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We derive and investigate exact expressions for third-order structure functions in sta-
tionary isotropic two-dimensional turbulence, assuming a statistical balance between ran-
dom forcing and dissipation both at small and large scales. Our results extend previously
derived asymptotic expressions in the enstrophy and energy inertial ranges by providing
uniformly valid expressions that apply across the entire non-dissipative range, which,
importantly, includes the forcing scales. In the special case of white noise in time forc-
ing this leads to explicit predictions for the third-order structure functions, which are
successfully tested against previously published high-resolution numerical simulations.
We also consider spectral energy transfer rates and suggest and test a simple robust
diagnostic formula that is useful when forcing is applied at more than one scale.

1. Introduction

Kolmogorov’s celebrated 4/5th law for third-order structure functions in three-di-
mensional isotropic turbulence (Kolmogorov 1941) is a centrepiece of turbulence theory
(e.g. Landau & Lifshitz 1959; Monin & Yaglom 1975; Frisch 1995; Davidson 2015). The
law stands out from other results in turbulence theory because it is both exact and be-
cause it makes non-trivial use of the Navier–Stokes equations. In standard notation (full
details are given below) it takes the form

SL(r) = −4

5
εr (1.1)

where SL is the longitudinal third-order structure function, ε is the net energy flux
from large to small scales, and r is the distance between two measurement points in the
inertial range. Despite its prominence in three-dimensional turbulence, it took until the
1990s before analogues of this law were derived for two-dimensional turbulence, first by
Lindborg (1999) and subsequently in the same year by Bernard (1999) and Yakhot (1999).
A review of the history can be found in Cerbus & Chakraborty (2017). There are two basic
difficulties that must be overcome when adapting Kolmogorov’s law to two-dimensional
turbulence. First, as is well known, the downscale flux of energy in three-dimensional
turbulence is replaced by a downscale flux of enstrophy in two-dimensional turbulence,
which requires a subtle adaptation of the derivation underlying (1.1). Second, and more
subtle still, in two-dimensional turbulence there is now an upscale flux of energy towards
scales larger than the forcing scale, and it is unclear what asymptotic assumptions hold
rigorously in this range. The outcome of these studies are the twin two-dimensional
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asymptotic laws

SL(r) =
1

8
ηr3 and SL(r) =

3

2
εr. (1.2)

The first law involves the net enstrophy flux η from large to small scales and holds in the
downscale enstrophy inertial range, whilst the second law applies at much larger scales in
the upscale energy inertial range. The energy law was given in Yakhot (1999) and both the
energy and the enstrophy laws were given in Bernard (1999) and Lindborg (1999). The
asymptotic laws in (1.2) have been confirmed by high-resolution numerical simulations
(e.g. Boffetta & Musacchio 2010, where both laws were for the first time observed in the
same simulation) and they have been the foundation for a number of observational studies
of turbulent flows. Indeed, the derivation of (1.2) in Lindborg (1999) underpins essentially
all subsequent efforts to derive similar diagnostic relations for rotating stratified flows,
with the crucial aim to allow a direct diagnosis of scale-to-scale energy fluxes from in
situ measurements in atmospheric and oceanic applications (e.g Lindborg & Cho 2001;
Balwada et al. 2016; Poje et al. 2017).

Still, from a theoretical perspective the derivation of the two-dimensional laws in (1.2)
has been less convincing than that of their three-dimensional counterpart (1.1) (e.g.
§ 10.3.3 of Davidson 2015). The reasons for this include the aforementioned uncertainty
of the correct asymptotics in the large-scale energy inertial range as well as the need for
subtle physical assumptions about the time dependence of various terms in the statistical
equations, which can only be checked a posteriori. As discussed in the review article Cer-
bus & Chakraborty (2017), such assumptions were needed in previous two-dimensional
studies that considered either freely decaying turbulence or forced–dissipative turbulence
with small-scale dissipation only, because in these configurations an exactly stationary
state cannot be reached as the energy continues to accumulate at large scales.

Now, in the present paper we consider isotropic two-dimensional turbulence in a forced–
dissipative setting with both small-scale and large-scale dissipation terms, and we restrict
attention to exact stationary states of the turbulent system. The physical restriction to an
exact stationary turbulent state leads to a much simpler mathematical problem, because
it obviates the need for additional assumptions about the time dependence of statistical
terms. Instead, all statistical terms are known to be exactly steady a priori. In a nutshell,
by restricting to a stationary turbulent state we can assume less, but derive more.

