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ABSTRACT

The authors present an idealized theoretical and numerical study of tsunami-induced internal waves in the

atmosphere. These are gravity waves modified by acoustic effects that can propagate rapidly from the ocean

surface up to the ionosphere, where they are well known to leave a detectable fingerprint in airglow patterns

and other remote sensing observables. Accurate modeling of the wave propagation is a prerequisite for being

able to detect and decode this transient observational fingerprint by remote sensing methods. The authors

study this problem by formulating the initial-value problem for linear waves forced by an idealized tsunami at

the lower boundary and then employing a semianalytic Fourier–Laplace method to solve it. This approach

allows them to compute the detailed time evolution of the waves while ensuring that the correct radiation

condition in the vertical is satisfied at all times, a nontrivial matter for these transient waves.

The authors also compare the predictions of an anelasticmodel with that of a fully compressiblemodel in order

to discern the importance of acoustic effects. The findings demonstrate that back-reflection at the tropopause is

a significant factor for the structure of these waves and that the earliest observable signal in the ionosphere is, in

fact, a fast acoustic precursor wave generated by the nearly impulsive formation of the tsunami itself.

1. Introduction

It has been realized since the early days of gravity

wave research that vertically propagating gravity waves

can provide a very fast mechanism for information

transfer across the atmosphere, from ground level all the

way up to the ionosphere (Hines 1972), raising the pos-

sibility of tsunami detection via gravity wave–induced

modulations in the airglow patterns in the ionosphere at

roughly 100-km altitude. Of course, this is due to the

decay of background atmosphere density with altitude,

which increases the amplitude of linear waves by a factor

of roughly 3000 between ground level and 100-km alti-

tude. This implies that vertical displacements of only

tens of centimeters at the ocean surface can give rise to

vertical displacements of hundreds of meters in the

ionospheric E region, making possible the detection of

tsunamis by monitoring the ionosphere (Peltier and

Hines 1976). This theoretical possibility has been con-

firmed in principle by isolated postevent matching of

ionospheric observations with tsunami data (Artru et al.

2005; Rolland et al. 2010; Occhipinti et al. 2011; Makela

et al. 2011).

However, current gravity wave modeling approaches

based on vertical ray tracing or simple normal mode

theory rely on many restrictive assumptions that are

simply not satisfied in the real-world complex atmospheric

environment. In essence, these approaches reduce the

problem to that of stationarymountain leewaves, with the

tsunami playing the role of the mountain, a simplicity that

comes at a price: 1) considering only stationary solutions

omits many observable time-dependent quantitative de-

tails associated with the onset of the tsunami; 2) the as-

sumption of only upward-propagating waves does not

hold in a nonuniformly stratified atmosphere, where sig-

nificant partial back-reflection of waves in the vertical

naturally occurs, particularly at the tropopause; and

3) compressibility effects are neglected, yet the acoustic

component of the signal is significant, due both to the

sudden onset of the tsunami and to its fast propagation at

roughly two-thirds of the speed of sound.

In this paper, we develop a more complete modeling

approach for an idealized two-dimensional setting that

captures the wave dynamics in a vertical x–z plane

aligned with the tsunami’s direction of propagation. The

extension to three-dimensional waves is straightforward

in principle, though a three-dimensional wave would be
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computationally much more expensive. We find that the

nonsatisfaction in the real world of each of the three as-

sumptions above leads to significant effects: the acoustic

signal associated with the onset of the tsunami is the first

and strongest to arrive at the ionosphere; the subsequent

signal is far from stationary for a significant time interval;

and the effects of compressibility and wave reflection at

the tropopause account for significant changes in both the

transient and the asymptotic stationary state.

a. Wave reflection at the tropopause

A standard simplified approach to solve for atmo-

spheric gravity waves generated by a specified vertical

displacement at the ground level z(x, 0, t), say, is to use

the plane wave structure of vertically upward-

propagating waves in order to compute the vertical de-

rivative ›zz(x, 0, t) also at the ground level (Occhipinti

et al. 2008). Mathematically, this amounts to finding the

Dirichlet-to-Neumann map at the ground, under the

assumption that the gravity wave field consists exclu-

sively of upward-propagating modes. This is an ap-

proximate procedure, because it neglects the partial

back-reflections of waves in the vertical, which easily

arise in the presence of nonconstant buoyancy fre-

quency. In particular, at the tropopause, the value of

buoyancy frequency approximately doubles over a dis-

tance of just a few hundred meters, which for the com-

paratively long vertical waves induced by tsunamimeans

a rapid, nearly discontinuous change. This leads to the

back-reflection of a significant portion of the tsunami-

induced waves; therefore, the wave structure in the

troposphere cannot be approximatedwell using upward-

propagating waves alone. Conversely, solving for the

wave field using the simplified approach in the presence

of back-reflection at the tropopause leads to unphysical

incoming internal waves in the upper atmosphere, which

clearly do no satisfy the radiation condition there.

The key factor is to enforce the proper radiation con-

dition in the upper atmosphere as well as the kinematic

and dynamic boundary conditions at the tropopause

(Nappo 2002, 87–88) in order to achieve a well-posed and

correct solution devoid of unphysical waves. We can

achieve this in our idealized setting by adapting the re-

cent modeling approach developed in Chumakova et al.

(2013), where the wave field is restricted to consist of

vertically upward-propagating waves not at the ground,

but in the region above the tropopause. In the present

case, this ensures that the relevant boundary conditions

are satisfied in a situation where the buoyancy frequency

and wind speed can change discontinuously at the tro-

popause. This leads to a well-posed problem in which

back-reflection is naturally incorporated for both sta-

tionary and transient waves.

b. Nonstationarity and compressibility effects

Treating the tsunami as stationary in a moving frame

completely neglects both the signal associated with its

sudden onset and the transient period of adjustment of

the atmospheric wave field to the propagating tsunami.

To go beyond these severe limitations, we combine the

usual Fourier transform of the governing equations in the

horizontal coordinate x with a Laplace transform in time

t. This allows us to ascertain the correct causal solution to

the initial-value problem for the tsunami-generated in-

ternal waves, which in the long run asymptotes toward the

stationary solution described by the mountain lee-wave

approach.

Yet particularly noteworthy is the existence of a much

faster signal arrival in the ionosphere than that of gravity

waves. This is the rapid acoustic component of the

tsunami-induced waves. To capture this signal, we ex-

tend the model beyond the anelastic equations to a fully

compressible atmosphere. It turns out that the only ex-

tra complexity that this adds to the Laplace-transformed

problem is in the expressions for the eigenvalues asso-

ciated with the boundary value problem, but the struc-

ture of this problem remains the same.

c. Plan of the paper

Section 2 sets the scene by studying the anelastic

model. After posing the system and reducing it to a single

fourth-order equation, we consider a simplified scenario

with piecewise constant coefficients, corresponding to

two isothermal states with uniform wind, one modeling

the troposphere and one the stratosphere and above. We

Fourier transform this system in space and Laplace

transform it in time, derive the jump conditions at the

tropopause, and solve the resulting boundary value prob-

lem in closed form. By adopting idealized shapes for

the propagating tsunami and for its nearly impulsive onset,

the Fourier–Laplace-transformed solution can be found

explicitly, although the inverse transforms to recover the

solution in physical space must be computed numerically.

