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We present a theoretical and numerical study of the decay of an internal wave caused
by scattering at undulating sea-floor topography, with an eye towards building a simple
model in which the decay of internal tides in the ocean can be estimated. As is well
known, the interactions of internal waves with irregular boundary shapes lead to a math-
ematically ill-posed problem, so care needs to be taken to extract meaningful information
from this problem. Here, we restrict the problem to two spatial dimensions and build a
numerical tool that combines a real-space computation based on the characteristics of
the underlying PDE with a spectral computation that satisfies the relevant radiation con-
ditions. Our tool works for finite-amplitude topography but is restricted to sub-critical
topography slopes.

Detailed results are presented for the decay of the gravest vertical internal wave mode
as it encounters finite stretches of either sinusoidal topography or of random topography
defined as a Gaussian random process with a simple power spectrum. A number of scaling
laws are identified and a simple expression for the decay rate in terms of the power
spectrum is given. Finally, the resulting formulas are applied to an idealized model of
sea-floor topography in the ocean, which seems to indicate that this scattering process
can provide a rapid decay mechanism for internal tides. However, the present results are
restricted to linear fluid dynamics in two spatial dimensions and to uniform stratification,
which restricts their direct application to the real ocean.

1. Introduction
1.1. Internal tides in the ocean

Internal gravity waves are an essential component of the dynamics of the ocean. Not
only are they the most energetic form of fluid motion at small scales, but they also
provide an important contribution to small-scale mixing, especially in the vertical, via
the three-dimensional turbulence that is induced in localized regions where the waves are
unstable and break. Broadly speaking, such turbulent vertical mixing across the stable
stratification surfaces of constant density, say, is vital for the functioning of a global ocean
overturning circulation, in which particles must be allowed to cross these density surfaces.
It is believed that the breaking of small-scale internal waves in the ocean interior, together
with cross-stratification mixing at outcropping stratification surfaces at the ocean surface
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and the sea floor, is the major agent for ‘lubricating’ the vertical branches of the global
overturning circulation (e.g. Wunsch and Ferrari 2004; Kunze and Llewellyn Smith 2004).
The details of the interplay between wave-induced small-scale mixing and the large-scale
ocean circulation are still actively debated today, but certainly all current numerical
ocean models include a parametrization of such wave-induced interior vertical mixing in
order to be able to simulate a realistic ocean circulation.

In this area much recent research has been devoted to the role of internal tides, i.e.,
internal waves connected to the lunar or solar gravitational tidal forcing. Here the em-
phasis has been on the semi-diurnal, M2 tide and especially on the process of so-called
tidal conversion, in which the barotropic, depth-independent M2 tide generates new in-
ternal tides with nonzero vertical wavenumbers via interaction with undulating sea-floor
topography (e.g. Balmforth et al. 2002; Llewellyn Smith and Young 2003; Garrett 2003;
Petrelis et al. 2006; Bühler and Muller 2007; Garrett and Kunze 2007; Balmforth and
Peacock 2009; Muller and Bühler 2009). The concomitant conversion of barotropic tidal
energy into wave energy at smaller scales is viewed as a first step in a cascade of energy
to smaller scales that ultimately provides the turbulent energy required for the vertical
mixing.

Theoretical and observational studies of tidal conversion at isolated large topography
features such as the Hawaiian ridge have suggested that a large fraction of the internal tide
energy so generated propagates away from the feature in the form of modes with very
low vertical wavenumber (e.g. St Laurent and Garrett 2002). This raises the question
of how far these low-wavenumber modes can propagate in the horizontal before they
themselves have lost their energy to other forms of motion (e.g. Alford 2003; Zhao et al.
2010). This is an important question not least because it is a central tenet of wave–mean
interaction theory that the mean circulation typically “feels” the presence of waves not
at their generation site, but at their dissipation site (e.g. Bühler 2009). So it makes a
difference whether such low-wavenumber tides can propagate a few hundred or tens of
thousands of kilometres away from their site of generation.

There are a number of dynamical mechanisms that can draw energy from an internal
wave, for example nonlinear wave–wave interactions with other internal waves, or non-
linear interactions between the waves and the slower mean circulation. However, in this
paper we are looking at a linear mechanism, namely the interactions of a propagating
wave mode with rough sea-floor topography that we model as a random function. The
rough topography scatters the incoming wave into other spectral components and by this
simple process draws energy away from the primary wave. Our aim is to show that this
provides a surprisingly efficient decay mechanism even for random, irregular topography.

1.2. Modelling wave interactions with sea-floor topography
This would appear to be a standard wave problem that should hold no surprises, but
the mathematical problem for studying this scattering process involving internal waves is
actually very unusual, because it involves solving a hyperbolic PDE for the spatial struc-
ture of the waves. Indeed, in two spatial dimensions, which is the idealized case we look
at here, the governing PDE can be solved formally using the method of characteristics.
This leads to the well-known fact that the problem of computing the spatial structure
of internal wave in bounded domains is an ill-posed mathematical problem; a fact that
has been discovered and rediscovered numerous times in the fluid literature; for example,
Sobolev noted it in the context of the mathematically analogous problem of wave mo-
tion in rotating containers such as fuel tanks for rockets (see page 335ff in Arnold and
Khesin (1998), who give the reference Sobolev (1954)). The physical manifestation of
the ill-posedness is the focusing of wave energy in small regions, which then become the
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natural seeds for wave instability and breaking. Under suitable conditions the location
of the wave focusing regions can be analyzed using dynamical systems methods and by
now this is a well understood problem (e.g Maas and Lam 1995).

Earlier work directly related to this problem in oceanography includes the study of
wave-beam reflection by Longuet-Higgins (1969) and the papers Muller and Xu (1992);
Muller and Liu (2000a,b) on oceanic internal wave scattering. In the present paper we
combine and slightly extend techniques from these papers to build a numerical tool with
which we can study the decay of a mode-one internal tide due to interactions with sea-
floor topography over a substantial length of propagation. As is clearly laid out in Muller
and Liu (2000a), this requires combining the method of characteristics with a spectral
method in order to satisfy the horizontal radiation conditions for the scattering problem.

To make progress we make a number of simplifying assumptions, namely we restrict
to two dimensions (one horizontal, one vertical), we ignore other fluid motion apart from
the linear waves, and we treat the Coriolis frequency f and the buoyancy frequency N as
constants. Treating f as a constant is quite realistic for the small-scale problem we are
looking at, but N is a strong function of depth z in the real ocean, with very low values in
the thin mixed layer on top of the ocean, higher values of N in the upper ocean, and then
again much reduced values in the deep, abyssal ocean. In principle, this could lead to
important wave reflection effects in regions of strong gradients of N . However, previous
experience with variable N in studies of tidal conversion has indicated that very often
allowing for variable N gently modifies but does not change in a fundamental way the
results for constant N . Moreover, a recent study by Grimshaw et al. (2010) shows that
there are realistic-looking profiles of N(z) that are entirely reflection-free, i.e., for these
profiles reflection-less WKB-theory for internal waves gives exactly the right answer. Still,
it would of course be very useful to extend our results towards realistic profile for N .
This is particularly important for comparison with observational ocean case studies.