In particular, we find exact expressions for third-order structure functions for all values
of r, with explicit dissipative corrections at very small and very large scales. This confirms
(1.2) rigorously in the relevant asymptotic regimes, but rather more can be said. Indeed,
we highlight exact expression for third-order structure functions across the entire non-
dissipative range, which includes the forcing range, where the details of the power input
term due to the forcing matter. In the special case of white noise in time forcing the power
input term can be computed a priori (e.g. Bernard 1999; Srinivasan & Young 2012),
which leads to testable predictions of the stationary theory in a practical setting. Here,
excellent qualitative and quantitative agreement between the predictions of our theory
and the results of the high-resolution simulations reported in Boffetta & Musacchio (2010)
is found across the entire range of simulated scales.

We also investigate a number of practical ways in which to diagnose energy fluxes in the
practically important situation where forcing occurs at more than one spatial scale. We
summarize the exact spectral energy transfer diagnostics that can be computed globally
from the third-order structure functions, and we also suggest and test several practical
formulas for local energy flux diagnostics. These are based on the fact that usually both
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the longitudinal structure function SL and its transversal counterpart ST are measured,
which introduces a redundancy that can be exploited for more robust diagnostics.

The plan of the paper is as follows. The governing equations and the main parts of
the structure function relations are presented in § 2, which also includes a short self-
contained account of Kolmogorov’s three-dimensional derivation. The two-dimensional
situation is explored in § 3 for small and large scales, recovering (1.2) and suggesting
robust diagnostic formulas. The exact expressions in the full non-dissipative range are
explored in § 4 with special emphasis on the white noise in time case and comparison with
numerical simulations in figure 1. The spectral energy transfer theory is summarized in
§ 5 and compared in some test cases against the much simpler robust diagnostics derived
before. Concluding remarks are offered in § 6.

2. Governing equations and the Kármán–Howarth–Monin relation

We consider forced–dissipative incompressible flow in an unbounded domain described
by

Du

Dt
+∇p = −αu + ν∇2u + F and ∇·u = 0. (2.1)

Here u is the velocity vector, D/Dt = ∂t+(u ·∇) is the material derivative, the uniform
density has been absorbed in the pressure p, and F is a random body force. Scale-selective
dissipation is provided by Rayleigh friction with damping rate α > 0 and Navier–Stokes
diffusion with kinematic viscosity ν > 0. The random force F has zero mean and is
homogeneous in space and stationary in time and therefore

F (x, t) = 0 and F (x1, t1) · F (x2, t2) = R(x2 − x1, t2 − t1) (2.2)

hold for a suitable space–time covariance function R. The overbar denotes statistical
expectation. The ensuing random turbulent flow has zero mean component (i.e. u = 0)
and is homogeneous in space as well. This implies that the covariance

u(x1, t) · u(x2, t) = u1 · u2 (2.3)

depends only on the separation vector x = x2 − x1. By construction, gradients of any
mean field with respect to (x,x1,x2) obey

∇ = −∇1 =∇2. (2.4)

Now, evaluating the governing equations at x1 and x2, cross–multiplying, adding, aver-
aging, and following a number of calculus steps (e.g. Monin & Yaglom 1975; Frisch 1995;
Augier et al. 2012) yields the celebrated Kármán–Howarth–Monin (KHM) relation

1

2

∂(u1 · u2)

∂t
− 1

4
∇·V =

(
−α+ ν∇2

)
u1 · u2 + P. (2.5)

The independent variables in this exact statistical equation are the separation vector x
and time t. The power input term is

P (x, t) =
1

2

(
u1 · F 2 + F 1 · u2

)
(2.6)

and

P (0, t) = u · F = ε (2.7)

defines ε as the mean energy input due to F per unit time. The third-order structure
function vector V is

V (x, t) = |δu|2 δu , where δu = u2 − u1 (2.8)
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is the velocity difference between x2 and x1. Second-order structure functions and cor-
relations are related for any variable A by

δA2 = 2(A2 −A1A2) ⇒ ∇δA2 = −2∇A1A2. (2.9)

Only spatial homogeneity has been assumed to derive the KHM relation (2.5), which
therefore holds in non-isotropic random flows as well. For stationary flows the mean
fields are time-independent and the steady KHM relation is

∇·V = 4
(
α− ν∇2

)
u1 · u2 − 4P = 4 (αu1 · u2 + ν ω1 · ω2)− 4P. (2.10)