The numerical inverse Laplace transform is adopted from

Bran�cík (2011). The solution is compared to one without

back-reflection at the tropopause and with the more clas-

sical stationary solution isomorphic tomountain leewaves.

It is found that the existence of back-reflection gives rise to

a nontrivial sensitivity of the solution to the tsunami speed:

a discrete set of speeds yields waves that resonate with

the height of the tropopause, thus creating alternating

maxima and minima in the pseudomomentum flux.

Also, for speeds above a critical value of roughly 250ms21

for a realistic atmosphere, the pseudomomentum flux

vanishes, with the tsunami yielding evanescent, rather

than radiating, waves.

2304 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 72



Section 3 extends the analysis by considering a fully

compressible atmosphere. Much of the analytical struc-

ture of the solution carries through to this more compli-

cated scenario. An interesting modeling issue arises: the

full atmosphere can no longer be consistently modeled as

two contiguous isothermal layers, since the stratosphere

would have to be simultaneously warmer than the tro-

posphere for the tropopause to be convectively stable and

colder so as to have higher stratification. We have found

an elegant solution to this dilemma: modeling each layer

through a system with constant coefficients, as in an iso-

thermal atmosphere, but specifying not the temperature

but the lapse rate. We check the accuracy of this ap-

proximation by dividing the troposphere intomore layers

and verifying that the solution changes little.

Section 4 explores the consequences of including

compressibility effects. These come in two types: a fast

acoustic pulse that carries the first signal of the de-

veloping tsunami high into the atmosphere, and a quan-

titative change present even in the asymptotic stationary

regime and that can be partially interpreted using the

Prandtl–Glauert factor familiar from compressible airfoil

theory (Shapiro 1953), which departs significantly from

unity for real tsunamis, which have Mach numbers of

roughly two-thirds. Some concluding remarks are offered

in section 5.

2. Anelastic fluid model

a. Governing equations for anelastic waves

The target depth of vertical propagation from the sea

surface to the ionosphere is about 100 km, which makes

modeling the density decay an essential component. The

simplest model is therefore a set of anelastic equations,

which filters sound waves but accommodates the density

decay. We use a very simple version of the anelastic

equations, which differs from the standard Boussinesq

equations only in the continuity equation. Specifically,

we use the two-dimensional linear anelastic equations

for a frictionless adiabatic fluid [(18)–(21) in Lipps

(1990); (4.1) in Bannon (1996)]:

›x(r0u)1 ›z(r0w)5 0, (1a)

Dtu1U 0w1 ›x(p/r0)5 0, (1b)

Dtw1 ›z(p/r0)2 b5 0, and (1c)

Dtb1N2w5 0. (1d)

HereDt 5 ›t 1U›x, withU5U(z) the backgroundwind,

u is the linear perturbation from U, w is the vertical ve-

locity, r0(z) is the background density, p is the linear

perturbation from the background pressure, b is the

buoyancy disturbance, a prime denotes the vertical de-

rivative of a background field, and N(z) is the buoyancy

frequency. The peculiar placement of r0(z) inside the z

derivative in the vertical momentum equation is consis-

tent with the definition of the buoyancy disturbance in the

presence of a finite density scale height H(z)52r0/r
0
0.

Coriolis forces are neglected, as it will turn out that the

internal waves have intrinsic frequencies that are much

higher than the Coriolis frequency.

We now derive a single equation for the vertical particle

displacement z defined by Dtz5w. First, we eliminate r

and u from (1) and obtain

D2
t (r0w)1N2r0w52Dt›zp2

1

H
Dtp

2›2xp52Dt›z(r0w)1U0›x(r0w) . (2)

Second, we rescale z and p by

~z[
ffiffiffiffiffi
r0

p
z and ~p[ p/

ffiffiffiffiffi
r0

p
(3)

and substitute in (2) to obtain

(D2
t 1N2)~z52

�
›z1

1

2H

�
~p

›2x~p5D2
t

�
›z2

1

2H

�
~z . (4)

Last, by eliminating ~p, we obtain the single equation�
(D2

t 1N2)›2x1

�
›z1

1

2H

�
D2

t

�
›z2

1

2H

��
~z5 0, (5)

which has to be augmented with suitable initial and bound-

ary conditions, of course. So far, we allowed for arbitrary

coefficients described by background fields (U, N, H) as

a function of altitude, but we now restrict to two layers

with piecewise constant sets of coefficients, one for the

troposphere and one for the rest of the atmosphere, which

includes the stratosphere. Physically, this corresponds to

an isothermal background state within each layer.

b. Solution with piecewise constant coefficients

We use subscripts 1 and 2 to denote quantities in the

troposphere and the air above, respectively, and use zp
for the height of tropopause that separates the two re-

gions. Within these regions (U, N, H) are constant;

hence, (5) simplifies to (i 5 1, 2):

(›t 1Ui›x)
2

 
›2x1 ›2z2

1

4H2
i

!
~zi 1N2

i ›
2
x
~zi 5 0. (6)

We assume zero initial conditions for ~zi(x, z, t): that is,

~zi(x, z, 0)5 ›t
~zi(x, z, 0)5 0. (7)
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We apply a Fourier transform in x and a Laplace trans-

form in t to (6), and, using (7), we obtain its transformed

counterpart:

›2zẑi
T 5

"
k2N2

i

(s1 ikUi)
2
1 k21

1

4H2
i

#
ẑ
T
i (8)

for ẑi
T(k, z, s). Here, c(�)(k, �) denotes the Fourier trans-

form in x, and (�)T(�, s) denotes the Laplace transform in

t. For fixed k and s, this is a second-order ODE in z in

each of the two regions; therefore, four boundary con-

ditions in z are required to determine ẑ
T

1 (k, z, s) and

ẑ2
T(k, z, s) uniquely.

At the sea level z5 0 we have the kinematic boundary

condition ~z5
ffiffiffiffiffiffiffiffiffiffiffi
r0(0)

p
h, where h(x, t) is a given function

that describes the ocean tsunami motion. This yields

ẑ1
T(k, 0, s)5

ffiffiffiffiffiffiffiffiffiffiffi
r0(0)

q
ĥT(k, s) . (BC1)

For the initial-value problem that we are envisaging, the

correct boundary condition at infinite altitude is ~z5 0,

which yields

ẑ2
T(k,‘, s)5 0. (BC2)

The kinematic and dynamic boundary condition at the

tropopause z 5 zp are that the vertical displacement

and the total pressure are continuous across the un-

dulating tropopause in a manner that is familiar from

solving for interfacial waves between fluid layers of

unequal density. However, the present situation is

somewhat simpler, because the background density

and therefore the background pressure gradient due

to hydrostatic balance are continuous across the tro-

popause. First, the kinematic condition obviously

implies

ẑ1
T(k, zp, s)5 ẑ2

T(k, zp, s) . (BC3)

Second, the dynamic pressure condition reduces to

continuity of the perturbation pressure ~p, which by the

second equation in (4) implies

[D2
t ›z

~z]
z
p
1

z
p
2
5

�
D2

t
~z

2H

�z
p
1

z
p
2

.

