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Statistical mechanics of strong and weak point vortices in a cylinder
Oliver Bühlera)

School of Mathematics and Statistics, University of St. Andrews, St. Andrews KY16 9SS, United Kingdom

~Received 11 October 2001; accepted 16 April 2002; published 23 May 2002!

The motion of 100 point vortices in a circular cylinder is simulated numerically and compared with
theoretical predictions based on statistical mechanics. The novel aspect considered here is that the
vortices have greatly different circulation strengths. Specifically, there are 4 strong vortices and 96
weak vortices, the net circulation in either group is zero, and the strong circulations are five times
larger than the weak circulations. As envisaged by Onsager@Nuovo Cimento, Suppl.6, 279~1949!#,
such an arrangement leads to a substantial amplification of statistical trends such as the preferred
clustering of the strong vortices in either same-signed or oppositely signed pairs, depending on the
overall energy level. To prepare the ground, this behavior is illustrated here first by a simple toy
model with exactly solvable statistics. A microcanonical ensemble based on the conserved total
energyE and angular momentumM for the whole vortex system is then used, in which the few
strong vortices are treated as a subsystem in contact with a reservoir composed of the many weak
vortices. It is shown that allowing for the finite size of this reservoir is essential in order to predict
the statistics of the strong vortices accurately. Notably, this goes beyond the standard canonical
ensemble with positive or negative temperature. A certain approximation is then shown to allow a
single random sample of uniformly distributed vortex configurations to be used to predict the strong
vortex statistics for all possible values ofE andM. Detailed predictions for the energy, two-vortex,
and radial distribution functions of the strong vortices are then made for comparison with three
simulated cases of near-zeroM and low, neutral, or highE. It is found that the statistical mechanics
predictions compare remarkably well with the numerical results, including a prediction of vortex
accumulation at the cylinder wall for low values ofE. © 2002 American Institute of Physics.
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I. INTRODUCTION

The application of statistical mechanics to tw
dimensional point vortex dynamics was first suggested
Onsager1 in a landmark paper in 1949, in which he sketch
a possible explanation for the formation of coherent vorti
on statistical grounds linked to the possibility of negati
~statistical! temperatures for point vortex systems in
bounded domain. Onsager’s suggestions have continue
attract some interest because two-dimensional fluid dyn
ics is a relevant paradigm in many applications such as g
physical fluid dynamics~in which the large-scale quas
horizontal flow along stratification surfaces in th
atmosphere or oceans is approximately layerwise t
dimensional!, or plasma dynamics under certain condition2

Indeed, a successful application of statistical mechanic
problems in these fields suggests a hidden degree of pre
ability that could easily be obscured by conventional dir
numerical simulations. Such statistical predictability can
exploited quantitatively at much lower computational co
than by the brute force simulations of ensembles of m
individual flow realizations. This is a compelling vision
one considers, for example, the hugely expensive geoph
cal climate and weather simulations, for which currently on
a very small ensemble of direct simulations at very low re

a!Electronic mail: obuhler@mcs.st-and.ac.uk
2131070-6631/2002/14(7)/2139/11/$19.00
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lutions is feasible. Statistical theories based on Onsag
ideas~and on others that go beyond the point vortex idea
zation! have already been used successfully for predict
the detailed behavior of certain idealized geophysical fl
problems.3 Formidable obstacles remain in order to ma
such theories applicable in practice, but the potential rewa
are great.

Onsager described his ideas only in qualitative form a
the detailed theoretical exploration of these issues only
gan with the development of a mean-field theory by Mo
gomery and Joyce,4,5 which has since been extended a
refined mathematically in many ways over the years.6–9 Ac-
curate direct numerical simulations of point vortices ov
long times have become feasible over the last t
decades.10,11 It was suggested11 that for geophysical applica
tions the most relevant values for the number of vorticesN
lie in an intermediate range between the regime of lo
dimensional chaos~whereN may be less than 10! and the
‘‘thermodynamic’’ regime in whichN→` in some subtle
limit. This point of view is also taken here, where only cas
with N5100 are studied.