The second form uses the covariance of the vorticity ω =∇×u, which for incompressible
flow is linked to the velocity covariance by the remarkable identity (e.g. §11.3 in Monin
& Yaglom 1975; Batchelor 1953)

−∇2 u1 · u2 = ω1 · ω2. (2.11)

At zero separation r = 0 the steady KHM relation reduces to the total energy balance

α|u|2 + ν|ω|2 = P (0) = ε. (2.12)

Finally, if the flow is isotropic then there exists a function V (r) of the separation distance
r = |x| such that

V = V (r) r̂ where r̂ =
x

r
. (2.13)

Hence ∇×V = 0 for isotropic flows. If the flow is isotropic in n spatial dimensions then

V (r) = SL(r) + (n− 1)ST (r) (2.14)

where the longitudinal and transversal structure functions are

SL = δuLδuLδuL and ST = δuL δuT δuT . (2.15)

Here δuL = r̂ ·δu is the velocity difference component tangential to the separation vector
and δuT is a component transversal to it.

2.1. Kolmogorov’s 4/5th law for three-dimensional isotropic turbulence

Kolmogorov’s 4/5th inertial range law for three-dimensional isotropic turbulence (with-
out Rayleigh friction) follows from the first part of (2.10) with α = 0:

1

r2
d

dr

(
r2V

)
= 2ν∇2 |δu|2 − 4P (r). (2.16)

Here (2.9) was used for the viscous term. With V (0) = 0 this is solved by

V (r) = 2
d

dr

(
ν |δu|2

)
− 4

r2

∫ r

0

P (s) s2 ds. (2.17)

For high Reynolds numbers the viscous term in (2.17) is important only in the dissipation
range r ≤ `ν = (ν3/ε)1/4. Standard estimates put its relative size outside this range at
(`ν/r)

4/3 (e.g. Landau & Lifshitz 1959; Frisch 1995). Conversely, if r � `f , where `f is
the scale on which the force F supplies energy to the flow, then P (r) is well approximated
by its limiting value P (0) = ε. This yields Kolmogorov’s celebrated inertial range law

`ν � r � `f : V (r) = −4

3
εr ⇔ SL(r) = −4

5
εr and ST (r) = − 4

15
εr. (2.18)

This uses SL(0) = 0 and the three-dimensional isotropic relations

V (r) = SL(r) + 2ST (r) = SL +
1

3

d

dr
(rSL) =

1

3r3
d

dr
(r4SL). (2.19)
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2.2. Importance of anomalous energy dissipation

The ease with which Kolmogorov’s law could be derived from (2.16) masks the crucial
importance of anomalous energy dissipation for the analysis. Anomalous energy dissi-
pation in three-dimensional turbulence means that ν|ω|2 = ε holds as ν → 0, implying
the familiar divergence of enstrophy as 1/ν in the same limit. This can interfere with
Taylor-expanding the covariances for small r. For example, using the second part of (2.10)
instead of the first part gives the, still exact, equation

∇·V = 4νω1 · ω2 − 4P = −2ν|δω|2 + 4(ν|ω|2 − P ) = −2ν|δω|2 + 4(ε− P ). (2.20)

The previously used approximation P (r) ≈ ε for small r � `f now yields a cancellation
of constant terms on the right-hand side in (2.20), leaving behind only the enigmatic
term −2ν|δω|2, which in the inertial range is not small if ν → 0. For example, a Taylor
expansion of this term for small r does not survive the limit ν → 0. This is because
the first term in such an expansion would be proportional to νr2|∇ω|2, but according
to standard scaling |∇ω|2 ∝ ε3/2/ν5/2, and hence if ν → 0 at fixed r then νr2|∇ω|2
diverges as ν−3/2, indicating a loss of smoothness in this limit. Hence, the approach
based on the second part of (2.10) does not work in the three-dimensional case without
further assumptions. However, precisely the same approach is the key for a successful
analysis of the two-dimensional case, where the capricious vorticity gradient variance is
bounded a priori.

3. Third-order structure functions for two-dimensional turbulence

Two-dimensional turbulence is very different from three-dimensional turbulence be-
cause of the absence of vortex stretching in the two-dimensional vorticity equation

Dω

Dt
= −αω + ν∇2ω +∇× F , where ω =∇× u (3.1)

and ∇× from now on is shorthand for the vertical component of the curl. For small
(α, ν), enstrophy with density ω2/2 is predominantly dissipated at small scales r � `f
whereas energy with density |u|2/2 is predominantly dissipated at large scales r � `f .
Hence, as ν → 0 anomalous small-scale dissipation applies to enstrophy, not to energy.