After the Fourier–Laplace transform, this gives

[(s1 ikU)2›zẑ
T]

z
p
1

z
p
2 5

"
(s1 ikU)2ẑT

2H

#z
p
1

z
p
2

. (BC4)

A lengthy but straightforward derivation then yields the

solution as

ẑT1 (k, z, s)5
ffiffiffiffiffiffiffiffiffiffiffi
r0(0)

q
ĥT(k, s)3

m(k, s) sinh[l1(k, s)(zp2 z)]1 cosh[l1(k, s)(zp 2 z)]

m(k, s) sinh[l1(k, s)zp]1 cosh[l1(k, s)zp]

ẑT2 (k, z, s)5

ffiffiffiffiffiffiffiffiffiffiffi
r0(0)

p
ĥ
T
(k, s)e2l

2
(k,s)(z2z

p
)

m(k, s) sinh[l1(k, s)zp]1 cosh[l1(k, s)zp]
, (9)

with

li(k, s)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2N2

i

(s1 ikUi)
2
1 k21

1

4H2
i

s
and (10a)

m(k, s)5
A2(k, s)2A1(k, s)1 l2(k, s)B2(k, s)

l1(k, s)B1(k, s)
. (10b)

Here, li are chosen with the positive real parts, and

Ai(k, s)5
(s1 ikUi)

2

2Hi

, Bi(k, s)5 (s1 ikUi)
2 . (11)

Notably, this solution still allows for different wind

speed U1,2 in the two layers. The physical wave field

z(x, z, t) is obtained from inverting (9):

zi(x, z, t)5
~zi(x, z, t)ffiffiffiffiffiffiffiffiffiffiffi

r0(z)
p 5

1ffiffiffiffiffiffiffiffiffiffiffi
r0(z)

p F 21[L 21(ẑi
T)](x, z, t) ,

(12)

where F 21 and L 21 denote the inverse Fourier and

Laplace transform respectively. In our numerical ex-

amples, we choose very idealized functions h(x, t) such

that ĥT(k, s) can be found analytically, but, in any case,

the inverse Fourier and Laplace transforms in (12) have

to be performed numerically.

c. Idealized setup and lee-wave theory

We set the tropopause height at zp 5 10 km and use

typical tropospheric and stratospheric values for N and

H: N1 5 0.01 s21, H1 5 9 km; N2 5 0.02 s21, H2 5 6 km.

We allowed piecewise constant wind in our equations,
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but from now on we consider only the case of no back-

ground wind (i.e., U1 5 U2 5 0).

Our idealized model for the tsunami elevation at the

sea surface h(x, t) is as follows: in the first phase of du-

ration t, the elevation h(x, t) grows linearly in time until

it reaches a prescribed shape f(x), say. This models the

active underwater earthquake and the concomitant

near-impulsive deformation of the sea surface into the

shape f(x). In the second phase, this shape then simply

travels horizontally to the right with a constant speed

of propagation V, which models the external wave

speed
ffiffiffiffiffiffiffiffiffi
gHo

p
, whereHo is the ocean depth. For example,

if Ho 5 4 km, then V 5 200m s21.

Of course, this ignores the equal-and-opposite prop-

agation of another tsunami shape to the left, which could

trivially be added by linear superposition. As the in-

ternal waves stay sharply localized above the moving

tsunami source, we find that this makes little difference

in practice, so for clarity we focus on the right-going

tsunami only. We therefore have

h(x, t)5

�
(t/t)f (x) , 0, t# t

f [x2V(t2 t)] , t. t .
(13)

The transform of h(x, t) is (cf. appendix A)

ĥ
T
(k, s)5 e2st

"
2e(st/2) sinh(st/2)

s2t
2

1

s
1

1

s1 ikV

#
f̂ (k) .

The tsunami shape is idealized as a Gaussian bump f (x)5
exp(2x2/2s2), wheres5 20km. It is shown in appendix B

that this leads to a typical horizontal wavelength of size

lx5 2p3/2s’ 200 km. (14)

The numerical domain length was 6400 km in the hori-

zontal, which was sufficient to make boundary effects

negligible.

One objective of our numerical examples is to show

the significance of back-reflection at the tropopause

interface, and, for ease of comparison, we therefore

also run a reflection-free setup in which the parameter

values of the upper layer are extended to the lower

layer as well, so N and H are constant throughout and

equal to their stratospheric values. Now the natural

reference solution is the steady-state solution that is

established a long time after the tsunami has been

created. As argued in Peltier and Hines (1976), this

steady-state solution is equivalent to the familiar lee-

wave problem, where the effective wind speed is equal

to 2V. This can be analyzed with elementary wave

theory and group-velocity concepts. For example, the

dispersion relation linking (k, m) and the intrinsic fre-

quency v̂ is

m25 k2
�
N2

v̂2
2 1

�
2

1

4H2
. (15)

Using the condition of zero absolute frequency v̂2 5
V2k2, this yields

m25
N2

V2
2 k22

1

4H2
’

N2

V2
(16)

for the vertical wavenumber m. The indicated rough

approximation is valid because, for our choice of f(x),

the relevant range of horizontal wavenumbers is

jkj# 1/s, which makes the other two terms comparable

in size but small compared to the first term. Hence, the

expected vertical wavelength is approximately

lz5
2p

jmj5
2pV

N
’ 60 km. (17)

These are therefore very deep waves, with a vertical

wavelength that is some 10 times larger than the familiar

mountain lee waves, because the effective wind speed is

10 times larger. Under the approximation in (16), the

size of the vertical group velocity wg 5 ›v̂/›m is easily

computed and takes the form

jwgj5V2jkj
N

5V
jv̂j
N

’ 502 100m s21 . (18)

The first expression shows that, for fixed k, the group

velocity is proportional to V2, while the second ex-

pression makes obvious that V is an upper bound for

wg. For fixed V and f(x), we have that small-scale hor-

izontal features travel fastest in the vertical; for the

envisaged parameter values, we get the indicated range

ofwg, which shows that tsunami-induced internal waves

can travel to the ionosphere at 100-km altitude in less

than an hour.

d. Numerical examples, back-reflection, and tsunami
speed

Figure 1 shows two snapshots of the scaled vertical

displacement ~z at time t 5 40min for V 5 200ms21,

which is the speed of a tsunami on an ocean with depth

of Ho 5 4 km; there is also a third snapshot at time t 5
5min for comparison with the later compressible model.

The plots are centered over the current position of the

tsunami, and the hydrostatic part of the wave field re-

mains on top of the tsunami, while the nonhydrostatic

part of the wave field lags behind, which is a scenario

that is familiar from mountain lee waves. These plots

also illustrate that smaller horizontal scales travel faster

than larger horizontal scales, which is consistent with

(18). Moreover, the left panel is the control run without

a tropopause, which clearly shows significantly higher
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wave amplitudes than the run with a tropopause on the

right. The size of the amplitude difference turns out to

be a sensitive function of the tsunami speed V.