Another simplifying assumption is that we assume that the topography is sub-critical
throughout, i.e., the topography slope is everywhere less than the natural propagation
angle of the internal waves at the sea floor. This is a reasonable though not perfect
assumption for ocean topography away from major ridges and isolated features. Notably,
for our numerical tool we do not assume that the topography is small, just that its slope
is less than a certain O(1) value.

We applied our numerical tool to two kinds of topography: a stretch of deterministic
sinusoidal topography and a stretch of random topography with specified covariance
structure. In the first case we obtain strong wave focusing if the wavenumber of the
topography matches the wavenumber of a freely propagating internal mode in a finite-
depth ocean. This is as expected from the previous work on wave focusing in bounded
containers, to which the present situation is analogous in this case. This part of the paper
is also well suited for comparisons with laboratory experiments.

In the case of random topography, which is the suitable case for the ocean application,
we obtain scaling results for the exponential decay of the expected wave energy flux, at
least in a certain limit of uncorrelated small-amplitude topography. This leads to a very
surprising expression for the exponential decay rate, because the decay rate appears to
be independent of the values of N and f and even of the frequency of the primary tide!
This surprising result could not have been derived using dimensional analysis.

We then apply our scheme to a simplified model spectrum for sea-floor topography in
the ocean, for which we obtain a quantitative estimate for the exponential decay length
that indicates that the scattering off the sea floor is a very efficient decay mechanism for
the mode-one tide.

The outline of the paper is as follows. In § 2 the governing equations are formulated and
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the solution method is outlined in detail. In § 3 and § 4 the wave focusing is examined
for deterministic and random topography and in this is followed in § 5 by a detailed
examination of the scaling laws for the decay rate in the random case. The application
to the ocean spectrum is given in § 6 and concluding comments are offered in § 7.

2. Governing equations and solution method
2.1. Governing equations

We model the problem with the two-dimensional rotating linear Boussinesq system in a
vertical slice geometry, in which all fields depend on the horizontal and vertical coordi-
nates x and z only. Although the fields are independent of the other horizontal coordinate
y, there is a nonzero velocity in the y-direction due to the Coriolis force. The governing
equations for the velocity u = (u, v, w), buoyancy b, and scaled perturbation pressure P
are

ut − fv + Px = 0, vt + fu = 0, wt + Pz = b, bt +N2w = 0, (2.1)
and the incompressibility constraint ux +wz = 0. Here the Coriolis parameter f and the
buoyancy frequency N are both taken to be constant and we neglect “non-traditional”
vertical Coriolis forces.

Using a streamfunction ψ(x, z, t) such that u = ∂zψ, w = −∂xψ reduces (2.1) to

(N2 + ∂tt)∂xxψ + (∂tt + f2)∂zzψ = 0. (2.2)

This omits a steady balanced vortical solution described by the linear potential vorticity
q = vx + fbz/N

2, which satisfies qt = 0. However, for internal waves q = 0 everywhere
and then (2.2) captures all the dynamics. We use a channel geometry with unbounded
extent in the x-direction and rigid top and bottom boundaries at the ocean surface z = H
and the ocean floor z = h(x). The no-normal-flow boundary conditions are

ψ(x,H, t) = ψ(x, h(x), t) = 0, (2.3)

which excludes any net current along the channel. The sea-floor topography h(x) is taken
to be zero outside of a compact region x ∈ [0, L], see figure 1. We do not require h(x)/H
to be infinitesimal, although we do assume that the slope dh(x)/dx is sub-critical in the
sense defined below (2.6). We loosely call the domain of the problem a region whose
horizontal extent is slightly larger than the region where h(x) may vary, and speak of
waves “entering” or “exiting” this domain in the sense of group velocity. The waves which
enter the domain on the left are specified in advance while the transmitted waves at the
right-hand boundary and the reflected waves at the left-hand boundary must then obey a
horizontal radiation condition, which requires that any additional energy flux be directed
away from the topography.

We look for time-periodic solutions with a given frequency such as the frequency of
the M2 internal tide, which we assume is above f and below N . Therefore we fix ω > 0
such that N > ω > f and look for solutions of the form

ψ(x, z, t) = Re Ψ(x, z)e−iωt (2.4)

with the complex-valued function Ψ(x, z) to be found. Notably, although the wave field
is periodic in time, the horizontal radiation conditions provide a causal structure to the
problem, so that we can think of waves entering from the left and decaying as they
propagate to the right and so on as in the usual construction of a causal solution to a
dispersive wave problem.

All such internal waves travel at the same fixed angle with the vertical, which we
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Figure 1. Geometry of the problem and boundary conditions. The domain is enclosed in a
dashed line. The primary wave is incident from the left and scattering at the topography creates
transmitted and reflected waves to the right and the left, respectively.

scale to be 45◦, and additionally we scale the ocean to have a depth of π over flat, zero
topography. If we write non-dimensional variables with a prime then

(z, h) =
H

π
(z′, h′), x =

1
µ

H

π
x′, where µ(ω) =

√
ω2 − f2

N2 − ω2
(2.5)

is the slope of the waves. We assume that the topography is sub-critical relative to the
wave slope µ(ω) in (2.5), i.e., the non-dimensional topography slope obeys |dh(x)/dx| < 1
for all x.

The non-dimensional equation for Ψ becomes, dropping the primes,

Ψxx −Ψzz = 0 and Ψ(x, π) = Ψ(x, h(x)) = 0. (2.6)

Equation (2.6) is the one-dimensional wave equation, but with the twist that here there
is no time-like variable. In other words, the spatial structure of time-periodic internal
waves is governed by a hyperbolic equation, as was noted a long time ago (Sobolev 1954).

Before moving on we briefly discuss what the typical values of µ are for the M2 tide
in the ocean. Using a latitude of 30 degrees the corresponding values for µ range from
0.04− 0.2, with the low values found in the upper ocean where N is large (at about 1000
metres depth, say), and the high values found near the sea floor where N is small. The
higher local value of µ at the sea floor would be the relevant value to judge whether the
topography is super-critical, whilst the smaller local value in the upper ocean is relevant
to estimate the horizontal wavelength. That these two different local values must be
fused into one is an obvious shortcoming of the present model, which is restricted to
constant stratification N . Incidentally, for the realistic-looking profiles of N(z) considered
in Grimshaw et al. (2010) it turns out that after a WKB-style rescaling of z and ψ the
governing equation again has constant coefficients, but with an additional term in (2.6a)
that is proportional to the streamfunction. Presumably, as the wave field develops smaller
scales that new term would become negligible compared to the derivatives term.