The identity (2.11) means that applying −∇2 to the KHM relation (2.5) yields the
evolution equation for ω1ω2/2, with−∇2P emerging as the forcing term for the enstrophy.
At r = 0 the total energy balance

α|u|2 + νω2 = P (0) = ε (3.2)

is now paired with the analogous total enstrophy balance

αω2 + ν|∇ω|2 = −∇2P (0) = η. (3.3)

This defines η as the mean enstrophy input due to F per unit time. Using (3.2) in the
two-dimensional steady KHM relation yields

1

r

d

dr
(rV ) = −2

(
α|δu|2 + νδω2

)
+ 4(ε− P ). (3.4)

Note the similarity with (2.20) in three-dimensional turbulence. However, in two dimen-
sions the dissipation terms in (3.4) are now bounded and smooth for all values of r. This
is because ν|∇ω|2 is now bounded a priori by the two-dimensional enstrophy balance
(3.3), which implies that δω2 = O(r2) for small r � `f . Integrating (3.4) from zero with
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V (0) = 0 yields

V (r) = −1

r

∫ r

0

2
(
α|δu|2 + νδω2

)
s ds+ 2εr − 4

r

∫ r

0

P (s) s ds. (3.5)

3.1. Small-scale asymptotics in the enstrophy inertial range

For small r � `f the one-term approximation P (r) ≈ ε now merely leads to a cancellation
between the last two terms in (3.5), hence we now consider the two-term expansion

P (r) = ε− η

4
r2 +O(r4), (3.6)

which uses the definition of η in (3.3) and that ∇2r2 = 4 in two dimensions. This yields

r � `f : V (r) = −C(r)

r
+

1

4
ηr3, (3.7)

where we used the shorthand C(r) ≥ 0 for the dissipation integral. It is interesting to
compare (3.7) with its three-dimensional counterpart (2.17). In both cases V (r) contains
a dissipation term and a flux term. The three-dimensional dissipation term is local in r
and in the inertial range it can be readily ignored, as stated before. The two-dimensional
dissipation term is non-local in r and contains a sign-definite integral C(r) ≥ 0 that
accumulates contributions from all scales less than r, which includes the dissipation range.
To estimate the size C(r) ≥ 0 we consider separately its contribution from the dissipation
and from the inertial range. With slight abuse of notation the two-dimensional dissipation
range is again r ≤ `ν with a new `ν =

√
ν/η1/3. The dissipation range integral must

cancel the ηr3/4 flux term and therefore we can estimate C(`ν) = η`4ν/4. The relative
size of C(`ν)/r compared to the flux term is then (`ν/r)

4, which is indeed very small in
the inertial range.

To estimate the inertial range contribution to C(r) we use the inertial range scalings
|δu|2 ∝ η2/3r2 and δω2 ∝ η2/3, which are based on dimensional analysis. The inertial
range contribution to C(r)/r of the damping term then scales as αη2/3r3 and that of
the viscous term scales as νη2/3r. Their relative magnitudes compared to the flux term
are then α/η1/3 and (`ν/r)

2, respectively. Notably, the former does not depend on r. In
summary, the viscous term in (3.7) is irrelevant in the inertial range, as compared to the
flux term both contributions to it vanish rapidly with (`ν/r)

4 and (`ν/r)
2. The damping

term is irrelevant if

α� η1/3, (3.8)

which is a natural physical condition for weak damping, which leaves the flux of enstrophy
through the inertial range intact. Overall, in the small-scale enstrophy flux range of two-
dimensional turbulence this analogue of (2.18) holds (Lindborg 1999):

`ν � r � `f : V (r) =
1

4
ηr3 ⇔ SL(r) = ST (r) =

1

8
ηr3. (3.9)

This uses the two-dimensional counterpart of (2.19), which is (e.g. Lindborg 1999)

V (r) = SL(r) + ST (r) = SL +
r

3

d

dr
(SL) =

1

3r2
d

dr
(r3SL). (3.10)

Actually, the expressions for SL and ST in (3.9) are slight approximations to the exact

SL(r) =
3

r3

∫ r

0

V (s) s2 ds and ST (r) = V (r)− SL(r). (3.11)

For example, if the power law for V (r) changes with r then the structure functions adjust
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to the new power law with an error that decays rapidly with 1/r3. This small error will
be ignored from now on.