This is illustrated in Fig. 2, which shows the time

history of the horizontally averaged root-mean-square

value of scaled vertical displacement at altitude 100 km

for three different speeds V. The plotted displacement

amplitude has been normalized by the amplitude of the

topography shape f(x). In the left panel, the speed is

very low (viz. just V 5 30m s21), and there is little

difference between the wave field with or without the

tropopause jump. This is the familiar situation from

topographic gravity wave parameterization schemes,

where near-surface winds are a few tens of meters per

second at most, and where back-reflection is typically

ignored. The situation changes significantly in the

middle panel, where V 5 100m s21. Here, the uni-

formly stratified case exhibits significantly higher (al-

most double) asymptotic wave amplitude than the case

with a tropopause, which indicates that significant

back-reflection is taking place there. Comparing with

the left panel, we can also see that the faster horizontal

tsunami speed results in faster vertical propagation of

the internal waves, as predicted by (18). Finally, the

right panel is based on V 5 200m s21. Again, the in-

clusion of the tropopause is clearly significant.

At this point, it seems that speeds belowV5 30m s21

are unaffected by the tropopause, but this is actually

not the case. One easy way to show this is presented in

the left panel in Fig. 3, which shows the steady-state

vertical flux of horizontal pseudomomentum [divided

by r0(0)]:

D52u0w0 at z5 0. (19)

The size of the pseudomomentum flux is a good indicator

for the importance of back-reflection, as, without reflection,

the lee-wavepseudomomentumflux takes the simple shape

indicated by the blue line in the left panel. By contrast, the

red line shows the pseudomomentum flux after including

the tropopause, which has a complicated oscillatory struc-

ture for speeds belowV5 50ms21 and remains below the

blue curve at higher speeds. This shows that the agreement

for V5 30ms21 in the previous figure was fortuitous, and

FIG. 1. Snapshots of scaled vertical displacement ~z in the anelastic model for V5 200m s21. Also shown are three line plots defined by

z1 15 0003~z(x, z, t), with z 2 f30, 60, 100g km, respectively. These are material lines with greatly exaggerated deformations, and they

illustrate that shorter scales travel faster than longer scales. (left) Uniform stratification at t5 40min; (middle) with tropopause located at

z 5 10 km; (right) with tropopause, but at earlier time t 5 5min.

FIG. 2. Time evolution of anelastic gravity wave amplitudes at z 5 100 km with a tropopause (red line) and without (blue line). The

tsunami speeds across the panels are (left) V 5 30, (middle) V 5 100, and (right) V 5 200m s21; and the stippled lines indicate the

asymptotic steady-state limit; note the much longer integration time for V5 30m s21. In the V5 200m s21 case, the uniformly stratified

limit is less than unity, because part of the wave field is evanescent.
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back-reflectionmay be relevant even for the comparatively

small wind speeds typical for mountain-wave generation

and parameterizations in GCMs.

We find that, for certain values of V in the low-speed

range, the pseudomomentum flux does not depend on

whether the stratification is constant or not. For example

for the speed 30ms21, the pseudomomentum fluxes are

the same, and, correspondingly, the wave fields are also

the same. Interestingly, for this speed, half the vertical

wavelength fits into the troposphere, a situation that is

not possible at higher speeds but occurs for many lower

speeds, as indicated in the figure. This indicates a reso-

nance condition between the vertical wave structure and

the tropopause height.

Another observation of Fig. 3 is that, for anelastic

waves, there is a speed barrier of 268m s21 for the

pseudomomentum flux such that, when the tsunami

travels faster than this speed, there is no pseudomo-

mentum flux into the stratosphere, and thus the wave

field above the tropopause is evanescent. Indeed, this is

the reason why the asymptotic amplitude for the blue

line in the right panel of Fig. 2 falls short of unity: some

horizontal wavenumbers are already evanescent for

this high tsunami speed. In summary, if we model

gravity waves as anelastic, the effect of stratification is

significant for fast-moving lower boundaries of speeds

50–250m s21 in the open ocean, except for some slow

speeds no greater than 30m s21 whose induced vertical

wavelength fits the troposphere.

The present anelastic model suffers from several

shortcomings in the tsunami problem. For example, the

Mach number based on the tsunami speed V for a re-

alistic ocean depth is about 2/3, which is not small. This

makes dynamic compressibility relevant, an effect that

is missing from the anelastic continuity equation.

Moreover, even for smaller speeds V, the anelastic

model is unrealistic for the very early stage of the wave

propagation, which is relevant for discerning the pre-

cise nature of the first-arrival signal at the ionosphere.

This is due to the action-at-a-distance property that

the anelastic equations share with the familiar

Boussinesq equations: in these models the sound speed

is effectively infinite, and signals may get transmitted

instantaneously. For example, as shown in appendix D,

the anelastic response in terms of the Fourier-

transformed vertical displacement ẑ to an impulsively

started tsunami has a vertical structure that decays as

exp(2lz) where

l5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21

1

4H2
2

s
2

1

2H2

. (20)

This means that the ionosphere at z 5 100 km is in-

stantaneously disturbed by the creation of the tsunami

at sea level, which is unphysical. Of course, the size of

the impulsive disturbance decays with altitude, but the

decay rate implied by (20) is actually quite modest if

k2 ; 1/s2, with an implied e-folding length of about

20 km or more. Indeed, we have found that plots

analogous to the left and middle panels in Fig. 1 but

taken at lower altitude were noticeably affected by the

spurious instantaneous response at early times. Even

though this response is quite small in the high altitudes

and does not affect significantly the ionospheric sig-

nal, this spurious instantaneous response has been

created throughout the atmosphere because of an-

elasticity. This fact, together with the inevitability of

finite Mach number effects, calls for the use of a fully

compressible model, as in Peltier and Hines (1976),

which we pursue next.

