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ABSTRACT

Operational gravity wave parameterization schemes in GCMs are columnar; that is, they are based on a
ray-tracing model for gravity wave propagation that neglects horizontal propagation as well as refraction by
horizontally inhomogeneous basic flows. Despite the enormous conceptual and numerical simplifications
that these approximations provide, it has never been clearly established whether horizontal propagation and
refraction are indeed negligible for atmospheric climate dynamics. In this study, a three-dimensional ray-
tracing scheme for internal gravity waves that allows wave refraction and horizontal propagation in spheri-
cal geometry is formulated. Various issues to do with three-dimensional wave dynamics and wave–mean
interactions are discussed, and then the scheme is applied to offline computations using GCM data and
launch spectra provided by an operational columnar gravity wave parameterization scheme for topographic
waves. This allows for side-by-side testing and evaluation of momentum fluxes in the new scheme against
those of the parameterization scheme. In particular, the wave-induced vertical flux of angular momentum
is computed and compared with the predictions of the columnar parameterization scheme. Consistent with
a scaling argument, significant changes in the angular momentum flux due to three-dimensional refraction
and horizontal propagation are confined to waves near the inertial frequency.

1. Introduction

In columnar ray-tracing schemes both the horizontal
location as well as the horizontal wavenumber vector
are constant along a ray. In addition, for a steady non-
dissipative wave train the net vertical flux of horizontal
pseudomomentum is constant along a ray tube. Be-
cause the vertical flux of horizontal pseudomomentum
equals the wave-induced vertical flux of mean horizon-
tal momentum (e.g., Andrews and McIntyre 1978, sec-
tion 5.2), this leads to the standard paradigm of colum-
nar wave–mean interaction, which is the “pseudomo-
mentum rule.” According to this rule persistent,
cumulative forcing of the mean flow occurs only where

waves dissipate and then the mean force is equal to the
rate of dissipation of the horizontal pseudomomentum.

Columnar parameterization schemes for gravity
waves (or other processes) offer enormous conceptual
and numerical simplifications, the latter being of par-
ticular importance for the current generation of highly
parallelized GCMs. Nevertheless, it has never been
clearly established whether horizontal propagation and
refraction are, indeed, negligible for atmospheric cli-
mate dynamics. This is an interesting question not only
for parameterization efforts but also for understanding
the dynamics of explicit gravity waves that are increas-
ingly produced and observed in high-resolution GCMs
(e.g., Plougonven and Snyder 2005). Such explicitly re-
solved waves may also affect data assimilation proce-
dures.

The present study makes a step toward estimating
how three-dimensional refraction of internal gravity
waves affects the global vertical transport of angular
momentum. To this end, we built an offline ray-tracing
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model in spherical geometry and applied it to output
from the Third Generation Atmospheric General Cir-
culation Model (AGCM3) of the Canadian Centre for
Climate Modeling and Analysis.

The AGCM3 includes a columnar gravity wave pa-
rameterization scheme for topographic waves and mul-
tiple runs of the ray tracer were computed using the
same topographic waves at the lower boundary as the
parameterization scheme. In addition, further runs with
artificially lowered intrinsic frequencies were computed
so as to assess the sensitivity of the angular momentum
transport to the details of the wave spectrum. Overall,
the scientific aims of this study were twofold: to clarify
the fundamental issues to do with three-dimensional
refraction and wave–mean interactions in atmospheric
models and to produce a clear, quantitative comparison
between a three-dimensional ray-tracing model and a
columnar parameterization scheme in the context of
the angular momentum budget of the atmosphere.

We briefly summarize the scientific background of
three-dimensional ray tracing, which was already de-
scribed analytically in Jones (1969). Subsequent nu-
merical studies noted that inclusion of three-dimen-
sional effects in the middle atmosphere could lead to
significant changes in the wave dynamics at least for
some wave rays, especially those with reduced vertical
group velocities (e.g., Dunkerton and Butchart 1984;
Dunkerton 1984). Meridional propagation alone leads
to well-known changes in the wave structure due to the
latitude dependence of the Coriolis parameter, and
such changes are important for the interpretation of the
observed latitudinal structure of wave energy spectra
(Bühler 2003). However, such latitude-dependent ef-
fects would not change the vertical flux of zonal angular
momentum associated with a wave train. On the other
hand, it is well known that horizontal refraction by zon-
ally asymmetric mean fields would alter this flux (the
standard argument is presented in section 2).

What is less well known is how such horizontal re-
fraction affects the wave–mean interactions. Recently,
this problem was considered theoretically by Bühler
and McIntyre (2003, 2005, hereafter BM05), who dem-
onstrated that the refractive changes in the wave-
induced momentum fluxes go hand in hand with per-
sistent changes in the horizontally inhomogeneous
mean flow that caused the refraction. This extends the
pioneering earlier work of Bretherton (1969). In par-
ticular, for simple idealized scenarios a new conserva-
tion law for the sum of horizontal pseudomomentum
and the impulse of the layerwise distribution of poten-
tial vorticity was derived in BM05. For instance, this
conservation law allows understanding how total hori-
zontal momentum (or angular momentum in the

spherical case) is conserved when three-dimensional re-
fraction is present. Persistent, cumulative mean-flow
changes due to refraction are indeed possible, and they
fall outside the columnar pseudomomentum rule be-
cause they do not rely on wave dissipation in any ob-
vious manner. These considerations motivated the
present study.

The plan for the paper is as follows: The basic theory
for three-dimensional wave dynamics is laid out in sec-
tion 2, and the numerical ray-tracing model is described
in section 3. The model was carefully tested for consis-
tency with the spherical coordinates and in columnar
mode it was calibrated against the topographic gravity
wave scheme used in AGCM3. This close comparison
gave us confidence that the ray tracing scheme pro-
duces realistic fluxes of angular momentum. The nu-
merical experiments and results are discussed in sec-
tions 4 and 5.

