 and

dv

dt
+ αv + fu = βξ2. (3.8)

Here ξ1(t) and ξ2(t) are independent versions of white noise. In the stationary regime
u and v are identically distributed and for their common power spectrum and auto-
correlation function we obtain (see §6.1)

Ĉ(ω) =
1

2

(
β2

(ω + f)2 + α2
+

β2

(ω − f)2 + α2

)
and C(s) =

β2

2α
cos(fs)e−α|s|. (3.9)

Comparing (3.9) with (3.2) it is clear that this is the natural generalization of the OU
process to the case of a natural wave frequency f . Once more the variance of u is β2/2α
and the diffusivity is

Inertial oscillations: D =
1

2

β2

f2 + α2
=

(
β2

2α

)
α

f2 + α2
⇒ τ =

α

f2 + α2
. (3.10)
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The time scale of this process interpolates between the former two: for small α it ap-
proximates the LHO with τ ∝ α whilst for large α it approximates the OU process
with τ ∝ 1/α. As will be shown below, this is essentially what we observe for the Tay-
lor diffusivity in direct numerical simulations of wave-induced particle dispersion due to
forced–dissipative internal gravity waves.

4. Direct numerical simulations

We describe direct numerical simulations of small-amplitude internal waves using a
fully nonlinear three-dimensional numerical model for the rotating Boussinesq system
with linear damping and white noise wave forcing in time.

4.1. Numerical set-up

We use a modification of the pseudo-spectral model of Winters et al. (2004), which solves

ut + (u · ∇)u + f ẑ × u + ∇P − bẑ = +D6u − αquq + F , (4.1a)

bt + (u · ∇)b +N2w = +D6b− αqbq, and ∇ · u = 0 (4.1b)

Here u = (u, v, w) is the velocity vector, f = 10−4 s−1 is the Coriolis parameter, ẑ

is the vertical unit vector, P is the scaled pressure fluctuation, b is the buoyancy, and
N = 10−3 s−1 is the constant buoyancy frequency. The dissipation operator D6 is

D6 = −
(
ν6H(∂2

x + ∂2
y)3 + ν6z∂

6
z

)
, (4.2)

where ν6H and ν6z are horizontal and vertical dissipation coefficients. The additional
damping related to αq is discussed below (4.6). Our numerical domain is a triply periodic
rectangular box with horizontally square cross-section of side length L = 1 km and
vertical height H = δL = 100 m, so the aspect ratio δ = f/N = 1/10. The numerical
grid is flattened in the vertical and the domain is discretized with n = 96 points in all
three directions. We choose ν6z = δ6ν6H .

All fields X are expanded into discrete Fourier series of the form

X(x, y, z, t) =
∑

k,l,m

X̃klm(t) exp i (kx+ ly +mz) , (4.3)

where (k, l, δm) can take values from the discrete sets {−n/2 + 1, . . . , n/2}× 2π/L. The

reality condition X̃∗
−(klm) = X̃klm is enforced numerically by evolving the fields for k > 0

only and then extending the results to k < 0 by complex conjugation.
The white noise in time wave forcing F is designed to have no effect on the linear

potential vorticity (PV) of the system, which is q = ẑ · (∇×u)+ fbz/N
2. Otherwise the

forcing would produce an unwanted balanced, PV-controlled flow at the same order as the
waves, which would dominate the particle advection. This requires that ẑ · (∇×F ) = 0,
and we also find it convenient to enforce ∇· F = 0 because any divergent part of F is
absorbed by the pressure gradient. In spectral space this is achieved by

F̃ klm(t) =
1

kHK




−km
−lm
k2

H


 ξ(t) and F̃

∗

−(klm)(t) = F̃ klm(t), (4.4)

where K =
√
k2

H +m2. Here ξ = ξR + iξI is a complex normal random variable (inde-
pendent from time step to time step) with independent real and imaginary parts ξR and
ξI such that at each numerical time step with step size ∆t

E [ξR,I ] = 0, E [ξRξI ] = 0, and E
[
ξ2R,I

]
= 2αkHmEklm/∆t. (4.5)
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Here αkHm = ν6Hk
6
H +ν6zm

6, ∆t = 100 s the numerical time step and Eklm is a spectral
energy density that is related to the expected energy by

E0 =
1

2
E

[
u2 + v2 + w2 +

b2

N2

]
=

∑

k,l,m

Eklm. (4.6)

For time stepping a third-order Adams-Bashforth (AB3) scheme is used for all terms
except the random force, which is instead advanced using forward Euler. To minimize
aliasing whilst maintaining numerical accuracy, 1/9th of the wavenumbers are truncated
following Patterson & Orszag (1971).