2.2. Using characteristics, but not ray tracing
Different analytical and numerical solution methods can be applied to (2.6). For example,
for infinitesimal topography one can work with a wave field expansion in terms of the
propagating modes for zero topography. For finite-amplitude topography an attractive
numerical alternative is using a Green’s function approach in which suitable sources are
distributed along the topography (e.g. Petrelis et al. 2006; Echeverri and Peacock 2010).
Here we chose to follow Muller and Liu (2000a) and use a combination of the method
of characteristics plus a spectral scheme to satisfy the horizontal radiation condition for
the scattered waves. Mathematically, this should lead to equivalent results as the Green’s
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function method, but it is psychologically very different. At this stage it is worth pointing
out explicitly that using the method of characteristics for (2.6) is not the same as using
group-velocity concepts and ray tracing! Indeed, here we do not make the assumption
that the wave field can be described by a slowly varying wavetrain. This is a potentially
confusing situation (e.g. Longuet-Higgins 1969) because the characteristic lines are iden-
tical to group-velocity rays in this problem, i.e., the characteristic slope µ(ω) coincides
with the group-velocity angle of plane internal waves with that frequency. The impor-
tant difference is that there is a crucial two-way flow of information and energy along
the characteristics but not along the one-way group-velocity rays (see figure 2 below). It
is because of this two-way flow of information that the horizontal radiation conditions at
both ends of the domain are important.

Now, the characteristics of (2.6) are the lines along which x ± z is constant and the
general solution can then be written as

Ψ(x, z) = f(x+ z − π)− f(x− z + π) (2.7)

where use has been made of the homogeneous boundary condition at z = π. Clearly, the
solution is determined everywhere once we know the complex-valued function f(x) for
all x ∈ R. Physically, 2f ′(x) = Ψz = u at the ocean surface z = π.

It is useful to think of f(x) as being defined along the ocean surface and then (2.7)
expresses that the value of Ψ(x, z) at any interior location can be found by tracing the
leftward and rightward characteristics back up to the ocean surface and then subtracting
the values of f that are found there. This puts non-trivial conditions on the functions f(x)
that correspond to solutions of this equation (e.g. Harlander and Maas 2007). Specifically,
at the seafloor z = h(x) we have Ψ = 0 and therefore the condition

f(x+ h(x)− π) = f(x− h(x) + π) (2.8)

must hold for all x ∈ R. Thus, if one follows a characteristic from left to right as it
bounces up and down the ocean then (2.8) implies that the same value of f recurs at
every intersection of the chosen characteristic with the ocean surface. Clearly, over zero
topography this means that f(x) is periodic with period 2π and can hence be represented
by a Fourier series with terms such as f(x) ∝ exp(inx) where n is an integer. It then
follows from (2.7) that to the right and to the left of the topography region the solution
can be written in terms of discrete propagating modes of the form Ψ = sin(nz) exp(inx).
Here n > 0 corresponds to a rightward propagating mode and vice versa, so the radiation
condition for the scattered waves is that only n > 0 modes are allowed for x > L and
only n < 0 modes are allowed for x < 0.

We now establish the connection between f(x) on the left and on the right of the
topography and then solve the full problem using the radiation condition.

2.3. The characteristic map
A rightward-moving characteristic emanating from a surface point reflects off the bottom
with a slope of +1 and continues rightward, hitting the surface again some distance
away from its starting location. This defines the characteristic map Rn(x) such that if
x is the initial horizontal position of a characteristic on the surface, then Rn(x) is the
horizontal position where it hits the surface again after n bounces. The interval between
successive hitting points defines a characteristic period, whose length we abbreviate as
the period. A single characteristic decomposes the domain into a disjoint sequence of
characteristic periods. The map of a characteristic starting anywhere in the domain can
be determined once we know the map of a single characteristic period, since each Rn is
an order-preserving bijection from one characteristic period onto another.
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Figure 2. Characteristics and the horizontal shift ∆ induced by undulating topography. As
indicated, information travels in both directions along the characteristics. The shift function
∆(x) quantifies the horizontal shift of the reflection point compared to where it would have
been if the topography were flat. Negative topography implies a positive shift and vice versa.
By assumption all reflections are sub-critical. Note that information flows in both directions
along the characteristics.

The characteristic map after one rightward bounce is given by

R1(x) = x+ 2π + 2∆(x), (2.9)

where the horizontal shift function ∆(x) captures the change in the map due to non-
zero topography (see figure 2). By inspection, we see that for sub-critical h(x) the shift
function ∆(x) is the unique solution to the nonlinear equation

h(x+ π + ∆(x)) + ∆(x) = 0. (2.10)

The map after n rightward bounces can be obtained inductively and is

Rn+1(x) = Rn(x) + 2∆(Rn(x)) + 2π. (2.11)

As noted before, the top and bottom boundary conditions imply that f(x) = f(R1(x)),
so by induction for any n

f(Rn(x)) = f(x), f(R−1
n (x)) = f(x). (2.12)

Here R−1
n (x) denotes the inverse map, which corresponds to n leftward bounces.

For future reference, if we consider two neighbouring characteristics at xn and xn + δn
and compute from (2.9-2.10) how their infinitesimal separation δn evolves we find that

δn+1 = δnR
′
1(xn) = δn

1− s
1 + s

, (2.13)

where s is the value of h′ at the intersect with the topography. For example, if s > 0
then neighbouring characteristics contract. This relation is useful for understanding how
the gradients of Ψ evolve and also for the consideration of random topography in § 4.2.

2.4. Solution for the Fourier coefficients in terms of the characteristic map
Let D0, D1 be characteristic periods of period 2π to the far left and far right of the
topography, respectively, such that Rn(D0) = D1 for some n. The function f can be
written as a Fourier series on each interval. Because of the horizontal radiation condition
it has the form

f(x) = f0(x) + fr(x), x ∈ D0, f(x) = ft(x), x ∈ D1, (2.14)
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where f0(x) =
∑∞
k=1 a

0
ke
ikx, x ∈ D0 are the prescribed incoming waves, ft(x) =∑∞

k=0 a
t
ke
ikx, x ∈ D1 are the transmitted waves, and fr(x) =

∑∞
k=0 a

r
ke
−ikx, x ∈ D0

are the reflected waves.
Without loss of generality we can set at0 = 0, since this constant can be absorbed into

ar0. Substituting (2.14) into (2.12) and projecting onto the mth Fourier mode yields a
system of equations for the coefficients of the waves (Muller and Liu 2000a):

at −Dar = Sa0

ar = Bat ,
a0 = (a0

k)∞k=1

at = (atk)∞k=1

ar = (ark)∞k=0

(2.15)

where

D = (Dmk)m=1,.,∞;k=0,.,∞, Dmk = 1
2π

∫
D1
e−ikR

−1
n (x)e−imxdx

B = (Bmk)m=0,.,∞;k=1,.,∞, Bmk = 1
2π

∫
D0
eikRn(x)eimxdx

S = (Smk)m=1,.,∞;k=1,.,∞, Smk = 1
2π

∫
D1
eikR

−1
n (x)e−imxdx

. (2.16)

By truncating the system after a certain number of modes a solution is found numerically
once the characteristic map Rn(x) is known.