2. Three-dimensional gravity wave dynamics

For simplicity, we first work in Cartesian geometry
and later describe the adaptation to spherical geometry
in section 2c.

a. Ray tracing and refraction

The ray-tracing equations describe the linear evolu-
tion of a slowly varying wave train containing small-
scale waves that propagate relative to a large-scale ba-
sic flow (e.g., Whitham 1974; Lighthill 1978). This is the
natural setting for unresolved, subgrid-scale internal
waves. Thus, all wave fields are taken to be propor-
tional to the real part of a(x, t) exp[i!(x, t)], where a K
1 is the slowly varying wave amplitude and ! is the
rapidly varying wave phase whose derivatives; that is,
the wavenumber vector k " (k, l, m) " !! and the
absolute frequency # " $!t are again slowly varying.
A suitable dispersion relation # " %(k, x, t) then links
k and # and this serves as a first-order PDE for !
whose characteristics are the ray-tracing equations

dx
dt

" &!k!'k, x, t(;
dk
dt

" $!x!'k, x, t(, '1(

which form a Hamiltonian system of ODEs for the ca-
nonical variables (x, k) based on the Hamiltonian func-
tion %. Physically, d/dt " )/)t & cg • ! is the time de-
rivative following a ray and cg " !k% is the absolute
group velocity. As is well known, the spatial and tem-
poral symmetries of the basic flow induce conservation
laws along the rays; that is, if %(k, x, t) is independent
of one of (x, y, z, t), then the corresponding member of
(k, l, m, #) is constant along a ray. In a columnar pa-
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rameterization scheme the ray is constrained not to
travel horizontally, and therefore for consistency the
horizontal gradient of background fields must be ig-
nored. In this context !(k, x, t) is formally independent
of x and y and, therefore, (k, l) are both constant along
a ray.

In the absence of forcing and dissipation the wave
train amplitude along ray tubes formed by noninter-
secting rays is governed by the conservation law for the
O(a2) wave action density A; that is,

!A
!t

" ! " #Acg$ %
dA
dt

" A! " cg % 0. #2$

Here A % E/&̂, where E is the phase-averaged distur-
bance energy density per unit volume (Bretherton and
Garrett 1968) and &̂ is the intrinsic frequency. The wave
action is conserved by virtue of the assumed scale sepa-
ration between the small-scale waves and the large-
scale basic flow.

Of particular interest is the pseudomomentum vector
p % kA, which arises naturally in wave–mean interac-
tion theory. For instance, p appears naturally in aver-
aged expressions for the potential vorticity (Bühler and
McIntyre 1998, 2005) and, as noted above, the vertical
flux of horizontal pseudomomentum pH % (k, l)A, say,
equals the wave-induced vertical flux of mean horizon-
tal momentum (e.g., Andrews and McIntyre 1978, sec-
tion 5.2). In columnar parameterization schemes the
horizontal components of pseudomomentum are con-
served by construction because dk/dt % dl/dt % 0 in
such schemes and, therefore, horizontal pseudomomen-
tum conservation is inherited from wave action conser-
vation. This leads to the pseudomomentum rule dis-
cussed in section 1.

On the other hand, by combining (1) and (2) it is
clear in principle that a component of p is conserved
only if the corresponding component of k is invariant
along a ray, that is, only if the basic flow has a symmetry
in the corresponding spatial direction. In particular,
zonal pseudomomentum p % kA is conserved only if
the basic flow is zonally symmetric. This elementary
fact implies that the wave-induced vertical flux of mean
zonal momentum along a ray tube is not constant in
principle, even if the wave field is steady and nondissi-
pating. This does not contradict the usual nonaccelera-
tion conditions based on the Eliassen–Palm flux theo-
rems because these conditions are always derived under
the assumption that the basic flow is zonally symmetric
(e.g., Andrews et al. 1987). Indeed, there is no contra-
diction with momentum conservation either because
more detailed studies of the wave–mean interactions
that accompany such nondissipative changes in pseudo-

momentum illustrate that the changes in the pseudo-
momentum flux are precisely compensated for by
wave-induced changes in the basic flow (Bühler and
McIntyre 2003; BM05).

A specific example of how pseudomomentum can be
created or destroyed by a three-dimensional basic flow
is wave refraction by a shear flow. With a basic velocity
field U(x, t) % (U, V, W), the dispersion function ! has
the generic Doppler-shifting form

# % $̂ " U " k, #3$

where &̂ is the intrinsic frequency, and the group ve-
locity cg % !k&̂ " U now consists of advection by the
basic flow plus intrinsic propagation relative to it. For
simplicity, we restrict &̂ to be a function of k only, but
the general case will be treated in section 3. In this case,
the symmetries of ! are those of U, and we have the
explicit refraction equations

dk
dt

% '#!U$ " k ⇔
dki

dt
% '

!U
!xi

k '
!V
!xi

l '
!W
!xi

m.

#4$

Clearly, any dependence of U on the zonal coordinate
x (say, due to synoptic-scale vortices, meandering jet
streams, or stratospheric Rossby waves) induces con-
comitant changes in k and therefore in the vertical flux
of zonal momentum.

Actually, slightly more can be predicted from (4) be-
cause refraction affects k (and also p) in a manner par-
tially analogous to the evolution of the gradient of a
passive tracer advected by U. Specifically, for a passive
tracer ( we have

D%

Dt
% 0 ⇒

D#!%$

Dt
% '#!U$ " #!%$, #5$

where D/Dt is the material derivative based on U. Thus,
the evolution of k and !( differ only due to advection
by the intrinsic group velocity, which is the difference
between advection along group-velocity rays in (4) and
along material trajectories of the basic flow in (5). This
partial analogy can be exploited in a number of ways
(e.g., Badulin and Shrira 1993; BM05). In particular, by
aligning k with a right eigenvector of !U it is possible
to sustain unbounded exponential growth in time of all
three components of k (Jones 1969). This leads to a
peculiar three-dimensional version of a critical layer in
which the local amplitude also grows exponentially
while the intrinsic group velocity, which for gravity
waves is inversely proportional to |k | at fixed &̂, decays
exponentially to zero. In this scenario the wave pattern
is eventually passively advected by the basic flow; the
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transition to this passive advection regime and the con-
comitant wave–mean interactions have been termed
“wave capture” in BM05. Such dynamics is of course
absent in columnar parameterization schemes, al-
though some evidence for the occurrence of this kind of
effect is available from direct numerical simulation of
gravity waves with high-resolution GCMs, as reported
in Plougonven and Snyder (2005).

