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a b s t r a c t

The celebrated 1960 paper by Eliassen & Palm (hereafter EP) put on record several brilliant discoveries in
the theory of linear waves on shear flows for rotating stratified fluid systems. These discoveries opened
up a new perspective on linear wave dynamics in the atmosphere and on the nascent theory of nonlinear
interactions between the waves and the mean flow. Arguably, the most important discovery was that of
their eponymous wave activity flux vector in themeridional plane and of the conditions under which this
important flux was non-divergent.

In this short paper we will retrace some of the steps of EP and explore how their path-breaking
discoveries came to be understood in the light of subsequent theories. Of course, an endeavour like this
runs the risk of looking patronizing, if only because of 50 years of hindsight, but this is not intended: it
was the power of their original discoveries that inspired five decades of further research, with new results
still coming out today.

© 2014 Elsevier Masson SAS. All rights reserved.

1. A beautiful flux

In their famous1 paper [1], EP analysed in detail two equation
sets for linear stationary waves: first a non-rotating two-
dimensional vertical slice model with an arbitrary basic zonal flow
U(z), and second a rotating three-dimensional model with a basic
zonal flowU(y, z) and a corresponding basic buoyancy field B(y, z)
in thermal wind balance. Here stationarymeans that thewaves are
time-independent in the chosen reference frame, i.e., the absolute
frequency of the waves is zero. Their attention was focused on the
dynamics of wave energy, which in a Boussinesq setting2 has the
simple density

E = 1
2

�
u
2 + v2 + w2 + b

2

N2

�
. (1)

Here (u, v, w) are the velocity components of the linearwave field,
b is the linear buoyancy disturbance and N

2 = Bz is the buoyancy
frequency. The wave energy is the obvious intrinsic measure of
wave activity relative to a variable mean flow U and it therefore
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1 The paper’s year of publication is commonly cited as 1961, but the paper
apparently appeared already in 1960.
2 Eliassen and Palm did not restrict themselves to the Boussinesq equations, but

all their main points apply more easily in that setting.

came as a considerable surprise that wave energy is not conserved
unlessU is constant.More precisely, when thewave energy budget
is formulated, there are flux terms as well as source or sink terms
to do with the mean shear. But [1] achieved far more than merely
pointing out this surprising fact!

Bymanipulations that appear as dreamlike andmysterious now
as they did 50 years ago, they derived a non-divergent flux vector
field F in themeridional plane that is now called the Eliassen–Palm
flux:

F = ŷ
�

−uv + bv
Uz

N2

�
+ ẑ

�
−uw + bv

f − Uy

N2

�

⇒ ∇·F = 0. (2)

This is their Eq. (10.8). Here (ŷ, ẑ) are unit vectors in latitude
and altitude, the overbar denotes zonal averaging, and f (y) is
the Coriolis parameter, which may depend on the latitude y.
The non-divergence property holds to second order in wave
amplitude under the stated assumptions of stationary waves
without dissipation and without critical layers. The generality of
the EP flux result is remarkable: it holds for arbitrary f (y) and for
arbitrary zonal flows U(y, z) and corresponding buoyancy fields
B(y, z) in thermal wind balance. Indeed, the thermal wind balance
fUz = −By is needed to derive (2), a reminder of the fact that
in general the basic flow must be a solution of the governing
equations in order to get correct linear disturbance results.

In time, F came to be recognized as an excellent diagnostic tool
with which to analyse the propagation of waves in the meridional
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plane [2]. But the EP flux also proved to be extremely important for
the theory of nonlinear wave–mean flow interactions in a rotating
stratified fluid. Both of these aspects of F were fully understood
only a long time after the publication of their paper, basically
once it became clear that F had little to do with the flux of wave
energy, but was instead found to be equal to (minus) the flux
of wave pseudomomentum. Let us now look a little closer at EP’s
discoveries about the energy budget and the subsequent research
they inspired!