There is one important caveat that we need to mention. Although F as defined does
not project onto the linear PV, in the presence of internal waves it does project on the
exact nonlinear PV defined by Q = ∇(N2z + b) · (∇ × u + f ẑ) via the O(a2) forcing
term ∇b · (∇ × F ), which will produce an unwanted balanced flow at O(a2). Although
this is much smaller than the O(a) waves, this nearly steady balanced flow can still lead
to significant particle advection and hence we have found it necessary to continuously
damp the balanced flow. To this end we diagnose at each time step the linear balanced
flow (uq, bq) from the instantaneous q via a quasi-geostrophic stream function ψ, i.e.,

ψxx + ψyy +
f2

N2
ψzz = q and uq = −ψy, vq = ψx, wq = 0, bq = fψz. (4.7)

This linear balanced flow is then damped with decay rate αq = 1/250 s−1.

4.2. Results for particle dispersion and diffusivity D

All numerical experiments are executed using the same functional form of the wave energy
spectrum localized at a central frequency ω0 and a scaled wavenumber Ks0 via

Eklm = (E0/nF ) × 1−∆ω/2≤ω−ω0≤+∆ω/2 × 1−∆Ks/2≤Ks−Ks0≤+∆Ks/2. (4.8)

Here nF is the number of modes for which Eklm 6= 0, the indicator function 1X is unity
if X is true and zero otherwise, and

Ks(kH ,m) =
L

√
k2

H + δ2m2

πn
and ω(kH ,m) =

√
k2

HN
2 +m2f2

K
(4.9)

are the scaled total wavenumber and the positive inertia–gravity wave frequency. We
use ω0/f = 2.06, ∆ω/f = 2.01, Ks0 = 0.56 and ∆Ks = 0.08. Hence the central wave
has horizontal and vertical wavelengths of about 43 and 8 metres, respectively, and its
frequency is near-inertial, which makes the simple model § 3.3 relevant with ω0 replacing
f . Figure 1 shows snapshots of the wave field in both physical and spectral space, where
the signature of the forcing in spectral space is clearly seen. The damping rate αkHm

does not vary much over the range of excited wavenumbers in (4.8) and we will simply
denote its average over these wavenumbers by α0.

We seed the fluid with 64 Lagrangian particles in a regular 4 × 4 × 4 pattern (see
figure 2). To maximize the distance between particles, a rudimentary staggering of the
initial horizontal positions across the vertical direction is implemented. Finally, contrary
to what is described in Winters et al. (2004), the velocity at each particle position is
interpolated from the Eulerian velocities at the neighboring grid points, without com-
munication between processors in parallel configurations, and an AB3 scheme is used to
advect the particles.

We assume that the particles are experiencing horizontal Taylor diffusion if

R2 = E
[
R2

i

]
= 4Dt, where Ri =

√
(xi − x0i)2 + (yi − y0i)2 (4.10)
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Figure 1. Snapshots of the scaled horizontal divergence (ux + vy)/f = −wz/f for
E0 = 2 × 10−9 m2 s−2 and α0/ω0 = 2.4 × 10−3 in (a) physical space and (b) spectral space
(the absolute value of the Fourier transform is shown). The non-dimensional wave amplitude is
about 10% in this example.
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Figure 2. Three-dimensional view of the particle trajectories in the example from figure 1. (a)
All particle trajectories, enlarged 10 times for clarity. Particles are colour-coded as a function
of their initial altitude: darker means lower. (b) A single particle trajectory in real size with
colour indicating time from t = 0 (dark) to t = 600 days (light). The trajectory is dominated
by inertial circles superimposed on a weak random walk.

is the horizontal displacement of the ith particle. The expectation is estimated by an
average over all particles and over eleven independent runs. Figure 3 shows R2 as a
function of time in two cases with weak damping, indicating that R2 is proportional to
time and also that D ∝ E0 = O(a2) instead of the inviscid prediction D ∝ E2

0 = O(a4).