Two simple scaling arguments demarcate the intrin-
sic frequency range for which three-dimensional refrac-
tion can be expected to be important. This will be the
case if three-dimensional refraction can induce signifi-
cant relative changes in the horizontal wavenumbers
kH ! (k, l), and corresponding changes in the wave-
induced vertical fluxes of horizontal momentum along
the ray tube, before the ray encounters a critical layer
or is otherwise dissipated. We assume that the basic
flow is described by a layerwise horizontal velocity field
such that |U | ! | (U, V, 0) | " U and L and H are
horizontal and vertical length scales such that |!HU | "
U /L and |Uz | " U /H. Then, for a ray propagating
through a depth of atmosphere #r during a residence
time #t, we have

!kH

|kH | "
U
L

!t "
U
L ! !r

dr"dt". $6%

Using &̂ defined by the dispersion relation for gravity
waves, given in Eq. (10) below, and f defined as the
magnitude of the inertial frequency, the vertical group
velocity scales as

dr
dt

" $#̂ ' | f |%3"2

so that as &̂ → f, dr/dt → 0. This implies a longer resi-
dence time #t at fixed #r for low frequency waves. On
the other hand, the relative importance of changes in
horizontal and vertical wavenumber can be estimated
from (1b) as

|kH |'1 |dkH "dt |
|m |'1 |dm"dt |

"
|m |
|kH |

U "L
U "H

"
|m |
|kH |

H
L

. $7%

Under quasigeostrophic scaling the typical aspect ratio
of the basic flow is the Prandtl ratio H/L ! | f | /N, and
hence horizontal refraction is comparable to vertical
refraction when |m | / |kH | $ | f | /N. Again, this scaling
supports the importance of three-dimensional effects
for low frequency waves. Making use again of the
anelastic dispersion relationship for internal gravity
waves, the ratio (7) is unity if &̂ ! (2 | f | . The ratio
tends to zero for &̂ k | f | , suggesting that vertical re-
fraction dominates horizontal refraction in the rest of
the frequency spectrum. Both of these scaling argu-

ments suggest that three-dimensional refraction is most
important for the near-inertial part of the atmospheric
wave spectrum. This dependency of horizontal refrac-
tion and propagation on intrinsic frequency has been
noted in numerous ray tracing studies, such as Dunker-
ton (1984), Eckermann (1992), and Hertzog et al.
(2001). The robust nature of the dependence is further
supported by the experimental results presented in sec-
tion 4.

Additionally, allowing horizontal propagation can
have a large impact whenever the absolute horizontal
group velocity of a wave is large. In such cases, the path
of a three-dimensionally propagating ray quickly di-
verges from that of its columnar analog, and it moves
through a different environment. Even if horizontal re-
fraction does not play a large role, the final destination
of the wave’s pseudomomentum flux could be signifi-
cantly changed by three-dimensional effects. Topo-
graphic waves in two dimensions, for which columnar
propagation schemes were originally developed, have
absolute horizontal group velocities near zero, so this
effect should be of little importance for them. But it
could play a significant role for many waves in the
nonorographic spectrum and for certain three-
dimensional topographic waves (e.g., Smith 1980;
Shutts 1998).

b. Local amplitude prediction

The local wave amplitude is important because wave
dissipation due to nonlinear wave breaking must be
modeled in parameterization schemes and incipient
wave breaking is sensitive to local wave amplitudes. In
a columnar scheme (2) is applied to a steady and hori-
zontally homogeneous wave train, in which case it re-
duces to Awg ! A0wg0 in which wg is the vertical group
velocity and the index denotes the known conditions at
the lower boundary. From this equation A, and, there-
fore the local wave amplitude a, can be inferred using
the usual polarization relations. One-dimensional caus-
tics correspond to wg ! 0 and these occur at reflection
and critical layers where ray-tracing predicts infinite
amplitudes. Now, in a three-dimensional setting, it is
simplest to retain the assumption of a steady wave train
and then (2) reduces to ! • (Acg) ! 0. In principle, this
equation can be solved along a bundle of rays forming
a ray tube with constant net wave-action flux along the
cross section of the tube.

The kinematic ray theory of Hayes (1970) achieves
this by adding differential equations for the spatial gra-
dients of k to the ray tracing set and using these quan-
tities to compute ! • cg along a single ray. The local
amplitudes along the ray may then be calculated, pro-
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vided the gradient of k is specified at the lower bound-
ary. This requirement can pose a difficulty in many
practical applications of ray tracing where the boundary
conditions may not be specified with sufficient resolu-
tion to constrain !k.

Furthermore, even if !k is well known at the bound-
ary, the use of the Hayes ray equations is complicated
by the ubiquitous appearance of caustics. At caustics
neighboring rays intersect, the ray tube area vanishes
locally, ray theory breaks down, and the predicted am-
plitude is infinite. Though it is possible to formulate the
ray-tracing equations in a way that prevents singulari-
ties at caustics (e.g., Broutman et al. 2004, 2001), there
is no simple way of computing the correct amplitude
near a caustic in a general three-dimensional basic
state. As is well known from more elaborate ray theory,
the correct wave amplitude at such a caustic is not in-
finite and can be computed, in principle, by resolving
the singularity of ray theory with a more detailed local
theory. In idealized geometries, the solution involves
Airy functions across the caustic (Lighthill 1978). A
series of studies (Broutman 1984, 1986; Eckermann and
Marks 1996; Sonmor and Klaassen 2000; Walterscheid
2000) has used the Hayes equations to investigate the
formation of caustics in idealized background flows. All
noted that the location and severity of amplitude am-
plification at caustics is extremely sensitive to the
boundary conditions on !k and the details of the back-
ground flow. The Hayes amplitude equations are there-
fore inappropriate for applications in which these de-
tails are poorly constrained, as they are in the present
case. Therefore, after some experimentation with
Hayes’s extended equations, we restricted our study to
the crude approximation in which the local wave action
density is computed by assuming that the cross-
sectional area of the ray tubes is constant (e.g., Marks
and Eckermann 1995).

c. Spherical geometry

The ray-tracing equations (1)–(2) apply in spherical
geometry provided that due care is taken when adapt-
ing the relevant vector expressions to the nonconstant
basis vectors of the spherical coordinate system. Our
resulting ray-tracing equations differ from the equa-
tions used in the Gravity Wave Regional or Global Ray
Tracer (GROGRAT) model of Marks and Eckermann
(1995) by several metric terms that become relevant if
rays travel substantial horizontal distances. Our deriva-
tion is detailed in the model description in section 3 and
the appendix.