2. In search of lost wave energy

In the non-rotating two-dimensional vertical slice model the
velocity field lies entirely in the xz-plane and nothing depends on
y. Any shear flow U(z) is a trivial steady state of the system and
EP considered linear stationary waves relative to such a shear flow
under the restriction that U(z) > 0, say, which rules out critical
layers. Under these assumptions EP derived two important results
about themean vertical momentum flux uw and themean vertical
wave energy flux pw (here p is the linear pressure disturbance):

(uw)z = 0 and pw = −U uw. (3)

Both results are remarkable. The first one is immediately relevant
because in this simple system the zonal mean flow acceleration
is obviously given by −(uw)z , which is the divergence of the
standard ‘‘Reynolds stress’’. EP’s first result then makes obvious
that under the stated assumptions the mean flow is in fact
accelerated nowhere at all! Statements of this kind have since
become known as ‘‘non-acceleration conditions’’, with significant
further contributions already coming out in [3], who referred to
EP’s work.

The second result shows that, in contrast, the vertical wave
energy flux is not constant in z, but varies in magnitude in
proportion with the mean flow U(z). For example, for an upward
propagating lee wave with negative momentum flux uw < 0 this
means that wave energy is somehow created if Uz > 0, say. Total
energy is conserved, so somehow this net gain ofwave energymust
be compensated by a corresponding net loss of mean flow energy.
This is very confusing and mysterious, as the first result showed
that the mean flow does not change anywhere!

Arguably, this energy budget puzzle can only be resolved by
considering the time-dependent spin-up of the wave field (e.g.,
[4]). In such a scenario the linearwave fields are allowed to depend
on time and one can then define a Eulerian pseudomomentum of
thewave field that is conservedwith density p̃ and has vertical flux
equal to the meanmomentum flux uw. Specifically, one then finds
that the first equation in (3) is replaced by (see, e.g., Section 7.1.1
in [5])

p̃t + (uw)z = 0 with p̃ = 1
N2 b(uz − wx) − b2

2N4Uzz . (4)

For plane waves the generic expression p̃ = kE/ω̂ holds in terms
of the zonal wavenumber k and the intrinsic frequency ω̂ = ω−Uk

and for a plane leewavewith absolute frequencyω = 0 thismeans
p̃ = −E/U . The meaning of p̃ can be made clearer by using the
linear vertical particle displacement ζ = −b/N2, so that

p̃ = −ζ (uz − wx) − ζ 2

2
Uzz . (5)

This makes obvious that the essential meaning of p̃(z, t) is an
integral of the vorticity over the area between the fixed line of
constant z and the material line at z + ζ whose undisturbed
rest position is at z. Kelvin’s circulation theorem or a comparison
of Reynold’s stresses then makes clear that the time-evolving

Eulerian zonal mean flow satisfies ut = p̃t and is therefore given
by

u(z, t) = U(z) + p̃(z, t) (6)

to second order in wave amplitude. This answers the question
of where the mean flow energy can change: the kinetic energy
density of the zonal mean flow is u

2/2 and this density changes
by the second-order amountU p̃when thewaves arrive. For a plane
leewaveU p̃ = −E so this is a net loss ofmean-flow kinetic energy,
which is precisely the amount of energy needed to support the
growing wave energy of a developing wave train, as shown in [4].
A sheared region inwhichU(z) changes does not affect this picture
in any essential way, i.e., nothing particularly interesting happens
in the shear zone itself.

The existence of a conserved zonal pseudomomentum in the
present example is linked to the continuous symmetry of the basic
flow with respect to translations in the zonal direction, i.e., the
basic flow does not depend on x and this induces a conservation
law for the disturbance based on this symmetry (e.g., see [6],
for a clear discussion of this link). This is analogous to, but not
identical with, the conservation of total fluid momentum induced
by the symmetry of the entire fluid system set-up with respect to
shifts in the x-direction. Likewise, the conservation of total fluid
energy induced by the time symmetry of the total fluid set-up
has a counterpart in the conservation of a disturbance-associated
pseudoenergy that is induced by the time symmetry of the basic
flow. In the present case the pseudoenergy density and its vertical
flux to second order in wave amplitude are

e = E + U p̃ and pw + U uw. (7)