4.3. A diffusivity scaling law for very weak damping

Letting α0/ω0 → 0 at fixed amplitude a presumably recovers the O(a4) diffusivity of
the inviscid theory. Now, for very weak damping with α0/ω0 comparable to O(a2) we
expect this inviscid O(a4) diffusivity to be comparable to the forced–dissipative O(a2)
diffusivity. In this regime we may use the theoretical prediction from § 3.2-3.3, namely
that the O(a2) contribution to diffusivity is proportional to α0. Both terms can then be
taken into account in the asymptotic scaling law

D = α0E0D2 + E2
0 D4 ⇔

D

E2
0

=

(
α0

E0

)
D2 +D4. (4.11)
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Figure 3. Statistics on particle displacements for α0/ω0 = 2.0×10−2 and (a) E0 = 10−9 m2 s−2

and (b) E0 = 5× 10−10 m2 s−2. Shadings: area centered around the median position where 50%
of the particles are found. Black lines: estimated R2, which equals 4Dt under Taylor diffusion.
A comparison shows very clearly that the slope 4D ∝ E0.
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0), where A is deduced from the slope at the origin.

Here the parameters D2 and D4 depend on the shape of the spectrum, but not on α0 or
E0. The second form makes obvious that D/E2

0 is just a linear function of α0/E0. Also,
the theoretical formula (3.7) suggests E[u2]α0/ω

2
0 ≈ α0E0D2, which for horizontally

isotropic near-inertial waves implies D2 ≈ 1/ω2
0.

To test (4.11) we conducted a series of numerical experiments varying both E0 and
α0. Specifically, E0 takes the values 1, 5, 10, 15 and 20 × 10−10 m2s−2, while α0/ω0 ≈
5.1, 10 and 20 × 10−4. Each of these 15 numerical experiments comprises 11–member
ensembles, so that statistics for each experiment are computed on 11×64 = 704 particles.
Experiments are spun up from rest and integrated for T = 1200 days (about 3000 wave
periods) for α0/ω0 ≈ 5.1×10−4 and 600 days otherwise. We then compute the diffusivity
by averaging R2/4t over the last 1/3 of the integration time. The results are displayed
in figure 4a and show very good agreement with (4.11), yielding the numerical estimates
D2 = 2.4 × 107 s2 and D4 = 5 × 109 m−2 s3.

This value for D2 is very close to the theoretical prediction D2 ≈ 1/ω2
0 = 2.5× 107 s2.

We also cross-checked at least the order of magnitude of D4 by applying the inviscid
theory of HBF to the spectrum (4.8), which produced D4 = 1.8 × 109 m−2 s3.

4.4. Diffusivity for strong damping

In a second series of experiments we explored the behaviour ofD for strong damping, with
α0/ω0 of order unity. In this regime the inviscid O(a4) contribution to D is negligible.
The theoretical prediction from § 3.3 suggests that the O(a2) diffusivity should scale with
α0/(ω

2
0 + α2

0), which exhibits a maximum at α0 = ω0. It is hard to check this prediction
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exactly, not least because ω varies by 50% in our spectrum (4.8). Still, investigating this
by a series of 600 day runs in which E0 is kept constant at 10−9 m2s−2 whilst α0/ω0 is
varied from 5.1 × 10−4 to 5.1 led to the encouraging results shown in figure 4b.

5. Concluding comments

Our direct numerical wave simulations turned out to be compatible with the simple
stochastic model based on (2.5) and (3.10) for the O(a2) horizontal diffusivity due to
internal waves with frequency ω0 and damping rate α0:

D = E[u2] τ = E[u2]
α0

ω2
0 + α2

0

. (5.1)

For weak damping the relevant auto-correlation time scale is τ = α0/ω
2
0. Of course, a

practical application of simple stochastic models such as (5.1) first requires an under-
standing of the real wave damping mechanisms, which are rarely linear and may involve
wave breaking, and also a justification of the forcing model based on white noise in
time. This is never an easy task in macroscopic fluid dynamics. Still, we plan to consider
these ideas for the internal wave spectrum in the ocean, where estimates for the highly
intermittent decay rate range from a few days to several months (e.g., Munk 1981).