As for the wave–mean interaction problem in spheri-
cal geometry, the computation of the detailed structure

of a wave field and the corresponding local response of
the mean flow is a subtle and difficult problem. We
hope to report some interesting progress in this area in
the near future, but in the present study we concern
ourselves only with the computation of the aggregate
vertical transport of angular momentum around the
earth’s rotation axis by an ensemble of ray tubes. The
net angular momentum transport by an individual ray
tube can be equated to the cross-sectional integral of
the vertical flux of angular pseudomomentum, which
has density kAr cos ! (Jones 1969). Here k is the local
zonal wavenumber, r is the distance to the center of the
earth, and ! the latitude such that r cos ! is the distance
from the rotation axis. The net vertical flux is

P " !! kr cos!Awg dS # Fkr cos!, $8%

where the integral is over the horizontal cross section of
the ray tube with area element dS. The second expres-
sion involves the cross-sectionally integrated wave ac-
tion flux

F " !! Awg dS $9%

and the useful approximate equality holds if k is essen-
tially constant over the horizontal extent of the ray
tube. For a steady nondissipating wave train F is con-
stant along a ray tube and, therefore, P & kr cos! in this
case. Again, it follows from (1) that for a zonally sym-
metric basic state the net flux of angular pseudomo-
mentum P is constant, and this shows that the combi-
nation kr cos! must be constant along a ray in a zonally
symmetric atmosphere. This is a good test for a ray-
tracing scheme in spherical geometry because (k, r, !)
all vary individually in this case. Finally, if the basic
flow is not zonally symmetric, then P will not be con-
stant along the tube and, therefore, the wave-induced
flux of angular momentum will be variable in altitude
even without wave dissipation. This is analogous to the
nonconstant flux of zonal momentum in the Cartesian
geometry discussed in section 2a.

3. Model description

A global ray-tracing model in spherical coordinates
has been developed in Matlab. It computes the propa-
gation, refraction, and dissipation of ray tubes through
steady, three- dimensionally varying stratification and
horizontal winds U " (U, V, 0) in a compressible deep
atmosphere. The nonessential restriction to steady ba-
sic flows is common to all parameterization schemes.
The model uses the dispersion relationship for inertia–
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gravity waves in a rotating stratified compressible at-
mosphere, which is

!̂ ! "!N2#k2 " l2$ " f 2#m2 " "2$

k2 " l2 " m2 " "2 . #10$

Here N is the buoyancy frequency, f the local Coriolis
parameter, and % ! &0.5'&1('/(z. This general disper-
sion relationship, also used in the GROGRAT ray trac-
ing model of Marks and Eckermann (1995), is accurate
over the entire frequency range | f | ) *̂ ) N. The sign
convention *̂ + 0 has been chosen, which implies that
m ) 0 corresponds to gravity waves with upward propa-
gating group velocity, k + 0 denotes waves with positive
zonal intrinsic group velocity—and therefore with pro-
grade zonal momentum flux—and l + 0 denotes north-
ward intrinsic group velocity.

a. Spherical ray tracing

As noted before, finding the correct ray-tracing
equations in spherical coordinates is a slightly subtle
matter. For instance, the wavenumber vector in these
coordinates is k ! k!̂ " l"̂ " mr̂, where !̂, "̂, and r̂ are
the usual zonal, meridional, and radial unit vectors. The
components of k in spherical coordinates evolve not
only due to changes in k but also due to the spatial
variation of the coordinate frame. Furthermore, as de-
scribed in Francis (1972), the curvature of the earth
introduces a gentle refraction of k that becomes signif-
icant when rays propagate horizontally on global scales.
The appendix demonstrates how to compute the cor-
rect ray-tracing equations for an arbitrary dispersion
relation in curvilinear coordinates. The equations re-
sulting from (10) are

d#

dt
!

1
r cos$

"U "
k#N2 & !̂2$

!̂%
#, #11$

d$

dt
!

1
r "V "

l#N2 & !̂2$

!̂%
#, #12$

dr
dt

! &
m#!̂2 & f 2$

!̂%
, #13$

dk
dt

! &
k

r cos$
U# &

l
r cos$

V#

&
1

2!̂%
"#k2 " l2$

r cos$

&

&#
#N2$ &

#!̂2 & f 2$

r cos$

&

&#
#"2$#

&
k
r

dr
dt

" k tan$
d$

dt
, #14$

dl
dt

! &
k
r

U# &
l
r

V# &
1

2!̂%
"#k2 " l2$

r
&

&$
#N2$

&
#!̂2 & f 2$

r
&

&$
#"2$ &

m2 " "2

r
&

&$
#f 2$#

&
l
r

dr
dt

& k sin$
d#

dt
, #15$

dm
dt

! &kUr & lVr &
1

2!̂% "#k2 " l2$
&

&r
#N2$

& #!̂2 & f 2$
&

&r
#"2$#" k cos$

d#

dt
" l

d$

dt
,

#16$

where

% ! k2 " l2 " m2 " "2. #17$

To facilitate comparison with columnar gravity wave
parameterization schemes, the ray tracer can also be
run in columnar mode in which

d#

dt
!

d$

dt
!

dk
dt

!
dl
dt

! 0,

and solutions are obtained by integrating only Eqs. (13)
and (16).

The last two terms in each of (14), (15), (16) were
absent in the GROGRAT model of Marks and Ecker-
mann (1995). These terms are necessary, for instance,
to ensure that kr cos, (and therefore the angular mo-
mentum flux) is constant along a ray propagating in a
quiescent basic flow. As an example, consider a quies-
cent, nonrotating, and spherically symmetric atmo-
sphere. Ray solutions in this environment must respect
the atmosphere’s spherical symmetry since without ro-
tation there is no difference between the zonal and me-
ridional directions. This means that the horizontal pro-
jection of rays follows great circles, and this is true if
these terms are included. On the other hand, if these
terms are absent, a ray launched eastward in the mid-
latitudes will propagate along a line of constant lati-
tude, violating spherical symmetry. Of course, these dif-
ferences only matter if rays travel substantial horizontal
distances or if the rays stray close to the poles, as noted
in Dunkerton and Butchart (1984).

b. Numerical implementation

To initialize the model, the steady background fields
(U, V, N, %) are given on a regular (-, ,, r) grid. Rays
are initialized by specifying the launch location, hori-
zontal wavenumber, and intrinsic frequency *̂ + 0. The
vertical wavenumber m ) 0 is then computed from (10)
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consistent with upward vertical propagation. The local
wave amplitude in terms of vertical particle displace-
ments and the cross-sectionally integrated wave action
flux F are also specified. Though the ray-tracing equa-
tions are valid for time-dependent basic flows, the
model currently does not allow for them. In this setting,
t is not a real physical time but merely a parameteriza-
tion of distance along a ray tube: it measures the
amount of time it would take for the steady wave field
to develop from undisturbed initial conditions due to
forcing at the lower boundary.