Now, the topic of the present paper goes back to a s
gestive remark made by Onsager concerning the charact
tic appearance of vortex distributions in a negative tempe
ture state, and which to my knowledge has not be
considered explicitly since. In his masterful succinct expo
tion, Onsager says that in such a state ‘‘... vortices of
9 © 2002 American Institute of Physics

IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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same sign will tend to cluster,—preferably the stronges
ones—, so as to use up excess energy at the least pos
cost in term of degrees of freedom ... the weaker vortic
free to roam practically at random, will yield rather erra
and disorganised contributions to the flow’’~my italics!.

This encapsulates two crucial insights:~a! that strong
vortices will be more predictable than weak ones; and~b!
that the maximum disorder of the flow as a whole~which is
implied by the statistical theory! will be achieved in a re-
markably inhomogeneous, composite manner, in which
relative order of the strong vortices will be more than co
pensated for by the increased disorder of the weak ones.
present paper is an attempt to verify and exploit both of th
insights in the simplest possible setting that allows comp
hensive numerical and theoretical exploration.

To the best of my knowledge, detailed previous stud
have all focused on the case of identical~or nearly
identical11! absolute vortex circulations, or on the even mo
restricted case of identical vortex circulations throughout
these cases, the statistical behavior of the flow is in so
sense directly determined by the constraint of fixed total
ergy: large energy values must require the coming toge
of same-signed vortices, and vice versa for low energy v
ues@see~2!#. In other words, the occurrence of vortex clu
ters is then enforced directly by the total energy constra
However, once different vortex strengths are present the
scope for interestingly different behavior, in which some v
tices cluster spontaneously whilst others do not.

The plan for the paper is as follows: Section II intr
duces the main features of the studied Hamiltonian po
vortex system and corrects some minor errors in rela
works; Sec. III briefly illustrates Onsager’s suggestion by
analogy with a simple toy model, which serves to prepare
ground for the vortex theory; Sec. IV presents direct num
cal simulations of the vortices; Sec. V derives statistical m
chanics predictions and applies these to the simulations;
some concluding remarks are given in Sec. VI.

II. HAMILTONIAN POINT VORTEX DYNAMICS

The Hamiltonian form of the equations of motion forN
point vortices with circulationsG i and instantaneous Carte
sian coordinatesxi(t)5(xi ,yi) ~wherei 51,2,...,N! are

G i

dxi

dt
51

]H

]yi
, G i

dyi

dt
52

]H

]xi
. ~1!

The pairs (xi ,yi) are canonical phase space coordinates, w
invariant phase space volume elementdx1dx2 ...dxN . In the
special case of a circular cylinder with radiusR centered at
the coordinate origin6 the wall boundary condition is
satisfied12 by placing for each physical vortex at locationx a
single image vortex with opposite circulation at locati
xR2/uxu2. This leads to an invariant Hamiltonia
H(x1 ,...,xN) as
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H52
1

4p (
i . j

N,N

G iG j ln~r i j
2 !1

1

4p (
i 51

N

G i
2 ln~R22r i

2!

1
1

4p (
i . j

N,N

G iG j ln~R422R2xi "xj1r i
2r j

2!, ~2!

wherer i
25xi

21yi
2, r i j

2 5(xi2xj )
21(yi2yj )

2, and the asym-
metry in the logarithmic terms arises because the image
tices do not move with the implied physical velocity at the
location. In other words, the circular cylinder wall cannot
removed. The double sums run over all pairsi . j , i.e., there
are N(N21)/2 individual terms in these. As 0<r i<R, the
phase space is clearly bounded and its volume is (pR2)N. In
the generic case ofG i with different signs we clearly have
HP(2`,1`) due to various combinations of terms wit
r i→R or r i j →0. Indeed, even at fixedH5E, say, individual
terms in~2! can go to6` whilst adding up to a finite num-
ber.

The first sum in~2! involves the usual free-space inte
action term, which goes to1` as r i j →0 for same-signed
vortex pairs, and vice versa for oppositely signed dipoles.
is well known, this symmetric appearance masks a quite
tinct dynamical behavior in these two cases, with sam
signed vortices orbiting each other whilst oppositely sign
ones propagate along a straight line. The second sum
volves a self-interaction term for each vortex, which leads
counterclockwise propagation at fixedr i for G i.0 and vice
versa forG i,0. Unlike the pair interaction terms, this term
always goes to2` as r i→R, which is linked to the ever-
closer approach of the vortex to its oppositely signed ima
in this limit. In other words, the cylinder wall is a location o
infinite negative energy for each vortex. Finally, the thi
sum in ~2! involves the interaction of each vortex with th
images of all other vortices. Its terms become singular onl
r i , r j→R and r i j →0.