3.2. Large-scale asymptotics in the energy inertial range

At scales r � `f larger than the forcing scale the downscale enstrophy flux is replaced
by an upscale energy flux, and 2εr becomes important in (3.5). However, as noted in the
introduction, there is no universal asymptotic behaviour for the function P (r) at large
scales. This will be illustrated in § 4.2, but for the moment we note that the commonly
made (e.g Lindborg 1999) approximation P (r) ≈ 0 for r > `f leads to

`f � r : V (r) = −C(r)

r
+ 2εr − D

r
. (3.12)

Here D is the integral of 4P (s)s from zero to r = `f . The dissipation term −C(r)/r

can be estimated using the standard dimensional scaling relations |δu|2 ∝ (εr)2/3 and
δω2 ∝ ε1/3r−2/3. For the damping and viscous terms this leads to the scaling estimates
αε2/3r5/3 and νε2/3r−1/3, respectively. The latter is ignorable throughout, but the former
becomes comparable to the εr term at the large-scale damping scale `α = ε1/2α−3/2. This
leads to the energy inertial range flux relations

`f � r � `α : V (r) = 2εr − D

r
⇔ SL(r) =

3

2
εr − 3

2

D

r
, ST (r) =

1

2
εr +

1

2

D

r
(3.13)

although the D/r terms are usually ignored (Lindborg 1999). As discussed before, these
power-law expressions for SL(r) and ST (r) ignore higher-order corrections proportional
to 1/r3.

3.3. Robust diagnostics for energy and enstrophy fluxes

The prior asymptotic analysis of the KHM equation allows estimating ε and η from
observations of SL and ST . For example, the standard way to proceed in the estimation
of ε is to plot the compensated structure functions V/(2r) or 2SL/(3r), either of which
should asymptote to ε in the energy inertial range. However, with both structure functions
SL and ST at hand one can do better and arguably achieve more robust diagnostics. For
example, if (3.13) is accurate then the D/r term can be eliminated by using

ε =
1

3r
(SL(r) + 3ST (r)) (3.14)

for estimating ε, say just above the forcing scale r = `f . Another perspective on (3.14)
is that V (r) as a solution of (3.4) in some finite range of r consists of a local particular
solution that balances the right-hand side plus a non-local homogeneous solution pro-
portional to 1/r. The robust diagnostics above then eliminate the homogeneous part of
the solution. More generally, if

V (r) = rp then SL(r) =
3

3 + p
rp and ST (r) =

p

3 + p
rp. (3.15)

Hence an rp term is filtered by the linear combination −pSL + 3ST . Now, consider a
hypothetical situation in which

V (r) = 2ε1r +
1

4
η2r

3 (3.16)

held for some range in r. Here ε1 and η2 are related to different forcing mechanisms
operating at scales `1 � r � `2, say. In other words, r lies in the energy inertial range
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relative to the first forcing mechanism and in the enstrophy inertial range relative to the
second forcing mechanism. Then the robust diagnostics

ε1 =
1

r
(SL(r)− ST (r)) and η2 =

4

r3
(−SL(r) + 3ST (r)) (3.17)

would exactly disentangle the energy and enstrophy fluxes. This will be illustrated in
§ 5.2 below.

4. Exact non-dissipative results

The small-scale and large-scale asymptotic expressions (3.9) and (3.13) are not valid
across the forcing scale r ≈ `f , which is a severe handicap in the practically important
situation of forcing at more than one scale, and of measurements taken in ranges that
overlap with the forcing. In this section we explore the exact result for V (r) in (3.5)
across the entire non-dissipative range

`ν � r � `α where `ν =
ν1/2

η1/6
and `α =

ε1/2

α3/2
. (4.1)

Here ε = P (0) and η = −∇2P (0) are the total energy and enstrophy input rates as
before, which involve the exact P as defined in (2.6). In this non-dissipative range (3.5)
reduces to

`ν � r � `α : V (r) = 2εr − 4

r

∫ r

0

P (s) s ds and ∇·V = 4(ε− P ). (4.2)

The corresponding expressions for SL(r) and ST (r) follow from (3.10) as

SL(r) =
3

2
εr − 6

r

∫ r

0

P (s) s ds+
6

r3

∫ r

0

P (s) s3 ds (4.3)

and

ST (r) =
1

2
εr +

2

r

∫ r

0

P (s) s ds− 6

r3

∫ r

0

P (s) s3 ds. (4.4)