FIG. 3. (left) Pseudomomentum flux D as a function of V in anelastic model with and without a tropopause. (middle) Pseudomo-

mentum flux D for larger range of V and for both anelastic and compressible models with and without a tropopause. The forbidden

tsunami speed zone is clearly visible. (right) Root-mean-square ratio of acoustic–gravity waves to anelastic gravity waves in case with

tropopause. The red circles are the actual ratios, and the blue solid line is the scaled pseudomomentum flux ratio
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2D/Dg

q
, which

crudely measures the increased back-reflection in the anelastic case. Without a tropopause, this scaled pseudomomentum flux ratio

would be unity by (33).
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3. Compressible fluid model

The fully compressible fluid model allows for

acoustic–gravity waves, has no spurious action-at-a-

distance effects, and can deal with the high Mach

numbers associated with the tsunami speed V. In

particular, the inclusion of realistic acoustic waves for

the initial-value problem is important, because ob-

servations show that the first arrival of a transient

signal of tsunami-induced waves occurs at 100-km al-

titude just 5min after the tsunami is generated. This

fast and transient response is clearly acoustic in na-

ture. We find that the structure of the asymptotic,

steady-state wave field also differs noticeably from the

anelastic case, which is because of the high Mach

number of about 2/3.

a. Governing equations for compressible waves

We use the equations for a linearized stratified com-

pressible adiabatic fluid in the form

Dtr1 r0(›xu1 ›zw)1 r00w5 0, (21a)

r0(Dtu1U 0w)1 ›xp5 0, (21b)

r0Dtw1 ›zp1 gr5 0, (21c)

Dtp1 p00w2 c2(Dtr1 r00w)5 0, and (21d)

p001 r0g5 0. (21e)

The notation is the same as before, with additional

symbols for the background pressure p0 and the back-

ground sound speed:

c25 g
p0
r0

5 gRT0 . (22)

Here, g is the ratio of the specific heats, R is the gas

constant, and T0 is background temperature. The

buoyancy frequency is now defined as

N25
g

H
2

g2

c2
and H52

r0
r00

, (23)

as before. If the lapse rate is defined by G52T 0
0, then

the profiles of (N, H, c, T0) are linked by (22) as well as

H5
RT0

g2GR
and N25

g2

RT0

�
g2 1

g
2

GR

g

�
. (24)

Eliminating r and u from (21), we obtain a complete set

of equations for r0w and p:

D2
t (r0w)1N2r0w52

g

c2
Dtp2Dt›zp

D2
t p2 c2›2xp52

c2N2

g
Dt(r0w)2 c2Dt›z(r0w)

1 c2U 0›x(r0w) .
(25)

Applying the rescaling (3) again turns (25) into

(D2
t 1N2)~z5

�
1

2H
2

g

c2
2 ›z

�
~p

(D2
t 2 c2›2x)~p5 c2D2

t

�
1

2H
2

N2

g
2 ›z

�
~z . (26)

This is a complicated set of equations, although, in the

special case of constant U and T0, this set has constant

coefficients and therefore admits plane acoustic–gravity

waves with the celebrated dispersion relation

m25
v̂2

c2
1 k2

�
N2

v̂2
2 1

�
2

1

4H2
. (27)

The compressible term v̂2/c2 always increases the value

of m2 over its anelastic value, and, for the lee-wave

problem, the relative magnitude of this increase can be

estimated as (v̂2/N2)(V2/c2), which exhibits the impor-

tance of the Mach number squared.

Returning to the general equation (26), we cannot simply

eliminate ~p in the physical space variables, because the op-

erators on ~p do not commute. But if we apply the Fourier–

Laplace transformandusehomogeneous initial conditions for
~z and ~p and their time derivatives, then we are able to obtain

a single equation for the transformed variable ẑT(k, z, s):

[(s1 ikU)21N2]ẑT 5

�
›z 1

g

c2
2

1

2H

�
c2(s1 ikU)2

(s1 ikU)2 1 c2k2

�
›z 1

N2

g
2

1

2H

�
ẑT. (28)

b. Modeling the troposphere and tropopause

Peltier and Hines (1976) computed the steady-state

wave pattern based on a completely isothermal

atmosphere, which admits simple plane wave solutions

with the dispersion relation (27). We seek to model the

tropopause and the positive jump inN2 across it, but it is

not possible to do this by simply adjoining two isothermal
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layers because of convective instability. This is easy to

see from (24) with zero lapse rate G 5 0. Then, if N in-

creases across a tropopause jump, it follows that T0

must decrease, and pressure continuity then implies

that r0 increases across the tropopause. This means the

background state would be unstable.

In the real atmosphere, the lower value of N1 in the

troposphere is associated with the nonzero lapse rate

G1’ 7Kkm21 there, while G2’ 0 to first approximation

in the stratosphere. We therefore proceed by adopting

a simple two-layer model that uses these two lapse rates

but ignores the vertical variations of temperature in the

two layers. Specifically, we use T1 5 218K in the upper

layer and a midtropospheric value T1 5 254K in the

lower layer; the corresponding sound speeds are c2 ’
296m s21 and c1 ’ 320ms21. The values forH and N in

the two layers are then the same as for the anelastic

model: N1 5 0.01 s21, H1 5 9 km; N2 5 0.02 s21, H2 5
6 km. Of course, this simplistic approach ignores varia-

tions in T0 and the other fields of some 10%–20% in the

troposphere. To check how sensitive our results are, we

have also formulated a more complicated multilayer

model, which is described in section 3c below.

We now substitute piecewise constant (N,H, c,U) into

(28) and obtain

›2zẑ
T
i 5

(�
1

2Hi

2
N2

i

g

�2

1
[(s1 ikUi)

21N2
i ][(s1 ikUi)

21 c2i k
2]

c2i (s1 ikUi)
2

)
ẑ T
i ,

(29)

to be solved in two layers indexed by the subscript

i 2 f1, 2g. This requires four boundary conditions, and
the first three boundary conditions are the same as

(BC1)–(BC3). The jump condition for the vertical

gradient of vertical displacement is slightly modified.

Integrating (28) from zp
2 to zp

1, we obtain the jump

condition:

"
c2(s1 ikU)2

(s1 ikU)21 c2k2
›zẑ

T

#z
p
1

z
p
2

5

"
c2(s1 ikU)2

(s1 ikU)21 c2k2

�
1

2H
2

N2

g

�
ẑT

#
z
p
1

z
p
2 (BC40)

The solution of (29) with boundary conditions (BC1)–

(BC3) and (BC40) is given by (9) with

li(k, s)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

2Hi

2
N2

i

g

�2

1
[(s1 ikUi)

21N2
i ][(s1 ikUi)

2 1 c2i k
2]

c2i (s1 ikUi)
2

vuut
m(k, s)5

A2(k, s)2A1(k, s)1l2(k, s)B2(k, s)

l1(k, s)B1(k, s)
, (30)

where the li are chosen with the positive real parts, and

Ai(k, s)5
c2i (s1 ikUi)

2

(s1 ikUi)
2 1 c2i k

2

�
1

2Hi

2
N2

i

g

�

Bi(k, s)5
c2i (s1 ikUi)

2

(s1 ikUi)
2 1 c2i k

2
. (31)

As in the anelastic case, in our numerical examples be-

low, we will use zero winds so we setUi 5 0 from now on.