The PDE (2.6) conserves the vertically integrated energy flux and in our scaled system
k|ak|2 is the magnitude of the energy flux of a single plane wave over flat topography.
Energy conservation together with orthogonality implies

∞∑
k=1

k|a0
k|2 =

∞∑
k=1

k|atk|2 +
∞∑
k=1

k|ark|2, (2.17)

which says that the energy that enters the domain on the left is partially transmitted
and partially reflected back. We used (2.17) as a convenient check on the convergence of
our numerical method.

2.5. Numerical implementation
Both steps of the solution procedure were implemented numerically using Matlab. The
first step computes the characteristic map by tracing a finite number of initially uniformly
spaced characteristics from the left interval D0 to the right interval D1 by computing
each of the maps Rn(x) in succession. This procedure includes an accurate nonlinear
computation of the reflection in (2.10) for finite-amplitude topography. We found it
convenient to define a function g(x) = h(x) + x and compute its inverse g−1(x), (which
exists since the topography is subcritical), so that the characteristic map starting at xi ∈
D0 is given inductively by Rn+1(xi) = Rn(xi) + 2π+ 2(g−1(Rn(xi) +π)− (Rn(xi) +π)).

The second step solves a truncated version of (2.15) to obtain the spectral coefficients.
To obtain good convergence for the energy fluxes we typically used around 512 charac-
teristics in the first step and around 1024 modes in the second step. Once we know f(x)
for x ∈ D0, we then use (2.12) to obtain f(x) at any desired location, and from this we
can compute the streamfunction at any point (x, z) in the domain via (2.7).

3. Wave focusing
In all numerical experiments we use a single mode-one wave with unit amplitude as the

incoming wave field from the left. Of primary interest is the attenuation of the energy
flux associated with this mode-one wave as the topography is crossed, which can be
interpreted as a degradation of this primary wave and is associated with an energy flux
cascade to higher modes. Importantly, the spatial structure of the higher modes that
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Figure 3. Snapshots at t = 0 (above) and t = π/2 (below) of Re Ψ(x, z)e−it for resonant
topography h(x) = 0.1 sinx. The fixed-point focusing is evident. There is no back-reflection and
the mode-one transmitted energy flux after ten bounces is only 17% of the incoming flux.

are so generated is tightly focused in space, which leads to significant velocity shears
and increased local amplitudes of the wave field. In nature, this would be the first step
towards wave breaking and irreversible fluid mixing in the ocean interior.

3.1. Resonant and non-resonant sinusoidal topography
In the idealized case of

h(x) = σ sin(khx) with σ � 1 (3.1)
in the domain one can understand the cascade to higher wave numbers via wave–wave
interactions in which the topography plays the role of a zero-frequency wave. Thus,
an incoming wave with wavenumber k encountering topography with wavenumber kh
gives rise to new waves with the same frequency but different wavenumbers k ± kh.
These new waves again interact with the topography and the cascade is underway. This
wave–wave cascade suggests that it is crucially important whether the topography is
resonant, i.e., whether kh is an integer such that the wave–wave interactions can project
onto propagating modes of the flat topography system. Indeed, in the resonant case the
periodic system resembles a closed container with irregular bottom shape, with the well-
known attendant focusing of the waves into narrow zones of attraction (e.g. Maas and
Lam 1995). This is because following any characteristic the resonant topography repeats
itself over and over, just as it does in a closed container.

This focusing effect is illustrated for the cases kh = 1 and kh = 2 in figures 3 and 4,
respectively. The two panels in each figure show the real and (minus) the imaginary part
of Ψ, which correspond to increasing time by a quarter period. In both cases σ = 0.1.
The kh = 1 case is special because for small-amplitude topography it does not lead
to back-reflected waves, which are characterized by negative wavenumbers arising from
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Figure 4. Snapshots at t = 0 (above) and t = π/2 (below) of Re Ψ(x, z)e−it for resonant
topography h(x) = 0.1 sin 2x. There is significant back-reflection (about 30%) of wave energy
and the transmitted mode-one energy flux is 7% of the incoming flux.

the wave–wave interactions (Chen 2009). This is because the interaction coefficient to
generate k = 0 modes turns out to be zero and hence if k = 1 and kh = 1 then no
k < 0 waves can ever be generated. This is not the case if kh = 2, where significant
back-reflection occurs immediately, which is visible in the difference between the two
phase-shifted snapshots in figure 4.

Following previous authors such as Maas and Lam (1995), we can understand the
focusing in the resonant case via the characteristic map, as this provides qualitative
insight into the geometric structure of the streamfunction. Let h(x) be periodic, with
period 2π. We will show that all characteristics are eventually mapped to the same set
of points, namely those points modulo 2π such that h̄(x) = 0, h̄′(x) > 0, where h̄(x) =
h(x+ π). Indeed, let rn(x) = Rn(x)− 2πn describe the fluctuation of the characteristic
map about its value for flat topography. Since ∆(x) is also 2π periodic, the fluctuation
evolves according to the autonomous dynamical system

rn+1(x) = F (rn(x)), F (x) := x+ 2∆(x). (3.2)

This has fixed points wherever ∆(x) = 0, i.e. wherever h̄(x) = 0. Assume there is at least
one fixed point x̄. Differentiating (2.10) at this point yields ∆′(x̄) = −h̄′(x̄)

1+h̄′(x̄)
. Therefore

|F ′(x̄)| < 1 ⇔ h̄′(x̄) > 0, so the fixed point is locally stable exactly when the derivative
of the topography at the place where the characteristic reflects off the bottom is positive.
This is clearly visible in the figures.

The wave focusing process is frustrated and essentially absent if the topography is non-
resonant. For example, the upper panel in figure 5 shows the case kh = 1.5, where there is
essentially no reflection and no attenuation. This can again be understood by considering
the path of a single characteristic, which now hits the topography twice in different phase
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Figure 5. Above: snapshot at t = 0 of Re Ψ(x, z)e−it for non-resonant topography
h(x) = 0.1 sin 1.5x. There is no discernible reflection or attenuation attenuation of the mod-
e-one energy flux. Below: same quantity for a wedge-shaped topography with same period.

locations before it repeats the cycle. At each hit the slope of the topography changes sign
and this frustrates the focusing. This is robust behaviour, as can be seen in the lower
panel of the same figure, where the sinusoidal topography has been replaced by a wedge
shape with the same period. Indeed, in this case (which could be relevant for laboratory
experiments) the characteristic map can be integrated by hand and is precisely periodic,
so no cascade can take place even for infinite topography extent.

Therefore we can conclude that the occurrence of strong wave–topography interactions
and wave focusing is confined to resonant topography, i.e., to integer wavenumbers kh.
As an aside, we have experimented with near-resonant sinusoidal topography such that
kh = 1 + ε with small ε, for example. In such a case we obtain the same mode-one energy
flux decay results as for resonant topography, but only if the topography extent is short
in the sense that the running length L � 1/ε. For longer topography the energy flux
decay disappears; more precisely, as a function of L ≥ 1/ε the energy flux then oscillates
weakly just below its original value.