The gridded background fields are extended to the
ray location by local interpolation in (!, ", r) using the
tricubic scheme of Lekien and Marsden (2005). The
scheme is local in the sense that it requires only data
from the corners of the grid box containing the ray and
smooth in the sense that the function values and all first
partial derivatives agree on the grid-cell boundaries.
The function values and a set of seven partial and
mixed partial derivatives must be prescribed at each
grid point. These derivatives are computed by second-
order finite differences. The grid must be regularly
spaced in (!, ", r) for the interpolation to be smooth, so
datasets that use pressure levels and/or Gaussian grids
are regridded to meet this requirement.

The ray-tracing equations are integrated using the
built-in Matlab function ode45. This ODE solver uses
an explicit Runge–Kutta (4, 5) formula, the Dormand–
Prince pair, and an adaptive step size algorithm to keep
relative error within prescribed tolerances. For the ex-
periments reported in this paper, the relative error tol-
erance is 10#3. In addition, we found it essential to
include redundant equations for the background fields
as dependent variables in the ray-tracing system in or-
der for the adaptive time stepping to work consistently.
Otherwise, it would not be the case that d$/dt % 0 for
steady background fields, for instance. The GROGRAT
model of Marks and Eckermann (1995) accomplishes
this by including an equation for d$/dt, but we pre-
ferred to leave conservation of $ as an independent
check on the validity of the solutions.

Ray integrations are terminated when a ray leaves
the model domain or the wave action flux falls below a
prescribed tolerance. The wave action flux tolerance
used in the following experiments was 1% of the total
wave action flux launched, divided by the number of
rays.

Some assumption was also required to model the be-
havior of rays undergoing vertical reflection. As dis-
cussed in section 2b, the detailed calculation of the
wave field in the neighborhood of a caustic is a subtle
and poorly constrained problem. In particular, the am-
plitude depends on the phase of the incoming and out-

going waves. Some ray tracing codes, such as Marks and
Eckermann (1995), terminate rays upon vertical reflec-
tion because of a local breakdown of the WKB approxi-
mation. They were primarily concerned with the char-
acteristics of waves that entered the stratosphere and
not vertically trapped tropospheric waves, so the latter
were removed using this WKB criterion. This proce-
dure is equivalent to assuming that the angular momen-
tum flux of the upward traveling wave is perfectly can-
celed by the flux of downward flux of the reflected
wave, which should be accurate in the absence of dis-
sipation when horizontal propagation and refraction
are neglected. However, this cancellation is not to be
expected in the present case, when kH evolves along the
ray. It is well known (e.g., Lighthill 1978) that ray
theory can be “healed” by the consideration of extra
terms, which become significant only in the neighbor-
hood of a reflection. The solutions obtained by those
methods partially justify the continuation of the ray-
tracing equations through reflection points, so vertical
reflection does not automatically trigger ray termina-
tion in our model.

c. Nonlinear wave saturation

Wave saturation schemes are heuristic methods by
which nonlinear wave breaking can be modeled within
a linear ray-tracing computation. Numerous saturation
schemes exist in the literature and, to facilitate com-
parison of our model to the topographic wave param-
eterization of AGCM3, its saturation scheme has been
used here in a modified form that applies throughout
the entire frequency range | f | & $̂ & N. Full details of
this scheme can be found in McFarlane (1987). Basi-
cally, it is assumed that max|u'z | /N ! Fc, where u' is the
component of the disturbance horizontal velocity in the
direction of the horizontal wavenumber vector kH, the
maximum is over a wave cycle, and the threshold value
of the Froude number Fc % (1⁄2. This can be converted
into a saturation threshold for the vertical particle dis-
placement )' % Re[)̂(*0/* exp(i")] by using the stan-
dard polarization relations. This yields

"̂ ! "̂sat %
FcN
|m |#̂! $+#̂2 # f 2,

$0+N
2 # #̂2,

+18,

for the density-adjusted amplitude )̂. The vertical ac-
tion flux density is related to )̂ by

Awg % #$0

+#̂2 # f 2,m

2+k2 - l2,
"̂2; +19,

therefore, (18) implies a local saturation threshold on
this flux.
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However, the model only carries the cross-sectionally
integrated flux F of (9) along the ray tube, so, as dis-
cussed in section 2b, at this step we must make the
crude assumption that the cross-sectional area is con-
stant along a ray tube. This means that F ! Awg and,
therefore, (18) implies a threshold directly on F. Now,
at each time step along the ray the value of "̂ required
to hold the wave action flux F constant is computed
using Eq. (19). The saturation amplitude "̂sat is then
computed using Eq. (18) and, if the local amplitude
satisfies "̂ # "̂sat, then no dissipation occurs and F main-
tains its previous value. However, if the amplitude ex-
ceeds the saturation amplitude, then the saturation "̂ $
"̂sat is applied and a new, reduced value of F is com-
puted. It is clear that F can only decrease along the ray.
On the other hand, the flux of angular pseudomomen-
tum P $ Fkr cos % may increase or decrease along a ray,
depending on the refraction by the basic flow.

We exploit a side effect to allow for vertical wave
reflection without saturation, despite the fact that ray
theory predicts infinite amplitude when m → 0. The
point is that both "̂ and "̂sat diverge when m → 0 but the
ratio "̂2 ⁄ "̂2

sat ! |m | (m2 & '2) goes to zero. In other
words, the numerical scheme continues the ray through
the reflection process without activating the saturation
scheme.