4.1. White noise in time forcing

In general, P is not known a priori, i.e. it is part of the solution rather than the problem,
because it depends both on the given random force F and on the unknown fluid velocity
u induced by F . An important exception to this is the case of white noise in time forcing,
in which the force covariance (2.2) is

F (x1, t1) · F (x2, t2) = R(x2 − x1)δ(t2 − t1) = R(x)δ(t2 − t1) (4.5)

with a smooth spatial covariance function R(x). Here we assumed ∇·F = 0, as any
divergent part of F is simply absorbed by the fluid pressure. As is well-known (e.g.
Bernard 1999; Srinivasan & Young 2012), for this kind of forcing

P (x) =
1

2

(
u1 · F 2 + F 1 · u2

)
=

1

2
R(x) (4.6)

holds in the stationary regime (also for anisotropic flows). In other words, for white noise
in time forcing the function P (x) is known a priori from (4.6) and hence the third-order
structure functions in the non-dissipative range can be read off from (4.2), without any
need for an actual numerical simulation.
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4.2. Structure function models and comparison with simulation

Many different covariance functions P (r) are compatible with an energy input rate
P (0) = ε at some scale `f , subject only to the usual condition that its Fourier transform

P̂ , say, is real and non-negative (e.g. Yaglom 1962). We consider two common models
for P (r) to indicate the range of possibilities. The first model has a spatially localized
covariance given by

P1(r) = ε exp

(
−r2

4`2f

)
, (4.7)

which means that P̂1 ∝ exp(−κ2`2f ) where κ = |k| is the magnitude of the wavenumber
vector k. This corresponds to forced wavenumbers that are concentrated in a neigh-
bourhood of approximate size 1/`f surrounding the origin k = 0. The concomitant rapid
decay of the spatial covariance function with r makes this a reasonable model for spatially
localized forces. In the second model

P2(r) = ε J0(r/`f ) (4.8)

where J0 is a Bessel function. This corresponds to the often-used numerical method
where only wavenumbers in a small neighbourhood of the ring κ = 1/`f are forced;
(4.8) arises in the limit where the width of that neighbourhood shrinks to zero such that
P̂2 ∝ δ(κ − 1/`f ). The perfect localization in spectral space comes at the price of long-
range correlations in real space, which are not obviously a realistic feature for a physical
process. It is easy to check that the enstrophy input rate η = ε/`2f for both (4.7) and

(4.8), where the latter uses ∇2J0 = −J0.

The functions V (r) for the two models are found from (4.2) as

V1 = 2εr − 8ε
`2f
r

[
1− exp

(
−r2

4`2f

)]
and V2 = 2εr − 4ε`f J1(r/`f ). (4.9)

The corresponding longitudinal structure functions are

SL1 =
3

2
εr − 12ε

`2f
r

+ 48ε
`4f
r3

[
1− exp

(
−r2

4`2f

)]
(4.10)

and

SL2 =
3

2
εr − 12ε

`2f
r
J2(r/`f ) (4.11)

Their transverse counterparts follow from ST = V − SL. Both SL1 and SL2 reduce to
ηr3/8 and 3εr/2 in the limits r � `f and r � `f , but the form of their transition between
these generic limits is obviously very different. This provides a testable prediction of our
theory.

In particular, the white-noise forcing (4.8) has been used in the numerical experiments
of Boffetta & Musacchio (2010), which at their highest resolution captured both the small-
scale and large-scale regimes and the transition between them. In Figure 1 we compare
the theoretical result (4.11) with the numerical data obtained by Boffetta & Musacchio
(2010). This shows a remarkably accurate matching throughout the non-dissipative range,
which includes the predicted Bessel-type oscillation.
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Figure 1. Comparison of predicted SL from (4.11) (blue curve) with the data from Figure
3 of Boffetta & Musacchio (2010) (red circles), where the associated high-resolution numerical
simulation (run E) used 327682 grid points. The axis labels have been chosen for easy comparison
with Boffetta & Musacchio (2010). The horizontal dashed lines mark the constant 3/2, the inset
enlarges the rectangular transition region, and kf = 1/`f .