There is another physical shortcoming of our simple model, namely that once we allow
for realistic wave dissipation we must also allow for the concomitant generation of PV
that inevitably arises at O(a2) in momentum-conserving physical systems (e.g, Bühler
2000). In our numerical model the PV was strongly damped by design, so this process was
eliminated. We hope to address in the near future the interesting fundamental problem of
particle dispersion due to a self-consistent ensemble of weakly dissipative waves together
with their concomitant wave-induced balanced flows.

We thank Kraig Winters for his kind assistance with the numerical model. Financial
support for OB and NG under the United States National Science Foundation grants
DMS-1009213 and OCE-1024180 is gratefully acknowledged.

6. Appendix

6.1. Derivation of power spectra in § 3

By definition, the power spectrum Ĉ(ω) of a real-valued stationary zero-mean random
process u(t) is the Fourier transform of C(s) = E[u(t)u(t + s)] with respect to the time
lag s. Using (2.4) this can be written in terms of the distributional Fourier transform
û(ω) = û∗(−ω) as

Ĉ(ω) =
1

2π

∫ +∞

−∞

ei(ω−ω′)t
E[û(ω)û∗(ω′)] dω′ =

1

2π

∫ +∞

−∞

E[û(ω)û∗(ω′)] dω′. (6.1)

The second form uses E[û(ω)û∗(ω′)] = 0 if ω 6= ω′. The distribution û(ω) is easily

expressed in terms of the distribution ξ̂(ω) = ξ̂∗(−ω) by taking the Fourier transform of
the governing SDE; it is this step that ensures that u follows the invariant measure of
the SDE. For example, for the OU-process this yields û = βξ̂/(iω + α). Evaluating (6.1)
is then straightforward after noting the spectral equivalent of (3.1b):

E[ξ(t1)ξ(t2)] = δ(t1 − t2) ⇔ E[ξ̂(ω)ξ̂∗(ω′)] = 2π δ(ω − ω′). (6.2)

This immediately yields Ĉ(ω) and hence the corresponding functions C(s) in § 3.1-3.2.
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The two-variable case in § 3.3 is best analyzed using the complex variable z = u + iv
such that (3.8) become the complex SDE dz/dt+αz+ ifz = β(ξ1 + iξ2). The equivalent
of (6.1) for the transform Q̂(ω) of the complex auto-correlation function

Q(s) = E[z∗(t)z(t+ s)] is then Q̂(ω) =
1

2π

∫ +∞

−∞

E[ẑ(ω)ẑ∗(ω′)] dω′. (6.3)

Using E[ξ̂i(ω)ξ̂∗j (ω′)] = 2π δijδ(ω − ω′) this is evaluated as

Q̂(ω) =
2β2

(ω + f)2 + α2
and Q(s) =

β2

α
e−ifse−α|s|. (6.4)

Note that Q∗(−s) = Q(s). From (6.3) it then follows that

Q(s) = E[u(t)u(t+ s)] + E[v(t)v(t + s)] + i (E[u(t)v(t+ s)] − E[u(t)v(t− s)]) (6.5)

after using stationarity for the final term. In the present case u(t) and v(t) are identically
distributed (though not independent) and therefore

C(s) = E[u(t)u(t+ s)] =
1

2
ReQ(s) =

β2

2α
cos(fs)e−α|s|. (6.6)

Analogously, E[u(t)v(t + s)] = 1
2 ImQ(s) = − β2

2α sin(fs)e−α|s|. Finally, (6.6) implies

Ĉ(ω) = (Q̂(ω) + Q̂∗(−ω))/4, so with real Q̂(ω) one can also note the shortcuts D =
Q̂(0)/4, E[u2] = Q(0)/2, and τ = 1

2 Q̂(0)/Q(0).
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