This shows that EP’s second equation in (3) means that the flux
of pseudoenergy is zero. Indeed, the pseudoenergy density itself is
zero in the lee wave problem, as is obvious in the plane wave case
where (7) reduces to

e = E

�
1 + kU

ω̂

�
= ω

ω̂
E = 0. (8)

So pseudoenergy is conserved but also identically zero in the
lee wave problem, which is a reminder that energy budgets in
problemswith nonzeromean flows are tricky and depend strongly
on the chosen reference frame. Indeed, if U is constant then we
are at liberty to view the same lee wave problem in a frame
of reference moving with the basic flow U . In this reference
frame the basic fluid velocity is zero, but the topography is now
moving horizontally with velocity −U . The pseudoenergy, which
is manifestly frame-dependent, is now equal to the wave energy
E and the aforementioned extraction of kinetic energy from the
basic flow does not take place at second order in wave amplitude.
Instead, the moving mountain is now seen as providing the energy
for the waves!

In contrast, the pseudomomentum is not frame-dependent
and leads to the same mean-flow changes as before. In other
words, whilst energy budgets are tricky and frame-dependent, the
momentum budget is straightforward and does not depend on the
reference frame. This is another lesson that was learned from [1].

3. The trouble with rotation

A student who knows elementary fluid dynamics and encoun-
ters rotating stratified flows for the first time might be forgiven
for thinking that of the two new features rotation should be trivial
to understand compared to stratification. After all, rotating frames
are already discussed in undergraduate mechanics books, so this is
a seemingly harmless addition. Of course, we soon learn that this is
not true at all, and that strong rotation changes the fluid behaviour
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in a radical way and leads to new effects that are arguably as least
as surprising as those to do with stratification.

Rotation certainly makes a big difference for the EP flux in (2),
and also for the corresponding definition of pseudomomentum,
and for the way in which the mean flow responds to the waves.
Indeed, for weak basic flows in the sense of Rossby and Richardson
numbers, the EP flux F differs from the familiar Reynolds stresses
only by the peculiar term associated with f in the vertical
component of F . So, why should the familiar vertical Reynold stress
be augmented by this peculiar term?

A physical answer to this question was provided by [7], based
on earlier work by [8]. Bretherton used the vertical particle dis-
placement ζ = −b/N2 and the linear zonal momentum equation
in a two-dimensional vertical slice model to show that for steady
waves

− uw + f

N2 bv = −uw − f ζv = ζxp (9)

holds, where p is the linear perturbation pressure. In other
words, the vertical component of the EP flux measures (minus)
the Lagrangian flux of horizontal momentum across an undulat-
ingmaterial surface, which is given by the correlation between the
perturbation pressure and the local surface slope ζx. This beauti-
ful result also makes clear that it is the EP flux, and not the bare
Reynolds stress, that correctly measures the wave drag force on a
mountain in a rotating frame. This is obvious because h = ζ at
z = 0 in linear theory, where h is the height of the mountain, and
therefore the right-hand side of (9) at z = 0 is precisely the mean
drag on the mountain.

The resolution to the paradox as to how the Eulerianmomentum
flux uw and its Lagrangian counterpart −ζxp can systematically
be different hinges on the zonal Coriolis forces exerted on the
fluid contained in the pockets between the undulating material
surface under consideration and its flat rest position at constant
z. Specifically, if the vertical displacement ζ is correlated with
the meridional velocity disturbance v then there is a nonzero net
zonal Coriolis force at second order in wave amplitude, which
precisely compensates for the mismatch between the Eulerian
and Lagrangian momentum fluxes. This is basically the physical
explanation of the peculiar term associated with f in the EP flux,
which captures this correlation.

Now, to find the definition of a rotating pseudomomentum at
the level of generality of the situation studied in EP’s paper took
longer to be worked out [9]. These authors used linear particle
displacements in all directions ξ = (ξ , η, ζ ), which were defined
in terms of the mean material derivative Dt = ∂t + U∂x via

Dtξ = u + ηUy + ζUz, Dtη = v, and Dtζ = w. (10)

Note the crucial special form for the zonal displacement ξ , which
captures the rate of change of ξ as induced by the Lagrangian

disturbance velocity, which has to be evaluated to leading order
at the displaced position x + ξ. With the aid of ξ a suitable three-
dimensional rotating generalization of p̃ could be formulated, but
I will not copy it here as it is a lengthy expression consisting of 12
different terms!