One can note in passing that the dynamically active
ture of the cylinder wall that is expressed by the se
interaction terms distinguishes the present case from the
viously studied doubly periodic case.10,11 These self-
interaction terms add advection parallel to the wall to t
dynamics, which somewhat enhances the mobility of in
vidual vortices. Also, one can note that in the cylinder ca
propagating vortex dipoles split up when they approach
cylinder wall and then propagate along the wall into oppos
directions. Unless they collide with other vortices befor
hand, the vortices would then rejoin on the other side of
cylinder, and again enter the interior as a dipole. Such vo
behavior might in fact be relevant for vortex dynamics
beaches, where the vicinity of the shoreline has a sim
effect as the cylinder wall.13

The infinities of the various terms in~2! occur on a set of
measure zero in phase space volume, but they neverth
have an impact on direct numerical simulations as well as
statistical theories, especially those with nonuniform pha
space measures@e.g., ~3!#. Indeed, the possibility of nega
tively infinite self-interaction energy is important even in th
simplest caseG i5G5const, although this seems to hav
been overlooked at times. For instance, Cagliotiet al.8 con-
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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sider the conditions for existence of the usual canonical p
tition function Z defined by the total phase space integral

Z5E exp~2bH !dxN, ~3!

whereb is the usual parameter inversely proportional to
~statistical! temperature. They state thatZ,1` exists for
fixed N andG if and only if

bPS 28p

G2N
,1` D , ~4!

where the finite negative range is needed in order to bo
the importance of same-signed vortex collisions with th
infinite positive energies. However, this miscalculates
importance of thenegativeinfinite energies as vortices ap
proach the wall. Indeed,Z for a single vortex in a cylinder is
easily evaluated as

Z5
p

12b*
R2~12b

*
!

only if

b* 5
bG2

4p
,1, ~5!

otherwiseZ,1` does not exist. It seems that this implie
that ~4! in Caglioti et al. should be replaced by the slightl
more symmetrical

bPS 28p

G2N
,
14p

G2 D , ~6!

which exhibits a finite temperature range also forb.0. @In
the particular asymptotic limit subsequently studied in t
paper,8 the rescaled upper limit in~6! still tends to1`, so
the subsequent results may well remain intact.#

Somewhat surprisingly, this means that a point vor
system withG i5G and bounded by a solid wall, if couple
to an infinite energy reservoir at positive temperatureT, will
collapse to the wall asT drops towardG2/4p, where Boltz-
mann’s constant has been set to unity. Some evidence
such behavior is given in Sec. V. Of course, the point vor
model will lose its physical significance when this happe
i.e., the finite core and finite self-energy of physical vortic
will become important in this limit. Also, any coupling to
finite energy reservoir will arrest the collapse~cf. Sec. III!.

Now, in the remainder of this paper the following set
will be studied. The total number of vorticesN5100 will be
split into NA54 strong vortices andNB596 weak vortices
with respective circulations

GA5610p, GB562p. ~7!

The net circulation in either group is zero. This is a natu
constraint for physical situations that have arisen from loc
ized vortex forcing, which always produces vortex dipo
with zero net circulation.13 These particular values have be
chosen in order to focus on the most complex scenario
follows.

Because absolute energy values in~2! are meaningless
~unlike in most classical systems!, the relevant measure o
Downloaded 18 Feb 2003 to 128.122.80.23. Redistribution subject to A
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importance of the individual sums in~2! comes from consid-
ering their variance over the phase space. NeglectingGAGB

interaction terms between strong and weak vortices, it tu
out ~cf. Sec. III! that the total variance of theGA

2 terms in the
double sums scales approximately asO(NA

2GA
4), and corre-

spondingly so for the weak vortices. Therefore the para
eters have been arranged such that these variances ar
proximately equal. The total variance of theGA

2 self-
interaction terms in~2! scales asO(NAGA

4) and it turns out
that for the chosen setup the numerical prefactor makes
term significant in size compared with the termO(NA

2GA
4).