5. Spectral energy flux

The most precise measure of energy transfer across spatial scales is based on a Fourier
transform of the KHM relation (e.g. Frisch 1995; Davidson 2015), which brings in the
two-dimensional energy spectrum

E(k, t) =
1

2
û1 · u2 =

1

(2π)2

∫
1

2
u1 · u2 exp(−ik · x) dxdy. (5.1)

By construction, E is a real, even, and non-negative function of k, and its total integral
over k is the mean energy density. The transformed KHM relation is

∂E

∂t
− 1

4
∇̂ ·V = P̂ − 2(α+ νκ2)E. (5.2)

On the right-hand side are the forcing and dissipation terms. In a stationary state any
discrepancy between these terms must be balanced by the third-order term on the left,
which stems from the nonlinear terms in the governing equations. The spectral energy
budget is additive over disjoint subsets of k-space, so if DK denotes any subset of k-space
then

ΠK =

∫
DK

−1

4
∇̂ ·V dkdl =

∫
DK

[
P̂ − 2(α+ νκ2)E − ∂E

∂t

]
dkdl (5.3)

precisely measures the nonlinear energy flux leaving DK . Of course, the term “flux” is
slightly misleading here, as ΠK is given by a bulk integral over DK rather than a surface
integral over its boundary. If

DK = {k : κ = |k| ≤ K} (5.4)

is a circular region then the energy flux

ΠK =

∫
−1

4
∇̂ ·V H(K − κ) dkdl = − 1

8π

∫
∇·V K

r
J1(Kr) dxdy. (5.5)



Exact third-order structure functions for two-dimensional turbulence 11

Here H(·) is the Heaviside function and the second form uses Plancherel’s theorem.

5.1. Computation of energy and enstrophy fluxes

One way to compute ΠK is by substituting for ∇·V or its Fourier transform from the
steady balance in (3.4), or from its non-dissipative approximation (4.2). For example,
(4.7) and (4.8) would lead to the exact spectral energy fluxes

ΠK1 = −ε exp
(
−K2`2f

)
and ΠK2 = −ε (1−H(K`f − 1)) (5.6)

for K in the non-dissipative wavenumber range. Conversely, (5.5) can be used directly if
V is measured in an experiment. In this case it is crucial to integrate by parts in order
to avoid derivatives of the noisy field V , which yields

ΠK = − 1

8π

∫
(V · r̂)

K2

r
J2(Kr) dxdy. (5.7)

So far we have not assumed isotropy, but with that assumption V · r̂ = V (r) and hence

ΠK = −K
2

4

∫ ∞
0

V (r) J2(Kr) dr = −K
3

12

∫ ∞
0

SL(r) J3(Kr) r dr, (5.8)

where (3.10) has been used. These are exact relations, although in practice their utility
is limited by the accuracy and range of the observed V (r). It is not difficult to check that
substituting the generic V = 2εr into (5.8) yields ΠK = −ε, a negative flux consistent
with the inverse energy flux.

Based on (2.11) a corresponding spectral enstrophy flux Πω
K , say, can be constructed

provided that ∇·V is replaced by −∇2∇·V . Mutatis mutandis, for the white-noise
examples this leads to the exact enstrophy fluxes

Πω
K1 = η

(
1− (K2`2f + 1)e−K

2`2f

)
and Πω

K2 = η H(K`f − 1) (5.9)

in the non-dissipative range. As (5.6) and (5.9) are not valid for K in the large-scale or
small-scale dissipation ranges, they do not satisfy the global constraints noted in §10.3.4
of Davidson (2015).

5.2. Test of robust energy flux diagnostics

The spectral flux diagnostics displayed in the last section are the most precise measures
of scale-to-scale energy transfer, but, as exemplified by (5.8), for each K they rely on
integrals of V (r) over all r. In practice, it is therefore valuable to have simpler diagnostics
that only use the structure functions in some local range of r. Here we test the robust
energy flux diagnostics proposed in § 3.3 using two examples illustrated in figure 2. In
the first example there is a single energy source of type (4.7) with ε = 1 and `f = 1 and
the following three energy flux diagnostics are compared in the left panel:

εl =
2

3r
SL, εh =

SL + 3ST
3r

, εr =
SL − ST

r
. (5.10)

Here εl is the standard estimate for ε based on the expression for SL in (3.13), εh is from
(3.14), which filters the 1/r term, and εr is from (3.17) and filters the enstrophy flux r3

term. The left panel shows that εh converges most quickly to ε = 1 as r increases, as
expected. The second example is more challenging: we add two further energy sources of
type (4.8) to mimic three different energy sources with parameters

ε ∈ {1, 102, 104} and `f ∈ {1, 102, 104}. (5.11)
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Figure 2. Comparison of energy flux diagnostics (5.10) in two white-noise test cases. Left:
single energy source of type (4.7) with ε = 1 and `f = 1. As expected, εh captures the flux
most rapdily. Right: two more energy sources of type (4.8) have been added according to (5.11).
Only the enstrophy-corrected diagnostic εr captures the flat, constant flux regions between the
forcing scales. Note: for type (4.8) forcing the dominant wavelength is 2π/`f .