This complexity together with the fact that the EP flux had
found its most immediate physical explanation in terms of
Lagrangianmomentum fluxeswas also amotivation for developing
a general theory of Lagrangian averaging [10,11]. Part of the
attraction of that theory lies in the fact that in this theory both
a pseudomomentum vector and its associated flux tensor can
be defined in a general and fully nonlinear manner that greatly
simplifies and also generalizes the small-amplitude Eulerian
definitions thatwere knownup to this point. In thisway the EP flux
could reliably be identifiedwith the Lagrangian-mean flux of zonal

meanmomentum. Indeed, thiswas a casewhere the general finite-
amplitude theory was somewhat easier than the small-amplitude
theories that had been worked out previously! On the other hand,
the simplicity of the theory came at the cost of involving more
complicated quantities such as the particle displacements and
the Lagrangian-mean velocity, which are not readily available in
observations or even in numerical simulations.

So, in practice a combination of the EP flux together with the
use of the transformed Eulerian mean equations has been used in
atmospheric science ever since it was developed in the late 1970s.
This set of equations does not require the explicit knowledge of
particle displacements, which is a great practical advantage, and
it also makes obvious that it is the divergence of the EP flux that
is the essential driver of the zonal mean flow as well as of the
concomitant mean meridional circulation in the yz-plane.

Outside Lagrangian-mean theory, the clearest expression of the
link between ∇·F and the forcing of the zonal mean flow can be
found in quasi-geostrophic theory, where one can show that the
formula

∇·F = vq where q = vx − uy + f

N2 bz (11)

is the quasi-geostrophic linear potential vorticity disturbance and
vq is therefore the meridional eddy flux of potential vorticity. The
impact of this meridional flux on the mean potential vorticity
evolution is quantified by its divergence (vq)y. Now, this flux
divergence is equivalent to the impact of an effective zonal mean
force equal to vq, because the divergence of the meridional eddy
flux is then trivially equivalent to the vertical curl of this effective
zonalmean force. Thismakes obvious that∇·F can be viewed as an
effective zonal mean force exerted on the zonal mean flow, at least
in quasi-geostrophic theory. Such a beautiful and clear statement
is hard to come by in other situations!

4. Pushing ahead, and into the sea

The results of the EP paper inspired a diverse body of research,
which also went beyond the original outline of their theory. For
example, a very different methodology for finding conserved wave
activity measures and their flux based on Hamiltonian fluid me-
chanics and the diligent exploitation of basic-flow symmetrieswas
developedmore than 25 years after their paperwas published. This
method used only Eulerian flow variables and yet it generalized
easily to finite-amplitude disturbances, which was something that
previously only Lagrangian theories had achieved. Applications ran
from finite-amplitude wave diagnostics to applications in nonlin-
ear stability (e.g., [12–16]). These finite-amplitude Hamiltonian
theories focus on the dynamics of the disturbances and do not nec-
essarily deliver the same amount of information about mean-flow
non-acceleration conditions or other aspects of the mean-flow dy-
namics. However, recently a new direction for finite-amplitude
wave activitymeasures based closely on extensions of the vorticity
arguments linking (5) and (6) has been pursued in [17,18], which
allows a closer look at both the waves and the mean flow.

Finally, the EP flux and the associated ideas have also found
their way into oceanography, which is not as obvious as it sounds,
because much of the theory relies on zonal averaging around
latitude circles, which fails in most places in the ocean because
the continents get in theway! Still, the transformed Eulerianmean
formulation and other techniques are now at home on both sides
of the air–sea interface [19]. There are also new theoretical ideas
that have come out of oceanography, for example [20] greatly
extends the notion of thickness-averaged fluid dynamics, which
in the atmospheric context had been pursued in the context of EP
fluxes and averaging along constant entropy surfaces (e.g., [21]). In
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summary, the ideas of EP’s paper are alive andwell, and this surely
is a reason to celebrate!
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