The asymptotic steady-state limit of the isothermal

fully compressible model is the same as the one pro-

posed by Peltier and Hines (1976). We see, from the

comparison of the asymptotic steady-state limits of the

nonisothermal model with the isothermal one in Fig. 4,

that including the tropopause reduces the wave ampli-

tude in the long run. This makes the back-reflection at

the tropopause a significant factor in the modeling of

acoustic–gravity waves.

c. Multilayer modeling of the troposphere

Wehave analytically solved the equations at the price of

approximating the linear temperature profile of the tro-

posphere by the temperature in the middle of that layer so

as to have constant coefficients in the equations. To im-

prove on this shortcoming, we can model the troposphere

using several layers (i.e., we allow a number of n layers in

the troposphere). For the ith layer from the bottom, we

have T
(i)
1 5T[(i2 0:5)zp/n]5T(0)2G(i2 0:5)zp/n; conse-

quently,N
(i)
1 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(g/cp2G)g/T(i)

1

r
,H

(i)
1 5T

(i)
1 /(g/R2G), and

c
(i)
1 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gRT

(i)
1

r
, where cp is the specific heat capacity. We

then need to solve n 1 1 eigenvalue problems (including

the one in the stratosphere), which are formally the same

as the ones in (29), for 2n 1 2 unknown coefficients of

eigenfunctions, where the eigenfunctions and the ei-

genvalues are known a priori. We have n 2 1 kinematic

boundary conditions and n 2 1 dynamic boundary con-

ditions between the semi-isothermal layers; we have one

JUNE 2015 WE I ET AL . 2311



kinematic boundary condition and one dynamic bound-

ary condition between the top layer of the troposphere

and the stratosphere; we have one boundary condition at

the sea level and one boundary condition at infinite al-

titude. In total, we have 2(n 2 1) 1 2 1 2 5 2n 1 2

boundary conditions for 2n 1 2 unknown coefficients.

This yields a solvable (2n1 2)3 (2n1 2) linear system.

We have compared our standard n 5 1 model with

results based on a model with n 5 4 layers in the tro-

posphere and found very encouraging agreement. For

example, the circles plotted in Fig. 4 are based on the

n 5 4 model, and they compare very well with the lines

based on the n5 1 model. We therefore believe that the

simple two-layer model is capable of capturing the es-

sence of the tsunami-induced acoustic–gravity waves.

4. Fast and slow compressible effects

Both the slow, steady-state lee waves, as well as the fast,

transient initial wave field are significantly altered by the

inclusion of compressible effects. The slow effects aremost

easily discussed in terms of the steady-state pseudomo-

mentum flux and the establishment of the vertical dis-

placement at different altitudes. Here, the similarity with

the anelastic results depends greatly on the tsunami speed

V, as expected. The new fast effects are dominated by an

acoustic pulse that crosses the atmosphere in a fewminutes

and is the first signal to arrive at the ionosphere. Notably,

this acoustic pulse was entirely absent in the anelastic

system.

a. Prandtl–Glauert factor, pseudomomentum flux,
and amplitude

The steady-state pseudomomentum flux for anelastic

waves in a uniformly stratified atmosphere is [cf. (C1)]

Dg5 �
k2S

kV2mg(k)jẑ(k)j2 , (32)

where mg is taken from the equality in (16), and S is the

set of k such that the corresponding wave modes are

propagating waves (i.e.,m2
g . 0). Here and belowwe will

use the subscript g to denote anelastic gravity waves. By

comparison, the pseudomomentum flux for acoustic–

gravity waves is [cf. (C2)]

D5

�
k2S

kV2m(k)jẑ(k)j2

12 (V/c)2
’

Dg

b2
, (33)

where by (27) the wavenumber m now follows from

m2 5m2
g 1V2k2/c2. This is a modest change, so m(k) ’

mg(k) to good approximation. Equation (33) for the

pseudomomentum flux highlights the importance of the

so-called Prandtl–Glauert factor:

b[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

V2

c2

s
# 1, (34)

which was first introduced in the context of com-

pressible airfoil theory. It makes it obvious that, in

a uniformly stratified atmosphere, the pseudomo-

mentum flux is increased by a factor of 1/b2 when

compressibility is taken into account. If a tropopause is

included, then these formulas can be adapted to hold in

the upper layer, where all waves are propagating up-

ward, but ẑ(k) in the upper layer is then, of course, not

known a priori. The results of computing the pseudo-

momentum flux numerically in all cases as a function of

V are shown in the middle panel of Fig. 3. Broadly speak-

ing, differences between the anelastic and compressible

FIG. 4. As in Fig. 2, but for compressible acoustic gravity waves. In the first 5–10min, a signal due to a fast acoustic precursor wave is

clearly visible. The plots also indicate that our results are insensitive to the value of the number of tropospheric layers used in the

numerical model (NLT), see section 3c. The blue dotted lines indicate the asymptotic steady-state limit of the isothermal fully com-

pressible model, in agreement with the one proposed by Peltier and Hines (1976). Compared to Fig. 2, the evanescent part of the

compressible wave field is much weaker at V 5 200m s21, and hence the asymptotic amplitude in the uniformly stratified case is almost

unity. (right) The green lines are the solutions with a more realistic atmospheric profile summarized in Table 1. This solution is quali-

tatively similar to the one plotted in red lines, but with a smaller amplitude, due mostly to partial reflection around the mesopause and to

the larger rigidity (i.e., smaller density scale height H) above the mesosphere.
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pseudomomentum flux become significant for speeds

larger than V 5 100ms21.

The main steady-state observable is not the pseudo-

momentum flux, of course, but the vertical displacement.

In the case of uniform stratification the root-mean-square

value of the scaled vertical displacement is in fact the

same in the anelastic and compressiblemodels, because it

has to be equal to the root-mean-square value of the

tsunami shape f(x). So in this case increased pseudomo-

mentum flux does not translate into increased vertical

displacement.

The situation is different once a tropopause is in-

cluded, in which case compressibility tends to increase

vertical displacement as well as pseudomomentum flux,

but the former increase is less pronounced than the

latter. This is illustrated in the right panel of Fig. 3, which

shows the ratio of compressible to anelastic displace-

ment amplitudes as a function of V in a case with

a tropopause. Physically, the interpretation is that back-

reflection at the tropopause is stronger in the anelastic

model than in the compressible model.

b. Forbidden tsunami speeds for propagating waves

The middle panel of Fig. 3 also makes conspicuous

that there are speeds V for which there are no propa-

gating waves at all. This is easily understood from (27),

from which the condition for propagating lee waves

follows as

m2(k)5
N2

V2
2

1

4H2
2 k2

"
12

�
V

c

�2
#
. 0. (35)

If 2NH,V, c, then this is never satisfied, regardless of

the values of k. But for V, 2NH or V. c, there always

exists a k such thatm2(k) is nonnegative. Therefore, the

forbidden tsunami speeds for acoustic–gravity waves

are 2NH , V , c. The anelastic version of this result is

2NH , V. It is noteworthy from the forbidden tsunami

speeds that, for a subsonic tsunami, there is a speed

barrier 2N2H2 ’ 268ms21 such that, if the tsunami

travels faster than this speed, then there are no propa-

gating waves into the stratosphere, no matter whether

the atmosphere is uniformly stratified or not and no

matter whether compressible effects are included.

c. Time-dependent amplitude and fast acoustic
precursor wave

Figure 4 shows the same vertical displacement di-

agnostic as in the earlier Fig. 2, but this time for com-

pressible waves. (The figure also shows a successful

cross-check of our numerical method against a simula-

tion with more layers in the troposphere.) At long times

the structure of the anelastic and the compressible

curves is similar though not identical; for example,

overall there seems to be less back-reflection at the tro-

popause in the compressible case. But at short times there

is a very noticeable discrepancy because the compressible

curves show a clear signal of a wave disturbance reaching

the ionosphere amere 5–10min after the tsunami started,

which is much faster than any internal waves traveling at

its group velocity. This is the very first tsunami-induced

signal that reaches the ionosphere.