However, for the weak vortices the self-interaction varian
O(NBGB

4) is small compared to the termO(NB
2GB

4). In sum-
mary, strong and weak vortices are expected to interact
orously and the dynamics of the strong vortices is in addit
significantly affected by the presence of the wall.

It remains to consider a second invariant that arises
to the azimuthal symmetry of the HamiltonianH in ~2!,
namely the invariant angular momentum

M̂5
1

2p (
i 51

N

G i r i
2. ~8!

There are no other invariants, so vortex motions withN.2
are presumably nonintegrable in the cylinder. UnlikeH, the
invariance ofM̂ is not robust in the sense that a small d
turbance of the problem~say, perturbing the cylinder wall to
be elliptical! would destroy the invariance ofM̂ . Neverthe-
less, in the present caseM̂ clearly plays a role and needs t
be considered formally on the same footing asH. It is
straightforward to show that for the chosen setup the str
and weak vortex contributions to the variance ofM̂ are again
roughly equal.

Finally, it is noteworthy that in a setup in which all th
G i are sign definite, the conservation ofM̂ implies that the
accessible phase space is bounded even without a cyli
wall, and this has been used to study negative tempera
states of such a setup using only the first term in~2!. How-
ever, in the present setup withG i of either sign this cannot be
done @contrary to assertions sometimes made,7,14 where ~8!
was misquoted withG i replaced byG i

2#.

III. A SOLVABLE TOY MODEL

Here a toy model with exactly solvable statistical m
chanics is discussed in order to prepare the ground for
statistical mechanics of the vortex system. The toy mode
the one-dimensional Ising model without external magne
field, which can be thought of as an assembly of independ
switches. Let there beM switches and let each switch eithe
be in an ‘‘up’’ or ‘‘down’’ position, with corresponding en-
ergy valuesEi56e i , where i 51,2,...,M and the constants
e i describe the individual strength of the switches. The fini
sized discrete state space of the system is formed by theM

different states of all the switches. The total energy is

E5(
i 51

M

Ei with range 2(
i 51

M

ue i u<E<1(
i 51

M

ue i u. ~9!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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The energy extrema correspond to exactly one state e
and it is clear that there are only a few states with energ
near these extrema. This scarcity of states is of crucial
portance for the statistical mechanics of this system. Now
an analogy with vortex dynamics each of theM switches
corresponds to one of theO(N2) interaction terms in the firs
sum in ~2!, the other sums being disregarded. Eache i then
corresponds to a pairingG iG j , and the up/down switch po
sitions correspond crudely to the variability of the log
rithms. Surprisingly, it will turn out that this crude analog
can already explain a number of features of the vortex s
tem.

A. Canonical statistical mechanics

We first imagine the system in contact with an infin
energy reservoir at temperatureT and inverse temperatur
b51/T. The individual switch statistics are then independ
from each other and hence it suffices to consider theith
switch in isolation.~The analogous statement is of course n
true in the vortex system, which is a coupledN-body prob-
lem.! The probabilities for the switch to be in the up/dow
position are then equal to exp(7bei)/Zi , respectively, where
the normalization constant is the partition functionZi

52 cosh(bei). The resultant average switch energyUi is

Ui52e i tanh~be i !, ~10!

which shows that there is no energy equipartition betw
the switches unlessb50, and that regardless of the sign ofe i

a positive temperature corresponds to negativeUi and vice
versa. The behavior of the switch as a function ofbe i is
easily characterized: ifbue i u@1 ~i.e., T→01! we haveUi

'2ue i u and the switches are increasingly locked into th
low-energy positions. On the other hand, ifbue i u→01 ~i.e.,
T→`! the switches become increasingly disordered andUi

goes to zero. A corresponding scenario unfolds forb,0,
which shows that positive and negative temperature statis
are perfectly symmetric here. All this applies qualitatively
the vortex system as well, though the near symmetry
tween positive and temperature states is lost there when
sidering a mean-field theory.4,5

The switch fluctuations can be analyzed by consider
the numberUi /e i52tanh(bei), which is the average switch
position. ~Identical conclusions are reached by consider
the variance of the switch energy, which is equal
2]Ui /]b5e i