4. Experiments and results

AGCM3 provided the background fields on a T47
Gaussian grid with 31 vertical levels. The model do-
main extends from the ground to 40 500-m altitude. Be-
cause the ray tracer’s interpolation scheme requires a
regular spatial grid, the raw GCM data were regridded
using two-dimensional cubic spline interpolation in the
horizontal on each level, followed by one-dimensional
cubic spline interpolation along each vertical column.
The '2 field was computed before regridding using cu-
bic splines along each vertical column to compute the
vertical derivative of density.

AGCM3 uses the topographic gravity wave param-
eterization scheme of Scinocca and Mc-Farlane (2000).
The scheme employs two waves at launch to represent
anisotropy in the topographic wave field. These waves
are launched from each surface grid point over land
with zero absolute frequency at each model time step.
Properties of this scheme employed for the present
study are derived from instantaneous output of the
prameterization every six model hours. Included in this
output is the launch value of the vertical displacement
amplitude "̂0.

The ray tracer was used for offline computations
based on the output of the AGCM3 model. Specifically,

we compute the global wave–induced angular momen-
tum transport for a realistic topographic launch spec-
trum with and without three-dimensional propagation.
For topographic waves with ( $ 0, the intrinsic fre-
quency at the launch level is

!̂ $ )Uk ) Vl. *20+

For typical topographic wavelengths, (̂ falls in the in-
termediate range | f | K (̂ K N, for which it is expected
that three-dimensional refraction effects have a weak
impact. This exercise is intended to demonstrate that,
although the assumption of horizontal homogeneity in
the parameterization of topographic waves is incorrect
in principle, it has a weak impact on the global wave-
induced vertical transport of angular momentum.

It is also interesting to test the dependence of three-
dimensional refraction effects on intrinsic frequency.
From the viewpoint of testing their impact on angular
momentum transport, it would be ideal to conduct a
similar comparison of a physically realistic nonoro-
graphic parameterization with fluxes computed from
three-dimensional ray tracing solutions. The authors
hope to undertake such a project in the future. How-
ever, AGCM3 does not include a nonorographic pa-
rameterization scheme.

Thus, as a simple test of the frequency dependence of
angular momentum transport, an artificial, ad hoc, low
frequency spectrum was created by remapping the in-
trinsic frequencies of the AGCM3 launch spectrum
from the interval | f | # (̂ # N onto the interval | f | #
(̂ # 3| f | , while holding k, l, "̂, F and the launch Froude
number constant. Specifically, we use the power-law
mapping

!̂"

| f | $ ! !̂

| f |"s

with s $
ln3

lnN# | f | .

While this remapping is unphysical, as a thought ex-
periment it has the advantage of redistributing the fre-
quency content of the topographic spectrum while
holding constant all other properties that could poten-
tially impact angular momentum transport (i.e., hori-
zontal wavenumber, the quantity and spatial distribu-
tion of vertical wave action flux, and launch stability).

Another important difference between the topo-
graphic launch spectrum and the remapped spectrum is
that the topographic waves satisfy Eq. (20) so that ( $
0, whereas the remapped waves do not. We note in
passing that a third computation was performed with a
second spectrum in which the launch values of k and l
were rescaled to maintain ( $ 0. The results obtained
were qualitatively similar to those of the first remap-
ping, so this indicates a certain robustness of the effects
we describe here.
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a. Ray examples

Examining individual ray solutions provides a quali-
tative illustration of the dependence of three-dimen-
sional propagation effects on intrinsic frequency. As
mentioned above, previous ray tracing studies, such as
Dunkerton (1984), have described similar solutions, but
we include these here for purposes of illustration.

Figures 1 and 2 show the detailed evolution of two
waves with altitude in the topographic and low fre-
quency cases. Both figures show the vertical evolution
of k, the zonal velocity U at the location of the ray, and
the cross-sectionally integrated vertical angular pseudo-
momentum flux P from (8) for both three-dimensional
and columnar propagation. The topographic case is
shown in Fig. 1. Here, the relative change in k is small
over the depth of the atmosphere. Furthermore, be-
cause the rays do not propagate far horizontally, the
zonal velocity profile experienced by the three-
dimensional ray is almost identical to that experienced
by the columnar ray. Not surprisingly, both topographic
rays have avoided saturation in both cases.

The profiles for the low frequency rays launched
from the same site, shown in Fig. 2, show a large impact

from three-dimensional refraction. There is a large
relative change in k over the depth of the atmosphere.
Because the three-dimensional rays propagate signifi-
cant horizontal distances, the zonal velocity profile that
they experience differs significantly from the columnar
case. The changed environment leads to the deposition
of wave momentum flux at a significantly different al-
titude.

b. Comparison with GCM parameterization scheme

Though individual solutions of the ray-tracing equa-
tions show that three-dimensional propagation can lead
to significantly different outcomes for individual ray
tubes compared with columnar propagation, by them-
selves they give no information about how the new ef-
fects impact global, aggregate forcing of mean winds by
internal gravity waves.

To investigate this question, the ray tracer was used
to compute the trajectory of every wave in the AGCM3
parameterization launch spectrum. Though the waves
are launched from just above ground level in the GCM,
they are launched from the GCM model level nearest
to 4000 m in these computations. Thus, the experiments

FIG. 1. Vertical profiles of zonal wavenumber k, vertical angular pseudomomentum flux P,
and zonal velocity U along the ray trajectory of a topographic internal gravity wave. This wave
was launched from 39°N, 96°E with a horizontal wavelength of 104 km; !̂/f " 6.9 and !̂/N "
0.048.
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with 3D propagation are equivalent to switching on 3D
effects once waves have propagated above 4000 m. The
GCM parameterization includes detailed consideration
of near-ground dynamics such as blocking and down-
slope windstorm flow. Launching from the middle of
the troposphere avoids consideration of these boundary
layer issues. The ray tracing solutions of all launched
rays are added to construct vertical profiles of globally
integrated angular pseudomomentum flux, which is
equivalent to the flux of mean angular momentum.

c. Results for topographic waves

Figure 3 shows the January mean globally integrated
vertical angular pseudomomentum flux profiles com-
puted by the ray tracer with and without three-
dimensional refraction. The daily variability of the pro-
file at three reference levels is indicated by error bars
spanning an interval containing 90% of the variability
from time step to time step. To validate the ray-tracing
scheme, the same flux profile computed from the out-
put of the AGCM3 parameterization scheme is also
shown. The AGCM3 scheme is equivalent to the ray-
tracing model in columnar propagation mode, except
for differences in the representation of the background

fields arising from the use of different interpolation
methods and the modification of the saturation scheme
to handle rotation and nonhydrostatic waves.