Our interpretation of this signal is that it is a fast

acoustic precursor wave that has been generated during

the nearly impulsive phase t # t of our tsunami model

(13), when the tsunami shape h(x, t) grew very quickly

from zero to the prescribed shape f(x). The numerical

value of t for our simulations is 10 s. This very quick

displacement of the lower boundary sets off an acoustic

wave in the atmosphere that travels unimpeded in the

vertical. This is a very compelling interpretation, as can

be seen from the snapshots in Fig. 5. The left and middle

panels resemble the anelastic results in Fig. 1, with some

differences, such as an increased amplitude in the com-

pressible case. But the right panel clearly shows the fast

acoustic precursor wave, which has absolutely no

counterpart in the anelastic model. This makes obvious

that the precursor wave is an acoustic wave.

FIG. 5. As in Fig. 1, but for the compressible model. (left) Uniform stratification at t 5 40min; (middle) with tropopause; (right) with

tropopause at t 5 5min, showing a fast acoustic precursor wave that is clearly absent in Fig. 1.
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5. Concluding comments

Our idealized theory and numerical examples have

highlighted the importance of back-reflection at the

tropopause and of compressible effects for capturing the

accurate time evolution of internal acoustic–gravity

waves. These waves are generated by a tsunami at the

air–sea interface and then subsequently propagate rap-

idly in the vertical to reach the ionosphere, where they

can leave a detectable fingerprint that can be picked up

by remote sensing methods. Our work has been re-

stricted to a two-dimensional vertical slice model for the

atmosphere, but there are no particular challenges that

need to be overcome if one wanted to extend the ap-

proach to three-dimensional waves or, indeed, to more

realistic air–sea interface shapes associated with realistic

tsunamis. In all cases, the practical bottleneck will be the

need to compute the inverse Laplace transform nu-

merically, which is computationally expensive in the

absence of a usable fast transform algorithm for this

problem. Still, it is the power of the Laplace transform

that allows us to satisfy the appropriate radiation con-

dition exactly, so this is a price worth paying.

To incorporate a more realistic atmospheric profile,

we divide the atmosphere above the tropopause into

various layers. Starting with the profile corresponding to

the U.S. Standard Atmosphere, 1976, we simplify it by

grouping those layers above the tropopause with close

values of N, H, and c into single layers. This way, we

obtain a simplified description that includes one layer

for the troposphere, one effective layer representative of

the stratosphere, another layer representative of the

mesosphere, and one infinite isothermal layer for ev-

erything above the mesopause. The parameters of each

layer are summarized in Table 1.

The result of using this new profile is displayed in green

in Fig. 4. The asymptotic steady-state limit is smaller than

that of the two-layer model. This is due mainly to two

causes: on the one hand, the more complex stratification

profile of the atmosphere yields additional reflected

waves, particularly near the mesopause. On the other

hand, the uppermost isothermal layer has a more rigid

profile (i.e., lower density scale height H than those in

the two-layer model), so waves with the same energy

have smaller amplitude. These two factors combine to

decrease the amplitude of the waves transmitted into the

uppermost layer.

Equation (13) of the motion of tsunami describes the

deflection of the ocean’s surface at the time of the

earthquake as equally coherent as the wave front is ex-

pected to be after propagating a significant distance

away from the source. However, we expect the initial

lack of coherence of the signal not to affect the predicted

acoustic response in a significant matter. That is be-

cause, at the initial stage of the acoustic precursor, the

wave field is dominated by the small horizontal wave-

numbers (cf. the large horizontal wavelength indicated

from the black solid lines in the right panel of Fig. 5),

corresponding to smooth averages over long horizontal

domains. Therefore, this response is sensitive to the

large-scale features of the tsunami, rather than to its

small-scale details.

From a physical point of view, perhaps the most

striking observable feature is the very fast acoustic

precursor wave that is so clearly visible in Fig. 5. Work is

currently underway to understand the dynamics of this

precursor wave by using a one-dimensional acoustic

model along the centerline of the tsunami location. The

essence of the linear dynamics of this wave is already

suggested by the compressible dispersion relation (27),

which, for x-independent waves, reduces to

v̂25
c2

4H2
1 c2m2 . (36)

This is a dispersive equation of the Klein–Gordon type,

with group velocities bounded by the nondispersive

background sound speed c at small vertical scales and

slower, dispersive wave speeds associated with larger

vertical scales. Presumably, the visible large-scale os-

cillations behind the wave pulse in Fig. 5 can be associ-

ated with the slower, dispersive components of the

impulsively generated acoustic wave.

This fast acoustic precursor is a propagating sound

wave. As is seen from the dispersion relation (36), for

lower frequencies of tsunami perturbation (i.e., for

larger t), the acoustic precursor has a larger vertical

wavelength. The amplitude of its vertical displacement

does not depend on t: For larger t, the vertical velocity

(w ; t21) is smaller, but the time for integration of w is

longer, so the vertical displacement, which is time-

integrated from w, is not greatly affected.

Moreover, it seems possible that the wave pulse

sharpens and forms a nonlinear shock at some time

during its travel from the ground to the ionosphere at

TABLE 1. Summary of the parameters used for the effective

layers, each of which represents the troposphere, the stratosphere,

the mesosphere, and the uppermost layer above the mesopause,

respectively.

Layer

Height at the

top (km) N (s21) H (km) c (m s21)

Troposphere 11 0.011 9.1 320

Stratosphere 47 0.022 6.4 300

Mesosphere 80 0.017 8.1 325

Above ‘ 0.023 5.3 270
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100-km altitude. This suggests the possibility of impor-

tant nonlinear effects that may affect the earliest ob-

servable tsunami fingerprint in the ionosphere.We hope

to report on a detailed study of this acoustic wave pre-

cursor in the near future.
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APPENDIX A

Fourier–Laplace Transform of Lower Boundary

The Fourier transform of h(x, t) in (13) is

ĥ(k, t)5

(
(t/t)f̂ (k) , 0, t# t

e2ikV(t2t) f̂ (k) , t. t .

The Laplace transform of ĥ(k, t) in t is then

ĥ
T
(k, s)5

ð‘
0
ĥ(k, t)e2st dt

5

� ðt
0
(t/t)e2st dt1

ð‘
t
e2ikV(t2t)e2st dt

�
f̂ (k)

5 e2st

"
2e(st/2) sinh(st/2)

s2t
2

1

s
1

1

s1 ikV

#
f̂ (k) .

APPENDIX B

Effective Wavelength

Wederive a simple effective wavelength lx that can be

associated with a given tsunami shape f(x). First, define

an effective horizontal wavenumber as

K*5

�
k

jkjjf̂ (k)j2

�
k

jf̂ (k)j2
or K*5

ð
jkjjf̂ (k)j2 dkð
jf̂ (k)j2 dk

(B1)

in the case of a discrete or a continuous spectrum, re-

spectively. It is easy to check that in the steady lee-wave

problem with uniform stratification, a sinusoidal lower

boundary with wavenumber K* and root-mean-square

amplitude equal to that of f(x) produces the same wave

energy flux and pseudomomentum flux as f(x). The effec-

tive wavelength is then defined to be lx 5 2p/K*. For the

Gaussian-shaped lower boundary f (x)5 exp(2x2/2s2),

this yields K*5 (
ffiffiffiffi
p

p
s)21 and lx 5 2p3/2s.