3.2. Energy flux decay

As a quantitative proxy for the wave focusing we studied the decay of the energy flux
in mode one, the logarithm of which is plotted as a function of topography length in
a number of cases in figure 6. Here the topography support is much longer than in the
previous examples, with up to 100 bounces. Correspondingly, the decay of the waves is
much stronger, about three orders of magnitude, even though the topography amplitudes
are quite weak. The first panel in figure 6 also served as a nice test on our numerical
model because in this special, reflectionless case an analytical solution is available for
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Figure 6. Logarithm of energy flux E1 plotted as function of topography length in nine cases
based on (3.1). The topography wavenumber kh = {1, 2, 3} in the three panels, and in each
panel the topography amplitude σ = {0.0025, 0.005, 0.01}. The curves for kh = 1 in the first
panel agree to plotting accuracy with an analytical solution that is available in this special case
(see appendix 8.1).

comparison (see appendix 8.1); the corresponding curves are indistinguishable from our
numerical curves in this plot.

After a transient phase over the first 20 bounces or so there is evidence for exponential
decay with bounce number, i.e., E1 ∝ exp(−λn) in terms of the bounce number n =
x/(2π) and a decay rate λ, say. From the numerics it appears that λ ∝ σ in all cases,
which is consistent with the idea of wave–wave interactions between an exponentially
decaying mode-one wave and fixed topography with amplitude σ. There seems to be only
a weak dependence of λ on the topography wavenumber kh, but we could not extract a
clear scaling from our results.

It is important to note that the results from this section cannot be used to estimate
decay rates due to a superposition of sinusoidal topographies of the form (3.1). This can be
understood by considering the characteristic map and the attendant focusing dynamics,
which depend sensitively on the local details of the topography and not just on some
average amplitude given by its Fourier coefficients. This makes obvious that we need to
consider more complicated model topographies if we want to derive a meaningful result for
the real ocean, whose topography is certainly not characterized by a single wavenumber.
We address this in the next section, which is devoted to random topography. There we
will find that in a certain limit of uncorrelated topography one can again derive simple
scaling relations for the decay rate based on contributions from resonant wavenumbers
to the random topography.

4. Random topography
4.1. Definition of random h(x)

We restrict to the simplest case of random topography by assuming that h(x) for x ∈ [0, L]
is a section of a zero-mean stationary Gaussian process defined on the real line by its
stationary covariance function C(x) such that

Eh(x) = 0 and Eh(x′)h(x′ + x) = C(x) (4.1)

where E denotes probabilistic expectation. The corresponding Fourier transform is

Ĉ(k) =
∫ ∞
−∞

C(x) exp(−ikx) dx and C(x) =
1

2π

∫ ∞
−∞

Ĉ(k) exp(+ikx) dk. (4.2)
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Figure 7. Snapshot at t = 0 of Re Ψ(x, z)e−it for uncorrelated random topography using (4.3)
with σ = 0.1 and α = 1 over 25 bounces. The wave focusing is clearly visible.

Admissible covariance functions C(x) have real even positive Fourier transforms, e.g.:

C(x) = σ2 exp
(
− x2

2α2

)
⇔ Ĉ(k) =

√
2πσ2α exp

(
−k

2α2

2

)
. (4.3)

Here α > 0 is a length scale such that Eh2 = σ2 and E(h′2) = −C ′′(0) = σ2/α2. We
use (4.3) and other simple choices and combine this with standard methods to generate
a stationary Gaussian random process on a long interval by using a Fourier series whose
coefficients are independent zero-mean Gaussian random variables (see Yaglom (1962);
for an application in a fluids setting see Bühler and Holmes-Cerfon (2009)).

Notably, with a choice like (4.3) our topography is random but not rough, i.e., the
random function h(x) almost surely has infinitely many continuous derivatives. Indeed,
the derivatives of h are themselves zero-mean stationary Gaussian random functions.
Regarding the assumption of sub-critical topography, we exploit that by making E(h′2) =
−C ′′(0) small enough we can make the occurrence of super-critical topography in x ∈
[0, L] for fixed L an exponentially rare event. In addition, we monitored the maximum of
|h′(x)| and discarded topography samples that contained super-critical regions. Expected
values were then computed by averaging over 100 independent topography samples.

An important role is played by the correlation scale of the topography. Loosely, we
say the topography is uncorrelated if |C(x)| � C(0) for x ≥ 2π, so that the topography
that a characteristic encounters on each bounce is uncorrelated with the topography it
encountered on previous bounces. We say the topography is correlated if this condition
doesn’t hold. Broadly, in (4.3) the uncorrelated regime corresponds to α < 2π.

4.2. Random wave focusing
Figure 7 shows a run over 25 bounces of uncorrelated small-amplitude random topography
based on (4.3) with σ = 0.1 and α = 1. This makes apparent that wave focusing indeed
persists for random topography, although the mechanism is somewhat different than
in the previous case of resonant sinusoidal topography, where the topography was of
course completely correlated from bounce to bounce. There, following the motion of a
single characteristic led to an autonomous dynamical system of the type (3.2) and to the
convergence towards the stable fixed points of that system.

On the other hand, in the present random case the topography encountered by follow-
ing a single characteristic from bounce to bounce is uncorrelated, i.e., the sequence of
random topography values that the characteristic encounters at the sea floor is essentially
a sequence of identically distributed independent random numbers with zero mean. The
same is true for the sequence of values of the shift function, which for small-amplitude
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Figure 8. The characteristic map Rn(x) after n = {1, 10, 25} bounces for an example based
on (4.3) with σ = 0.1 and α = 0.4. After a small number of bounces the map is a small
perturbation of the identity, but after many bounces the map becomes step-like, which indicates
that the characteristics are clustered in discrete locations. As the number of bounces increases,
the clustering becomes very pronounced, so that there are only a few points that contain almost
all of the characteristics. These points move around as random walks, and when they collide
they become a single point, until eventually there is only one clustering point left: all the
characteristics are mapped to virtually the same location.

topography is ∆ ≈ −h, and this makes clear that the characteristic undergoes a dis-
crete random walk in the horizontal with drift 2π and variance of the random step size
approximately equal to Eh2.

However, the same is not true for the motion of a pair of two nearby characteristics,
separated by a distance small compared to the correlation length α, say. Clearly, the pair
will encounter highly correlated values of h and will therefore move in a random walk
together. Moreover, should the two characteristics be brought closer together by a random
fluctuation, then their correlation will be increased in future bounces, and this provide
an irreversible, ratchet-like mechanism for the clustering of nearby characteristics. This
mechanism can be observed in figure 8, which illustrates the emergence of steps in the
characteristic map with increasing bounce number. These steps are locations where many
characteristics are clustered together. The point is that whilst the location of these steps
is random, their appearance is completely generic and inevitable.