It is evident that the introduction of three-dimen-
sional refraction does not have a strong impact on the
global vertical transport of angular pseudomomentum
by topographic gravity waves. Both profiles reach a
minimum flux of approximately !2.0 " 1019 kg m2 s!2

near the tropopause, rapidly increasing to approxi-
mately !3.2 " 1018 kg m2 s!2 at 20 000 m, then gently
increasing to approximately !9 " 1017 kg m2 s!2 at the
top of the model domain. This profile shape corre-
sponds to a strong retrograde forcing of the lower
stratosphere, relatively little forcing of the middle
stratosphere, and approximately 5% of the launched
retrograde angular pseudomomentum flux reaching the
upper stratosphere or mesosphere. The relative differ-
ence between the two profiles averages 4% through
most of the domain and increases to 13% at 40 000 m.
The angular pseudomomentum flux escaping the top of
the model domain is more negative for three-dimen-
sional propagation than for columnar propagation, cor-
responding to a slightly stronger retrograde forcing of
the upper atmosphere. A globally integrated vertical

FIG. 2. As in Fig. 1 but of the low frequency counterpart of the wave; #̂/f $ 1.5 and
#̂/N $ 0.011.
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angular pseudomomentum flux O(2 ! 1019 kg m2 s"2)
is equivalent to an average vertical pseudomomentum
flux density of 8 ! 10"3 kg m"1 s"2.

The qualitative shape of the vertical flux profile can
be explained by considering the mean vertical profiles
of zonal velocity and density, shown in Fig. 4b. The
launch spectrum is divided between waves carrying pro-
grade angular pseudomomentum flux, for which k # 0,
and those carrying retrograde angular momentum flux,
for which k # 0. Figure 4a shows how the vertical flux
profile is decomposed into a contribution from retro-
grade waves and one from prograde waves.

Broadly speaking, prograde waves are generated by
winds with a westerly component near the ground, and
prograde waves are generated by winds with an easterly
component. Two processes combine to dissipate the
majority of both prograde and retrograde waves below
40 000 m. First, rays can be dissipated at critical surfaces
on which $̂ % "U • k → | f | . Second, the oscillation
amplitude increases like &"1/2 to conserve action flux as
density decays. Whether the ray encounters a critical
surface or not, increasing amplitudes eventually lead to
saturation of the wave field by nonlinear instabilities.

As the waves propagate upward, prograde waves are
typically annihilated at critical surfaces as the zonal
wind shifts from easterly to westerly leading into the jet.
In Fig. 4, one can see that the contribution from pro-

grade waves is almost completely suppressed by 13 000
m, where the westerly jet reaches its maximum. On the
other hand, the positive shear environment suppresses
breaking for retrograde waves, and there is only weak
decay of their contribution over the same interval.
Above the jet, the negative shear environment begins
to Doppler shift retrograde waves back toward lower
intrinsic phase velocities, making them more suscep-
tible to saturation as the atmospheric density continues
to decay. Between 15 000 and 20 000 m, the majority of
the pseudomomentum flux in retrograde waves is dis-
sipated by saturation processes. The remaining flux is
associated with waves with amplitudes sufficiently low
to escape significant saturation between 20 000 and
40 000 m.

d. Results for low-frequency waves

As expected, the vertical angular pseudomomentum
flux profiles computed for the low-frequency spectrum
show a much greater impact from three-dimensional
propagation and refraction. Figure 5 shows the angular
pseudomomentum flux profiles for the same month
computed with the hypothetical low-frequency launch
spectrum. The profile for three-dimensional rays be-
comes more negative than the columnar profile imme-

FIG. 3. January mean vertical profile of globally integrated ver-
tical angular pseudomomentum flux computed by summing the
contribution of every ray in the AGCM3 launch spectrum. The
solid line shows the profile computed from three-dimensionally
propagating rays. The dashed line is the result from rays com-
puted in column mode. Error bars denote the range containing
90% of the variability of the profiles from time step to time step.
Asterisks denote the same profile computed from the AGCM3
parameterization scheme output.

FIG. 4. (a) The decomposition of the vertical angular pseudo-
momentum flux profile for topographic waves into a contribution
from prograde waves with k0 ' 0 and retrograde waves with k0 '
0. The solid line is the total flux profile, the dotted line indicates
contributions from retrograde waves, and the dashed–dotted line
indicates contributions from prograde waves. (b) The January
global mean vertical profile of zonal velocity and the amplitude
amplification factor (&0/&)1/2 are plotted on the same axis. The
solid line represents zonal wind, and the dashed line indicates the
amplification factor.
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diately above the launch level, and retains this bias
through the entire depth of the model domain. The
three-dimensional profile is 41% more negative on av-
erage and transmits 81% more retrograde angular

pseudomomentum flux to the upper atmosphere. The
daily variance of the flux profile is increased in the
three-dimensional case by an average of 30%. The in-
crease in variance is primarily due to increased variabil-
ity of the angular momentum flux above 20 000 m.

A heuristic argument to explain why three-dimen-
sional refraction should lead to increased negative an-
gular pseudomomentum flux can be based on the anal-
ogy between k and the gradient of a passive tracer
discussed below (5). Haynes and Anglade (1997) dem-
onstrated that passive advection in typical stratospheric
flows has a robust statistical tendency to increase the
magnitude of the tracer gradient in a fashion compat-
ible with the usual results from random advection
theory. As this result did not rely on the physics under-
lying the advecting velocity field, and this is the only
sense in which wave vector refraction differs from
tracer gradient evolution, it seems likely that this cu-
mulative gradient stretching is inherited by k in the
ray-tracing problem. Though individual rays may expe-
rience a decrease in |k | , the statistical tendency for |k |
to increase is apparent. Indeed, a similar cascade to
shorter horizontal wavelengths has been observed in a
study of internal waves in the ocean propagating
through a background drawn from the Garrett–Munk
spectrum (see Flatté et al. 1985; Henyey et al. 1986).
Thus, as prograde waves are filtered out at low alti-
tudes, it can be expected that retrograde waves will

FIG. 6. Scatterplot describing the relative change in zonal wavenumber k from launch to the
top of the model domain: (a) Launch k0 vs k at the top of the model domain for all rays that
reach the top of the model domain in both column and 3D mode; (b) the same plot restricted
to waves with large wave action flux that account for 90% of the action flux out of the model
domain. Data points are taken from every 10th time step to improve the plot’s readability.