APPENDIX C

Derivation of Pseudomomentum Flux

a. Pseudomomentum flux for anelastic gravity waves

Equation (1a) gives the relation between u and w:

›xu1 ›zw2
w

H
5 0, (C1)

where H is the density scale height. Substituting the

plane wave structure

u5 �
k

û(k, z)ffiffiffiffiffiffiffiffiffiffiffi
r0(z)

p eik(x2Vt), w5 �
k

ŵ(k, z)ffiffiffiffiffiffiffiffiffiffiffi
r0(z)

p eik(x2Vt) (C2)

into (C1), we obtain

û5
i

k

�
›z2

1

2H

�
ŵ . (C3)

The pseudomomentum flux divided by r0(0) is

Dg 52uw52�
k

Refû(k, z)ŵ*(k, z)g

52�
k

Re

(
iŵ*(k, z)[›zŵ(k, z)2 ŵ/(2H)]

k

)

52�
k

Re

(
iŵ*(k, z)›zŵ(k, z)

k

)
.

Substituting ŵ52ik(V2U)ẑ into the above equation,

we have

Dg52�
k

Refik(V2U)ẑ*(k,z)›z[(V2U)ẑ(k,z)]g

52�
k

Refik(V2U)ẑ*(k,z)[(V2U)›zẑ(k,z)2U 0ẑ(k,z)]g

52�
k

Refik(V2U)2ẑ*(k,z)›zẑ(k,z)g .

(C4)

Let us assume there is no background windU5 0. Then

(C4) becomes

Dg 52�
k

RefikV2ẑ*(k, z)›zẑ(k, z)g

5 �
k2S

kV2mg(k)jẑ(k, z)j2 ,

where the last equality follows from ›zẑ(k, z)5
img(k)z(k, z), mg(k) is the vertical wavenumber from

(16), and S is the set of k such that the corresponding

wave modes are propagating waves.
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b. Pseudomomentum flux for acoustic–gravity waves

Substituting (21a) and (21e) into (21d) to cancel r1, we

have

Dt

�
p

r0

�
2 gw1 c2(›xu1 ›zw)5 0.

Canceling p from (21b) and the above equation, we have

(D2
t 2 c2›2x)u5 (c2›2xz 2 g›x 2U 0Dt)w . (C5)

Substituting the plane wave structure (C2) into (C5), we

obtain

û(k, z)5 i
›z1 1/(2H)2 g/c22 [(V2U)2]0/(2c2)

kf12 [(V2U)/c]2g ŵ(k, z).

(C6)

The pseudomomentum flux divided by r0(0) is

D52uw52�
k

Refû(k, z)ŵ*(k, z)g

52�
k

Re

(
iŵ*(k, z)›zŵ(k, z)

kf12 [(V2U)/c]2g

)
,

where, in the last equality, only ›zŵ term in (C6) sur-

vives undertaking the real part of ûŵ*. Substituting

ŵ52ik(V2U)ẑ into the above equation, we have

D52�
k

Re

(
ik(V2U)ẑ*(k,z)›z[(V2U)ẑ(k,z)]

12[(V2U)/c]2

)

52�
k

Re

(
ik(V2U)ẑ*(k,z)[(V2U)›zẑ(k,z)2U 0ẑ(k,z)]

12[(V2U)/c]2

)

52�
k

Re

(
ik(V2U)2ẑ*(k,z)›zẑ(k,z)

12[(V2U)/c]2

)
.

(C7)

Let us assume there is no background windU5 0. Then

(C7) becomes

D52�
k

Re

(
ikV2ẑ*(k, z)›zẑ(k, z)

12 (V/c)2

)

5 �
k2S

kV2m(k)jẑ(k, z)j2
12 (V/c)2

, (C8)

where m(k) is the vertical wavenumber from (35), and

S is the set of k such that the corresponding wave modes

are propagating waves.

Equation (C8) of pseudomomentum flux is consistent

with the work–energy relation where the power of the

mean drag exerted by the tsunami shape on the

atmosphere above (which equals D) balances the mean

wave energy flux. Indeed, according to Lighthill (1978,

297–298), the mean vertical energy flux generated by

a sinusoidal lower boundary with wavenumber k is

vm(k)jwj2
k22 (v/c)2

5
vm(k)jŵ(k, z)j2

k2 2 (v/c)2
5

v3m(k)jẑ(k, z)j2
k22 (v/c)2

,

where the last equality follows from ŵ(k, z)52ivẑ(k, z),

and v is the intrinsic frequency. For waves induced by a

multichromatic lower boundary, the mean vertical energy

flux is the sum of monochromatic energy fluxes:

I 5 �
k2S

v3m(k)jẑ(k, z)j2
k2 2 (v/c)2

5 �
k2S

kV3m(k)jẑ(k, z)j2
12 (V/c)2

,

where we have substituted v5 kV in the last equality.

Substituting (C8) into the above equation, we recover

the work–energy relation:

DV5 �
k2S

kV3m(k)jẑ(k, z)j2
12 (V/c)2

5 I .

APPENDIX D

Instantaneous Response of Anelastic-Gravity Waves
in the Stratosphere

We compute the structure of the instantaneous re-

sponse of the anelastic wave field to an impulsively de-

formed lower boundary. This response is nonzero but

decays exponentially with altitude. From the definition

of the Laplace transform, the instantaneous response at

t/01 is given by

lim
t/01

ẑ2(k, z, t)

5 lim
s/‘

sẑT2 (k, z, s)

5 lim
s/‘

ffiffiffiffiffiffiffiffiffiffiffi
r0(0)

p
[sĥ

T
(k, s)]e2l

2
(k,s)(z2z

p
)

m(k, s) sinh[l1(k, s)zp]1 cosh[l1(k, s)zp]
.

The z dependence is included only in the e2l2(k,s)(z2zp)

term. From (10a), we have

lim
s/‘

l2(k, s)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21

1

4H2
2

s
, (D1)

so the instantaneous response of the rescaled wave

field in the stratosphere exponentially decays with

the rate (D1) provided lims/‘jsĥT(k, s)j,‘. So the

instantaneous response of the physical wave field
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[ẑ2/
ffiffiffiffiffiffiffiffiffiffiffi
r0(z)

p
] in the stratosphere exponentially decays with

the rate

lim
s/‘

l2(k, s)2
1

2H2

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21

1

4H2
2

s
2

1

2H2

. 0. (D2)
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