2/cosh2(bei).! Absolute values of this numbe
near unity mark ordered, predictable behavior, whereas
solute values near zero mark disorder and randomness
uniform e i order increases asubu increases. Consider now th
case of there being two distinct types of switches: strong
weak, respectively, such thatueAu.ueBu, in obvious analogy
to the vortex setup. Clearly, for the same value ofb the
behavior of the strong switches is going to be more orde
than that of the weak switches, i.e.,uUA /eAu>uUB /eBu, with
equality holding only whenb50. Indeed, ifueAu@ueBu then
the strong switches can exhibit significantly more order th
the weak switches, which illustrates the first part of Ons
er’s remark.
Downloaded 18 Feb 2003 to 128.122.80.23. Redistribution subject to A
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This point about order/disorder can be made in anot
way by looking at the contributions to the entropy of th
system that are made by the strong and weak switches
spectively. The usual expression for the entropy in the
nonical formalism is

Si5 ln Zi1bUi5 ln~2 cosh~be i !!2be i tanh~be i !. ~11!

The switch entropySi(be i) is hence a positive even functio
of its argument with maximumSi(0)5 ln(2) at the origin,
and with monotone decrease to zero with increasingube i u.
~At b50 andb→6` the value ofSi is compatible with the
microcanonical definition of entropy as the logarithm of t
number of permissible states.! Again, this means that at fixed
b we haveSA<SB , i.e., the strong switches contribute le
to the entropy than the weak switches.

A dynamical interpretation of this remarkably compo
ite, inhomogeneous entropy distribution is suggested by
alternative variational formulation of canonical statistic
mechanics in terms of maximum~information! entropy at
fixed mean energy. In this view, the strong switches tend
become more ordered, and hence contribute less to the
tropy, because in doing so they absorb the right amoun
energy to allow the weak switches to be as disordered
possible. This peculiar sharing-out of the energy leads a
tribution of maximum total entropy, which then emerges a
truly composite, interactive feature of the system. This illu
trates the second part of Onsager’s remark.

B. Microcanonical statistical mechanics

We now turn to consider the microcanonical statistics
the toy model, in which the total energy is fixed at a certa
valueE such that only states with this energy value are p
mitted and all such states are then deemed equally lik
This is the proper setting in which to analyze numeric
simulations at conserved energy under an ergodic appr
mation, and the formalism developed here will be direc
relevant to the vortex dynamics discussed later.

The total energy constraint now couples the individu
switch statistics. Specifically, a subset of switches now
haves like a subsystem in contact with afinite energy reser-
voir formed by the other switches, and the key question is
analyze the statistical mechanics of such a subsystem. To
end we split theM switches into a subsystemA and a ‘‘res-
ervoir’’ B such thatMA1MB5M and MB@1, assuming
from now on thatM@1 to begin with. We have

E5EA1EB ~12!

for all permissible states. The probability of a particular su
system state with energyEA is then proportional to the num
ber of reservoir states withEB5E2EA . Now, the density of
reservoir states per unit energy interval is that of a sum
MB@1 independent zero-mean random functions with fin
variances, which by the central limit theorem can be appro
mated by the continuous function

p0~EB!5
1

sBA2p
expS 2EB

2

2sB
2 D ,

where
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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sB5(
i 51

MB

e i
2 ~13!

is the energy variance of the reservoir. The subscript 0
notes that this probability corresponds to a uniform distrib
tion over all possible states. For a particular subsystem s
with EA we therefore obtain the probability

Prob$subsystem state withEA%}p0~EB5E2EA!

}expS 2~E2EA!2

2sB
2 D}expS EEA

sB
2 2

EA
2

2sB
2 D , ~14!

where a factor independent ofEA has been absorbed into th
proportionality constant determined by normalization. T
means that for small subsystem energiesEA

2!2sB
2 the rela-

tive probabilities are described by canonical statistics with
inverse temperatureb̃52E/sB

2. We note in passing that i
uEAu!uEBu thenb̃ agrees with the microcanonical definitio
of inverse temperature of the reservoir as the derivative
ln p0(EB) with respect toEB .

Now, for larger subsystem energies the finite size of
reservoir is felt via the second term in~14!, which decreases
the likelihood of such states and marks the departure f
canonical statistical mechanics for the subsytem.~Coinciden-
tally, the statistics of asingleswitch in contact with the finite
reservoir are precisely canonical, due to the symmetry o
two energy levels.! Also, one can note that the probabilit
distribution ~14! admits a somewhat unusual maximum
entropy formulation in which the subsystem information e
tropy is extremalized subject totwo constraints, namely tha
of fixed average energy as well as fixed energy variance.
straightforward to show that such a procedure leads t
probability}exp(2b̃EA2g̃EA

2) for a subsystem state with en
ergy EA , in accordance with the structure found in~14!.