Here the large-scale energy sources are strong enough such that their downscale enstrophy
flux interferes with the upscale energy flux of the small-scale sources, which makes this
a challenging problem. From (5.6), the exact spectral energy flux

ΠK = − exp
(
−K2

)
− 102

(
1−H(102K − 1)

)
− 104

(
1−H(104K − 1)

)
(5.12)

in the non-dissipative range, which makes obvious the constant flux regions between forc-
ing scales. Now, the result from the three simple local diagnostics (5.10) are displayed in
the second panel of figure 2, which spans six decades. Overall, εr very neatly captures the
constant energy fluxes between the spatially separated energy sources. By comparison,
the other diagnostics are strongly impacted by the enstrophy fluxes. This recommends
the use of εr in situations with more than one energy source.

6. Concluding remarks

We highlighted the exact results for V (r) in the non-dissipative range for two-dimensional
turbulence, but of course the analogous construction also applies in three dimensions. The
main difference is that the explicit ε term in (4.2) does not arise in three-dimensional
turbulence, and therefore (4.2) is simply replaced by (2.17) without the viscous term.
For example, the three-dimensional analogues of (4.7) and (4.8) are then given by

P1(r) = ε exp
(
−k2fr2

)
and P2(r) =

ε

kfr
sin(kfr) (6.1)

where kf is the forcing wavenumber. The corresponding exact V (r) are then readily
computed.

Now, given the ease with which V (r) could be computed for white noise in time forc-
ing, it is important to bear in mind that this special case has the property P̂ (k) ≥ 0,
which is not necessarily true for general random forcing. Indeed, in the general case it is
conceivable that P̂ (k) < 0 for some wavenumbers, which means that the random force
extracts energy from some scales. This is ruled out for white noise in time, of course.
Another property of the exact result (4.2) in the special case of white noise in time
forcing is that V (r) ≥ 0 must be true because of ε ≥ P (r), which holds in this case as
P (r) must be a covariance function and is therefore dominated by its value at the origin
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P (0) = ε. Whether this is true for more a general random force F is an interesting avenue
to explore.

Our results were derived by restricting attention to exact stationary turbulent states,
leaving aside the harder theoretical treatment of the freely evolving initial-value prob-
lem, or of simulations with only one dissipation scale. A practical question is then to
what extent our results apply to situations in which the turbulent state is not exactly
stationary, but might still behave in a similar fashion as far as the third-order structure
function is concerned, which might be relevant for figure 1. In this connection a referee
pointed out to us that the α-term in the exact (3.5) can be integrated using the identity
|δu|2 = r1−nd(rnδuLδuL)/dr valid for incompressible n-dimensional isotropic flows. This
yields an extension of (4.2) that is valid also in the large-scale damping range:

`ν � r : V (r) + 2α(δuLδuL) r = 2ε r − 4

r

∫ r

0

P (s) s ds. (6.2)

With measurements or models for δuLδuL at hand this could enhance even further the
diagnostic value of V (r) in the energy range, which is an interesting prospect.

Another question of great practical interest is the consideration of anisotropic flows,
not least because it is the stepping stone to rotating stratified flows, which are of primary
relevance in atmosphere and ocean applications. Here the main theoretical problem is
that the KHM relation by its very nature is only a single equation whereas V now has
two components. Of course, one might assume that V = ∇Φ holds for some potential
Φ(x, y), and with that assumption the KHM equation becomes a Poisson equation for Φ.
Similar considerations have been discussed in the recent paper Augier et al. (2012) on
stratified turbulence, where the authors point out the difficulties of constraining harmonic
components of Φ outside isotropic theory. But, if a global solution for Φ that includes the
forcing range can be obtained, as would be the case for white noise in time forcing, then
its harmonic components would be determined too! The main problem here is finding a
good criterion for the potential assumption V =∇Φ in the first place.

Comments of the referees led to significant improvements of our paper. In particular,
the helpful expressions (4.3) and (4.4), which are equivalent to the solution of (3.10)
already used in our paper, as well as (6.2) were pointed out to us by a referee. We grate-
fully acknowledge financial support from the United States National Science Foundation
grant DMS-1312159 and Office of Naval Research grant N00014-15-1-2355.
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