FIG. 5. January mean vertical profile of globally integrated ver-
tical angular pseudomomentum flux for low-frequency waves,
computed as in Fig. 3. The solid line shows the profile computed
from three- dimensionally propagating rays. The dashed line is the
result from rays computed in column mode. Error bars denote the
range containing 90% of the variability of the profiles from time
step to time step.
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have more negative k on average when three-dimen-
sional refraction is allowed.

Figures 6 and 7 indicate that increased retrograde
flux P ! kFr cos" in the three-dimensional case is due
to the tendency for k to become more negative com-
bined with a tendency for three-dimensional rays to
transmit more wave action flux. In Fig. 6a, the value of
k for the three-dimensional ray at the top of the model
domain has been plotted against its launch value k0 for
all rays that escape to the upper atmosphere in both
three-dimensional and columnar mode. The median
relative change (k # k0)/k0 is #17%. This tendency is
more pronounced when we consider only the strongest
rays. Figure 6b shows rays with the largest action flux at
the top of the model domain, which explain 90% of the
flux transmitted to the upper atmosphere. For these
rays, the median relative change of k is #32%.

Meridional propagation contributes very little to the
change in angular pseudomomentum flux. The result-
ing change in r cos " has a mean of less than 5%.

Figure 7 compares the wave action flux at the top of
the model domain for individual rays with columnar
and three-dimensional propagation. The flux increases
52% with three-dimensional propagation, which to-
gether with the mean decrease of k contributes to the
increase of retrograde momentum flux to the upper
atmosphere. Figures 6 and 7 demonstrate that the ten-
dencies just described are statistical and that there is
great variation in the evolution of these quantities be-
tween individual rays.

5. Concluding comments

Consistent with the scaling argument presented in
section 2, we have found that significant changes in

angular momentum fluxes due to three-dimensional re-
fraction and horizontal propagation are more or less
confined to low frequency waves. This result indicates
that columnar parameterization schemes for topo-
graphic waves should produce results that are little af-
fected by the neglect of three-dimensional effects,
which is encouraging. There is, however, the caveat that
we used data at the fairly low horizontal resolution of
T47. It remains to be seen what the impact of increased
horizontal resolution would be and, also, how three-
dimensional effects would change the parameterization
of nontopographic waves, especially in the low fre-
quency range. We hope to follow up on these questions
in the near future.
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APPENDIX

Ray Tracing on a Sphere

If the wavelengths of internal gravity waves are such
that the curvature of the earth is negligible on the scale
of a wavelength, then the dispersion relation $ ! %(k,
x) computed in Cartesian coordinates may be retained,
simply substituting k ! k • !̂, l ! k • "̂ and m ! k • r̂.
The components of k in the underlying Cartesian coor-
dinates will be denoted in index notation ki. In general,
the dispersion relation may be written in Cartesian co-
ordinates

!̂ ! " &k # r̂'x, y, z(, k # "̂'x, y, z(, k # !̂'x, y, z(,

r'x, y, z(, $'x, y, z(, %'x, y, z() , 'A1(

! %̃'k1, k2, k3, x, y, z(. 'A2(

As the unit vectors of the spherical coordinate system
are slowly varying on the scale of a wavelength, one can
use this dispersion relationship to obtain ray-tracing
equations. This approach was used in Francis (1972)
and further justified in Dong and Yeh (1993), and we
use it now to demonstrate how the use of spherical
coordinates introduces metric terms to the refraction of

FIG. 7. Scatterplot comparing the action flux exiting the top of
the model domain in column mode and 3D mode for all rays that
exit in either 3D mode or column mode. Data points are taken
from every 10th time step to improve the plot’s readability.
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the wavenumber for a general dispersion relationship
of the form in Eq. (A1).

We then have

dxi

dt
!

!"̃

!ki
,

!
!"

!m
!

!ki
#kjr̂j$ %

!"

!k
!

!ki
#kj#̂j$ %

!"

!l
!

!ki
#kj$̂j$,

!
!"

!m
r̂i %

!"

!k
#̂i %

!"

!l
$̂i.

Therefore,

cgr !
dx
dt

% r !
!"

!m
,

and likewise cg& ! "k, cg' ! "l.
However, simply taking the partial derivative of the

dispersion relationship with respect to the spatial vari-
ables will not yield the correct refraction equations. We
find

dm
dt

!
d
dt

k % r̂ !
dk
dt

% r̂ % #cg % !$r̂ % k. #A3$

By the chain rule,

dki

dt
! (

!"̃

!xi
,

! (
!"

!r
!r
!xi

(
!"

!#

!#

!xi
(

!"

!$

!$

!xi
(

!"

!m
!

!xi
#k % r̂$

(
!"

!k
!

!xi
#k % "̂$ (

!"

!l
!

!xi
#k % #̂$.

This equation combined with the expression for cg and
Eq. (A3) implies that

d
dt

#k % r̂$ !
!"

!k
#"̂ % !r̂ ( r̂ % !"̂ $ % k

%
!"

!l
##̂ % !r̂ ( r̂ % !#̂$ % k (

!"

!r
r̂ % !r

(
!"

!#
r̂ % !#̂ (

!"

!$
r̂ % !$̂.

An equation of this form would be obtained for any
curvilinear coordinate system. The metric terms in pa-
rentheses are a property of the coordinate system. For
spherical coordinates,

!r̂ !
1
r

#"̂"̂ % #̂#̂$, #A4$

!"̂ !
tan$

r
"̂#̂ (

1
r

"̂r̂, #A5$

!#̂ !
tan$

r
"̂"̂ (

1
r
#̂ r̂. #A6$

In this notation, the vector to the left contracts with the
gradient. Simplifying, we find

dm
dt

! (
!"

!r
%

k
r

!"

!k
%

l
r

!"

!l
. #A7$

Similar computations give

dk
dt

! (
1

r cos$

!"

!#
(

k
r

!"

!m
%

k tan$

r
!"

!l
, #A8$

dl
dt

! (
1
r

!"

!$
(

1
r

!"

!m
(

k tan$

r
!"

!k
. #A9$
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