The above-mentioned results show how microcanon
statistical mechanics can be used to calculate the statisti
a subsystem in contact with a finite reservoir, even bey
the usual asymptotic limitMB→`, E/MB5O(1) in which
canonical subsystem statistics would emerge. The impor
reservoir energy variancesB

2 in ~13! enters the definition of
b̃ and it also demarcates the finite size of the reservoir as
by the subsystem. In analogy with the toy model and~13!,
the reservoir variance in the vortex system is proportiona
NB

2GB
4, as was previously asserted.

IV. NUMERICAL SIMULATIONS

Direct numerical simulations of the vortex system se
from Sec. II are described and analyzed. The compar
with statistical mechanics predictions follows in Sec. V.

A. Numerical model details

The model integrates the dynamical equations deri
from ~1! and ~2!, i.e.,
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dxi

dt
5 (

j 51,j Þ i

N
G j /2p

~xi2xj !
2 ~yj2yi ,xi2xj !

1(
j 51

N
G j8/2p

~xi2xj8!2 ~yj82yi ,xi2xj8!. ~15!

As noted in Sec. II, each vortex has an image vortex w
parameters

G j852G j , xj85xj

R2

xj
21yj

2 ~16!

to satisfy the wall boundary condition. Notably, the seco
sum in~15! includes a self-interaction term withj 5 i . Strong
and weak vortices were chosen as in~7! and for definiteness
the cylinder radiusR55. By rescaling~15! the present simu-
lations can be mapped onto simulations with arbitrary fin
R andGB provided the ratiouGA /GBu55 remains the same

The numerical model itself is a standard Runge–Ku
scheme of four-fifths order with adaptive time step refin
ment. The integrations are performed with double precis
and in cycles ofdt50.01, using adaptive time step refin
ment until the error is less than the tolerance set to 1029. No
regularization of the equations for numerical purposes w
needed, e.g., there was no near-field smoothing to pre
large velocities, and the unusually low error tolerance is
quired to integrate safely through intermittent episodes
which vortices are getting very close to each other, or to
wall. These intermittent episodes lead to a model per
mance that can vary by a factor of 10 over a run. The to
energy and angular momentum are conserved with very h
precision and all runs were performed on a single-proces
workstation.

B. Description of three model runs

Under the ergodic approximation the statistics of a r
are determined by the invariant values of its Hamiltoni
H5E and its angular momentumM̂5M , say. All runs had
values ofM very close to zero. This is because no explo
tion of the role ofM was intended because of the nonrobu
nature of this invariant noted in Sec. II. Three different e
ergy values~denoted low, neutral, and high! were chosen to
give runs broadly corresponding to regimes of positive, ze
and negative microcanonical temperature. The specific
ues for the three runs were

E5$2197,221,628%, M5$2.1,4.1,2.3% ~17!

and they were determined as follows.10 A random population
of 105 vortex configurations was generated in which each
the hundred vortices was placed independently with unifo
probability anywhere inside the cylinder. TheH values were
then computed from~2! ~this being the computationally ex
pensive step! and a histogram was formed to give the pro
ability density function~pdf! for the total energyp0(E), as
plotted in Fig. 1~a!. The average energy is nonzero becau
of the sign-definite effect of the self-interaction terms in~2!
and also because there areO(N) more oppositely signed
terms than same-signed terms in the double sums.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 1. ~a! Total energy pdf~based on
105 random samples with uniform dis
tribution! with indications of the total
energy levels for the low, neutral, an
high runs. The average total energy
222 with variance 2842. ~b! Joint total
energy-angular momentum pdf, afte
some smoothing. The correlation coe
ficient betweenE andM is 1023.
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The corresponding pdf for the total angular moment
~not plotted! is close to a zero-mean normal distribution wi
variance equal toG i

2R4/48p2 summed over all vortices. Also
plotted in Fig. 1~b! is the joint pdf of total energy and tota
angular momentump0(E,M ), which indicates approximate
statistical independence ofE andM.