We can take several steps towards a simple mathematical model for this irreversible
process, at least for uncorrelated topography. First, using (2.13) for the evolution of the
separation δn of neighbouring characteristics leads to

ln δn = ln δ0 +
n∑

m=1

Zm, where Zm
d= ln

(
1− s
1 + s

)
(4.4)

and s is the topography slope h′ at a bounce location, which for uncorrelated topography
has the same distribution at every bounce as indicated the equality in distribution.
Clearly, the Zm are independent identically distributed random numbers and therefore
(4.4) describes a random walk of ln δn in the bounce number n.

Now, if the slope at a bounce location were distributed like the slope at an arbitrary
point, then at this stage the distribution of s would be that of a zero-mean Gaussian
variable and hence the expected value of the odd function Zm(s) would then be zero,
i.e., EZm = 0. In this case ln δn would perform a random walk with zero drift and this
means that as a function of n the separation δn would forever alternate between values
above or below its original value. So there would be no irreversible focusing.

However, it turns out that h′ at a bounce location is not equal in distribution to h′
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at an arbitrary point. For small-amplitude topography this can be seen from the shift
function ∆ in (2.10), which implies that to first order in topography ∆ = −h(x + π),
where x+ π is the x-location where the rightward characteristic would hit the sea floor
if the topography were flat (cf. figure 2). The slope at the bounce location is therefore

s = h′(x+ π + ∆) = h′(x+ π) + ∆h′′(x+ π) = h′(x+ π)− h(x+ π)h′′(x+ π) (4.5)

correct to second order. The last term has nonzero expectation; in fact we have

Es = Eh′(x+ π)− Eh(x+ π)h′′(x+ π) = 0 + Eh′2 ≥ 0 (4.6)

for any stationary h′. This shows that Es > 0 at rightward bounce locations and therefore
presumably EZw < 0 in (4.4). The implication is a negative drift in the random walk
of ln δn and therefore ln δn → −∞ almost surely as n → ∞. So, δn → 0 as n → ∞ for
almost all starting points, which is consistent with our numerical results. Interestingly,
repeating this argument for leftward characteristics would lead to Es < 0 at leftward
bounce locations, and again to the irreversible clustering of neighbouring characteristics
after many leftward bounces. This must be so because of the left–right symmetry of the
characteristic map.

5. Scaling laws for expected energy flux decay
A typical example of our numerical results for the expected value of the mode-one

energy flux are plotted in figure 9. In fact, this figure shows two computations, one
using the correct radiation condition and the other using the naive approach of simply
specifying the wave field on the left to consist of the incoming mode-one wave only. The
obvious error illustrates the essential importance of the correct radiation condition.

The logarithmic plot shows clear evidence of exponential decay of the expected energy
flux; that this should be so at least initially appears plausible: when the energy flux in
the primary wave is large compared to the energy flux in the other modes, the main flow
of energy is from the mode-one wave to the higher modes, so the amount transferred in
each bounce is proportional to the energy flux in the primary wave. Still, the variance
around the exponential decay is quite large, as also indicated in the figure, and individual
topography samples can produce quite different decay profiles for the energy flux. But
the exponential decay appears robust for the expected value of the energy flux.

Based on this result we define a statistical decay rate λ1 via

λ1 : E1(n) = E|at1|2 = e−λ1n. (5.1)

We want to investigate how λ1 depends on the details of the covariance function and
for uncorrelated topography we expect the two important parameters to be the variance
of h and of its slope h′. For the specific covariance in (4.3) we can adjust the explicit
parameters σ and α, and for any other choice of covariance function we can achieve the
same by scaling the random topography via

h(x)→ σh(x/α), C(x)→ σ2C(x/α) (5.2)

and therefore Eh2 → σ2Eh2 and Eh′2 → σ2α−2Eh′2.

5.1. Scaling of decay rate λ1 with σ and α
The left panel in figure 10 shows results for λ1 obtained by varying σ at fixed α. The
logarithmic plots shows a clear slope of two, i.e., we have the quadratic scaling λ1 ∝ σ2 for
uncorrelated random topography. This is clearly different from the linear scaling λ ∝ σ
that we observed in the case of deterministic sinusoidal topography. The reason is that at
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cation of incoming wave field (dashed); see text. Shaded area is ± 1 standard deviation away
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Figure 10. (a) Mode-1 decay rate λ1 as a function of σ, for (4.3) with three different values of α.
The slopes of the best-fit lines for all are very close to 2. (b) Mode-1 decay rate λ1 for a variety
of covariance functions as a function of α, showing λ1 ∝ α−1 for small α and a sharp drop off
for α ≥ 1, which corresponds to correlated topography. Details of the covariance functions are
given in appendix 8.2 and all plots are ensemble averages with Ns = 20 and σ = 0.05.

first order in σ the topography encountered along the characteristic map in the random
case simply fluctuates around zero. It is only at second order in σ that the random walk
of the foot point is felt.

The right panel in figure 10 also shows that there is a simple scaling with α for fixed σ,
but only in the regime of uncorrelated topography, i.e., for α not too large. In this regime
we found that λ1 ∝ α−1, but we have no simple convincing theoretical argument for it.
Again, this scaling is very different from that of the case of sinusoidal topography, where
the decay rate was broadly independent of the wavenumber kh. (As an aside, this scaling
only holds when the radiation condition is implemented correctly, otherwise the rates are
significantly different.) Combining the two scalings we can conclude that λ1 ∝ σ2α−1

in the regime of uncorrelated random topography. This can be written in terms of the
standard deviations of the topography and its derivative as

λ1 = Γ0σhβh, where σ2
h = E|h|2, β2

h = E|h′|2, (5.3)

and Γ0 is the proportionality constant. The value of Γ0 depends on the shape of the
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covariance function, but we have found it varies very little for reasonable functions; this
can be seen in figure 10. The discussion in § 5.3 below suggests that Γ0 ≤ π in general
and that Γ0 = 2.5 for a Gaussian covariance function.

For larger α the assumption of uncorrelated topography eventually breaks down, and
in this regime the rate drops of sharply, as can be seen in the right panel of figure 10.
Also, the precise shape of the covariance function then begins to matter. We have found
no simple scaling that applies to correlated random topography, but see § 5.3 below for
a more general formula based on the Fourier transform of the covariance function.

5.2. A surprising dimensional decay rate
The non-dimensional scaling (5.3) for uncorrelated topography has a surprising physical
implication when translated back into dimensional units. Using the ocean depth H as
before, writing the dimensional topography as h̃ = (H/π)h, and noting that the dimen-
sional length of a bounce is 2H/µ then gives a dimensional rate of decay per unit length
of topography of

λ̃1 =
πΓ0

2H2

√
E|h̃|2E|h̃′|2. (5.4)

This means that the expected energy flux should decay as exp(−λ̃1x̃) along the dimen-
sional running length x̃ = xH/(πµ). The upshot of (5.4) is that if we know that the
topography is uncorrelated, then we can estimate the rate of mode-one energy decay
entirely from the point-wise statistics E|h̃|2,E|h̃′|2 and without knowing anything else
about the problem.