At the beginning of each run the four strong vortic
were placed in the same positions, i.e., these vortices w
symmetrically spaced in azimuthal angle at a common rad
r 53, with alternating circulation from vortex to vortex. Th
is very close to an exact steady state of four vortices i
cylinder, which occurs at radiusr 5(A1724)1/4R'2.96, and
hence the strong vortices are essentially set into motion
the weak vortices. The positions of the weak vortices w
taken from uniformly distributed random samples that w
generated until a sample with suitableE and M was found.
The resulting initial states are displayed in Fig. 2.

It is probably fair to say that it is impossible to guess
inspection of Fig. 2 whether and in what way the long-te
statistics of the strong vortices will differ in these runs.

All runs were now integrated up tot5750, which corre-
sponds to many hundred cylinder traversals of each vor
and 3000 instantaneous states of the evolution were stor
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time intervals ofDt50.25. Very different behavior of the
strong vortices was observed. The low-energy run showe
strong tendency of vortices sticking close to the wall,
forming short-lived vortex dipoles. The high-energy ru
showed a strong tendency to form same-signed vortex p
that persisted a comparatively long time. The neutral-ene
run showed a mixture of both behaviors. In all cases th
were fluctuations around this behavior, but the se
organization of the vortices into these typical patterns w
conspicuously clear.

Several quantitative diagnostics for the strong vortic
were computed: their energyEA @i.e., ~2! evaluated using
only the strong vortices#, the distance between same-sign
vortex pairs, and the distance between oppositely signed
tex dipoles. The mean values and standard deviations
these quantities over the duration of the simulations are s
marized in Table I, with pdfs presented in Sec. V.

These numbers make clear that significant statistical
ferences are indeed observed between the runs. With incr
ing overall energyE the average of the subsystem energyEA

~which initially has equal value in all runs! increases and the
average distance between same-signed vortex pairs
creases. Also, at the neutral energy level~with zero microca-
FIG. 2. Inital states for the three runs with low, neutral, and high energy levels, from left to right. Large circles show the strong vortices, and blackor white
color indicates positive or negative circulation.
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nonical temperature! there is no preference between pairi
of same-signed or oppositely signed vortices. The aver
distance between oppositely signed vortex dipoles rem
roughly constant asE is increased and close to a value co
responding to uniformly random placement of the vortic
which is 4.5 ~with standard deviation 2.1!. However, the
standard deviation of this quantity reduces withE.

Table I also includes predictions based on the the
described in Sec. V. These predictions are generally q
accurate, except forEA in the low-energy case and for th
same-signedr i j in the high-energy case. Sample autocor
lation functions based on the numerical time series feed
into these averages were computed in order to estimate
fidence intervals. These suggested long-lived oscillation
the low-energyEA with periods of aboutt;50 as well as a
slowly decaying autocorrelation in the high-energyr i j ,
which presumably is linked to long-lived vortex pairs in th
case. Confidence intervals based on these estimates pu
observed discrepancies at the borderline of statistical sig
cance.

V. COMPARISON WITH STATISTICAL MECHANICS

The numerical results are compared with pdfs estima
based on microcanonical statistical mechanics for the wh
system. The general estimation procedure is describe
some detail, not least because it contains an importantad hoc
approximation that significantly reduces computational co

A. Estimation of pdfs

The estimation of pdfs is based on phase space dens
r(x1 ,...,xN), which for convenience in the present case
normalized such that

E r dxN51, ~18!

where the integral is extended over the whole phase sp
Relative to a chosenr the pdf of any phase space functio
F(x1 ,...,xN) taking real valuesf is defined as

p~f!5E d~F2f!r dxN5E
F5f

r dA

u“Fu
. ~19!

The scaling properties of the Dirac-d function succinctly cap-
ture the thickness of the layersFP@f,f1df# measured in

TABLE I. Mean values and standard deviations over the duration of
simulation vs theoretical predictions for various quantities. For the distan
r i j and r i these quantities are averaged over all relevant combination
i , j P$1,2,3,4% if G1,25210p andG3,45110p.