Now, this formula is very surprising because it contains neither of the three frequencies
N , f and ω that arise in the physical problem definition. Therefore also the wave slope µ
is absent here. Thus, it appears that changing N or f or ω does not affect the dimensional
decay rate λ̃1!

This result could not have been guessed from dimensional analysis, because there is
no a priori argument to rule out a dependence of λ̃1 on the non-dimensional parameters
ω/f and f/N , say. Of course, this result does depend on the implicit assumptions that
have been made, namely that f ≤ ω ≤ N , that the topography is sub-critical, and that
the topography is uncorrelated, but otherwise its scope is considerable.

5.3. Towards an explicit formula for the damping rate
We have made several attempts to derive an analytic expression for the damping rate
λ1 in the case of infinitesimal topography. These attempts met with some success in
that we identified what seems to be the correct formula for λ1, but we cannot derive it
convincingly. Nevertheless, we hope our partial results are instructive and hence record
them briefly here.

One such attempt was based on an expansion of the stream function in vertical modes
with x-dependent amplitude coefficients an(x), say. The interaction with infinitesimal
random topography then leads to a system of differential evolution equations in x for the
modal amplitudes an(x). This random ODE system can then be analyzed for large x using
a diffusion approximation for the amplitudes based on the general theory for random
ODEs laid out in Papanicolaou and Kohler (1974). This led us to results similar in form
to those of Nachbin and Papanicolaou (1992). A second attempt was based on working in
real space with the characteristic map by trying to solve for the joint evolution of many
characteristics together with an approximate treatment of the radiation condition.

We were not able to derive rigorously an asymptotic formula for λ1 using either ap-
proach, but we can report on a partial result, namely that both approaches suggested an
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expression for λ1 of the form

λ1 =
+∞∑
k=1

kĈ(k) (5.5)

where Ĉ(k) is the Fourier transform of the covariance function as before. This expression
performed rather well in our numerical tests, especially for correlated topography. Actu-
ally, both our theoretical attempts led to formulas that were close to (5.5), but differed
by pre-factors of order unity that made the quantitative agreement with our numerical
results worse. Also, we are aware that this sum over resonant wavenumbers is tantaliz-
ingly close to the formulas for the energy conversion from a barotropic tide over localized
deterministic topography that are summarized by Khatiwala (2003), but we did not find
it straightforward to adapt the methods used there to the case at hand.

Now, for uncorrelated topography and α→ 0 the expression (5.5) is indeed consistent
with the scalings we found previously. This follows because Ĉ(k)→ σ2αĈ(kα) under the
scaling transformation (5.2), and therefore as α→ 0 we have

αλ1 → σ2
+∞∑
k=1

(kα)Ĉ(kα)α ≈ σ2

∫ ∞
0

sĈ(s) ds ∝ σ2. (5.6)

For the Gaussian covariance function in (4.3) this leads to λ1 = (σ2/α)
√

2π ≈ 2.5(σ2/α),
which is origin of the value Γ0 = 2.5 in (5.3) that we used before.

Notably, the expression (5.5) is not restricted to the uncorrelated case, and therein lies
its main utility. For example, experimenting with this formula corroborated the results
from figure 10: at fixed Eh2 and Eh′2 the transition to correlated topography leads to a
reduction of the damping rate λ1.

Finally, the equivalent expression to (5.5) in dimensional form is

λ̃1 =
π

2H2

∞∑
k=1

πµk

H
ˆ̃C
(
πµk

H

)
πµ

H
, (5.7)

which allows estimating λ̃1 directly from data for the dimensional topography covariance
function. Here the laboured notation ˆ̃C denotes the Fourier transform of the dimen-
sional covariance function C̃(x̃) = Eh̃(0)h̃(x̃). Deriving (5.7) from (5.5) uses the relations

C(x) = (π2/H2)C̃(x̃) and Ĉ(k) = (µπ3/H3) ˆ̃C(k̃), which follow from the definition of the
Fourier transform together with x = (µπ/H)x̃ and k̃x̃ = kx.

For fixed topography, the limit of uncorrelated topography for this expression corre-
sponds to µ→ 0, and by the same limit used in (5.6) we now obtain

λ̃1 →
π

2H2

∫ ∞
0

k̃ ˆ̃C(k̃) dk̃. (5.8)

This is consistent with (5.4) because for ˆ̃C(k̃) ≥ 0 we have that∫ ∞
0

k̃ ˆ̃C(k̃) dk̃ ≤

√∫ ∞
0

ˆ̃C(k̃) dk̃
∫ ∞

0

k̃2 ˆ̃C(k̃) dk̃ = π
√

Eh̃2Eh̃′2 (5.9)

by the Cauchy–Schwarz inequality based on
√

ˆ̃C and k̃
√

ˆ̃C. Thus for uncorrelated topog-
raphy we showed that Γ0 ≤ π in (5.4), which is obviously satisfied for the value Γ0 =

√
2π

that we obtained for a Gaussian covariance function.
In summary, (5.7) is our best, most accurate formula for computing the dimensional
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decay rate λ̃1 for both correlated and uncorrelated topography, (5.8) is a simpler form
valid only for uncorrelated topography, and (5.4) with Γ0 = 2.5 is the simplest form valid
for uncorrelated topography, which requires only root-mean-square information about the
topography and its slope.

6. Application to model spectra for small-scale ocean topography
We can use our model to investigate how topography in the real ocean might scatter

and degrade a mode-one internal tide. First we used the analytic spectrum for topography
created by Bell (1975). This is an isotropic power law spectrum for topography intended
to model the abyssal hill region of the ocean basin away from large features such as
ridges. Specifically, the spectrum is defined such that the variance of h̃(x, y) is

Eh̃2 = (125 m)2

∫ κ2

0

κ1κ

(κ2 + κ2
1)3/2

dκ with (κ1, κ2) =
(

2π
40 km

,
2π

400 m

)
. (6.1)

Here κ1 controls the correlation length of the topography and κ2 is a cutoff scale that
regulates the slope variance E|∇h̃|2 = (125m)2κ1κ2 ≈ 0.22.

The spectrum is for 2D topography, i.e. κ2 = k2 + l2, so to apply it to our results for
1D topography we make the modelling assumptions that our results are valid on any two-
dimensional plane through the ocean and we calculate the spectrum for the topography
in k-space as the marginal spectrum of the topography in (k, l)-space. The variance of the
derivative can then be found using |∇h̃|2 = h̃2

x+ h̃2
y and noting that each of these has the

same expected value by horizontal isotropy, so a one-dimensional slice of topography has
E|h̃′|2 = (125m)2κ1κ2/2 = (0.14)2. Subject to the normalization in (4.2), the resultant

spectrum corresponds to ˆ̃C(k) in § 5.3.
To compute the dimensional decay scale λ̃1 for the mode-one energy flux from our

best formula (5.7) we need to set the ocean depth H and the wave slope µ. Using
H = 4 km and µ = 0.17 based on N/f = 10 and ω/f = 2 we obtain a decay scale
λ̃1 ≈ 500 km. If H = 5 km is used instead then we obtain λ̃1 ≈ 800 km. We verified these
values using direct Monte-Carlo simulations for scattering off Bell’s topography. These
results are not very sensitive to the value of µ, i.e., the results are nearly identical to
the expression (5.8) that holds as µ → 0. However, these results do depends strongly
on the parameters of Bell’s spectrum. In particular, due to the relatively slow decay of
the spectrum at high wavenumbers the sum in (5.7) depends on the wavenumber cut-
off. Moreover, the parameters of Bell’s topography apparently tend to overestimate the
topography amplitudes in much of the Pacific ocean basin.

We therefore repeated our calculations using the more recent model spectrum proposed
by Goff and Jordan (1988). The isotropic version of that spectrum is proportional to
(6.1) but with the power law exponent 3/2 replaced by an adjustable constant. We
used the same parameter values as in the recent study Nikurashin and Ferrari (2010),
where the parameters were fitted to observational data from a southeast Pacific region.
This produced an ocean depth of H = 5 km, a topography standard deviation of 155 m,
a correlation length for the topography of 50 km and a power law exponent of 3.5/2
replacing the 3/2 in (6.1). With this faster decay the sum in (5.7) actually converges and
with the wave slope µ = 0.17 we then obtained a decay scale of λ̃1 ≈ 1200 km.

Overall, in comparison with the recent observational case study of long-lived propagat-
ing mode-one waves in the Pacific ocean in Zhao et al. (2010) our decay-scale estimates
of about 1000 km for the energy flux appear rather short (of course, decay-scale estimates
for the amplitude of mode-one waves would be a factor of two larger). The obvious candi-
dates for explaining this discrepancy between the observations and our model results are
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the restriction to linear two-dimensional fluid dynamics and the restriction to uniform
stratification in our model. These restrictions are briefly discussed in the final section
below.

7. Concluding comments
For practical application in oceanography the most useful results reported here are the

expressions for the dimensional mode-one energy flux decay rate λ̃1 given in (5.7) together
with its simpler, but less general, forms (5.8) and (5.4). Based on how much observational
data is available, evaluation of either of these expressions would allow a ready estimate
for the prevailing decay rate. This should be especially useful in conjunction with the
high-resolution topography data that is increasingly becoming available along research
ship tracks, but to look at the present data is beyond the scope of this short paper.

We also think that for laboratory experiments with deterministic topography shapes
the scaling laws in § 3.2 and the numerical tool for computing the detailed wave field
should be useful. Again, our numerical tool is based on sub-critical but otherwise O(1)
topography, so it goes beyond linear theory in topography.

From a modelling point of view a glaring shortcoming is of the restriction to two
spatial dimensions. Even if the incoming wave field should be to a good approximation
two-dimensional (say because it was generated by tidal conversion at a long ridge) it is
certainly not the case that the rough sea floor has one-dimensional topography. The hy-
perbolic ill-posed nature of the scattering problem persists in three dimensions, although
naturally the tight propagation of information along characteristic lines is replaced there
by the less tight propagation concentrated around characteristic cones (see, e.g., Bühler
and Muller (2007) for a comparison between the two-dimensional and three-dimensional
version of the tidal conversion problem). Overall, based on past experience we’d expect
the three-dimensional details to be significantly more complicated, but that the basic
results for the two-dimensional decay rates computed here will be a good approxima-
tion to the three-dimensional case. Simple laboratory experiments might be useful in
this regard; such experiments could also check whether the bold-looking assumption of
constant buoyancy frequency N for the ocean is indeed giving a good answer here, as we
previously argued based on the recent results in Grimshaw et al. (2010).

Another significant shortcoming is the restriction to linear wave dynamics. Nonlinear
effects such as wave–wave interactions and higher-order corrections to the boundary
conditions could conceivably modify the wave field over long times and therefore over
long propagation distances. Such nonlinear effects would naturally lead to additional
waves with a different frequency, with unclear consequences for the primary mode-one
wave. For example, the surprising independence of the decay rate λ̃1 on the wave slope
µ that we found in linear theory might not hold anymore under nonlinear dynamics.
Presumably, addressing these questions would require nonlinear numerical simulations
over long propagation distances.

Finally, from a heuristic point of view we do not have a ready explanation for the
reduction of the decay rate when the topography begins to be correlated, even though
this reduction is apparent in numerical results depicted in the second panel of figure 10.
One untested hypothesis for this effect is based on the characteristic map and on the
covariance function for the slope h′, which for C(x) in (4.3) would be

Eh′(0)h′(x) = −C ′′(x) =
σ2

α2

(
1− x2

α2

)
exp

(
−x2

2α2

)
. (7.1)

This has a range of significant negative values (roughly in the interval 1 ≤ x/α ≤ 3, say),
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and this suggests that for correlated topography a positive value of h′ at the present
bounce is more likely to be followed by a negative value h′ at the next bounce. This anti-
correlation would in part cancel the focusing of the nearby characteristics described by
(2.13). So, this could be a candidate mechanism for decreasing the efficiency of random
wave focusing for correlated topography.

The research reported here grew out of a summer project undertaken in collaboration
with Erinna Chen and Neil Balmforth at the 2009 Woods Hole summer in Geophysical
Fluid Dynamics (see Chen (2009)), and it is a pleasure to acknowledge several stimulating
conversations in this regard, including several with Nicolas Grisouard. Further stimulus
was provided at the recent Banff Internal Wave meeting in April 2010 and we gladly ac-
knowledge the organizers of that meeting. The comments of several referees significantly
improved our manuscript. Financial support for this work under the United States Na-
tional Science Foundation grant DMS-0604519 is gratefully acknowledged. MHC was
supported in part by a Canadian NSERC PGS-D scholarship.

8. Appendix
8.1. Energy flux formula for reflectionless decay

For infinitesimal sinusoidal topography with wavenumber kh = 1 there are no reflected
waves and this allows an analytic solution for the transmitted waves to be found using a
multi-scale technique, which leads to the expression (75) in Chen (2009). In the notation
used in the present paper the energy flux in the first mode the energy flux is then
predicted to be

E1(x) =
(

1− tanh2
(σx

2π

))2

. (8.1)

This is indistinguishable from the numerical results plotted in the first panel in 6.

8.2. Details of covariance functions used in figure 10
The covariance functions used in that plot are defined by their Fourier transforms as

CA : Ĉ(k) =
√

2π exp
(
−1

2
k2

)
(8.2)

CB : Ĉ(k) =
3π
2

(1− k2) if |k| ≤ 1, zero otherwise (8.3)

CC : Ĉ(k) =π exp(−|k|) (8.4)

CF : Ĉ(k) =
√
π
(

exp
[
− (k − 2)2

]
+ exp

[
− (k + 2)2

])
. (8.5)
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