Low Neutral High

Energy EA 2236126 1416111 2696136
Predicted 2646136 1296117 2426152
Same-sign distance r i j 5.162.1 4.561.9 3.762.0
Predicted 5.162.1 4.561.9 3.962.1
Opp.-sign distance r i j 4.562.5 4.462.1 4.661.8
Predicted 4.662.5 4.562.1 4.561.9
Radius r i 3.661.2 3.361.1 3.161.0
Predicted 3.661.2 3.361.1 3.161.1
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the surface integral on the right. Multiple pdfsp(f1 ,f2) are
defined analogously using products ofd functions. pdfs de-
fined by ~19! can be estimated numerically by forming hi
tograms ofF~x! based on random samples ofx. In theory,
optimal convergence of such a procedure requires imp
tance sampling, in whichr is used as the density of th
random sample. In practice, using a uniform density coup
with histogram increments proportional tor is much cheaper
in the present case of a finite phase space. The special ca
a uniform densityr05(pR2)2N is particularly important,
e.g.,p0(E) in Fig. 1 has been estimated from

p0~E!5~pR2!2NE d~H2E!dxN. ~20!

All pdfs calculated from the uniform density are denoted
p0(•).

The usual microcanonical density based on ene
HP@E,E1dE# is defined as

rE5
d~H2E!

*d~H2E!dxN ~21!

and corresponding pdfs will be denoted bypE(•). For sim-
plicity, consideration of the angular momentum invariant
deferred until later. From~19! one obtains

pE~f!}E d~F2f!d~H2E!dxN}p0~f,E!, ~22!

up to an overall normalization factor. This means thatpE(f)
can in principle be evaluated from a joint pdfp0(f,E) based
on the uniform distribution. However, for a particular valu
of E this is computationally very expensive, as most samp
have to be discarded. On the other hand, ifF depends only
on a subset of the variables then its pdf can be much sim
fied, as follows.

Specifically, letxA andxB denote the coordinates of a
the strong and weak vortices, respectively. ThendxA dxB

5dxN and we consider only functionsF(xA) from now on.
From ~22! one obtains

pE~f!}E d~F2f!F E d~H2E!dxBGdxA

}E d~F2f!rE~xA!dxA , ~23!

where the integral in square brackets is the unnormali
marginal densityrE(xA). Now, if it were the case thatH
5HA(xA)1HB(xB) ~as was true in the toy model! then

rE~xA!}E d~HB1HA2E!dxB}p0~EB5E2HA!, ~24!

where

p0~EB!}E d~HB2EB!dxB ~25!

is the pdf of the weak vortex energyHB in the uniform
distribution. The last term in~24! means that the function
p0(EB) should be evaluated atEB5E2HA . Clearly, all
statesxA with the same energyHA are now equally likely.

e
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FIG. 3. ~a! pdf of the reservoir energy
ER5E2EA , whereEA is the energy
of the strong vortices, based on 105

random samples with uniform distri-
bution. The average reservoir energy
109 with variance 2292. ~b! Joint res-
ervoir energy-angular momentum pd
after some smoothing, whereMB5M
2MA and MA is the angular momen-
tum of the strong vortices.
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BecauserE(xA) depends only onE2HA this is a huge sim-
plification, asp0(EB) can be computed once and for all fro
the uniform distribution.

However, the Hamiltonian~2! does not fit into this cat-
egory, as we have

H~xA ,xB!5HA~xA!1HB~xB!1HI~xA ,xB!, ~26!

where the ‘‘interfacial’’ energyHI consists of terms involv-
ing both strong and weak vortex circulations. In princip
this means thatrE(xA) does not depend solely onE2HA .
CalculatingrE(xA) for all xA directly would be very expen
sive, as even in the present case this would require a loo
table in eight dimensions. Instead, a much simplerad hoc
approximation forrE(xA) as a function ofE2HA is used,
which for HI50 reduces to~24!. The approximation is

rE~xA!}p0~ER5E2HA~xA!!, ~27!

where

p0~ER!}E E d~HR2ER!dxAdxB ~28!

is the pdf of the ‘‘reservoir’’ energyHR[HB1HI based on
the uniform distribution. Unlike in~25!, the double integral
is necessary here becauseHR depends on bothxA and xB .
This approximation effectively assigns the same probab
to all statesxA that have the same strong vortex ener
HA(xA). Indeed, the assigned probability can be shown to
the average probability over all states with the sameHA .

Based on this approximation, the pdf for anyF(xA) is
now given by

pE~f!}E d~F2f!p0~ER5E2HA!dxA . ~29!

The pdf ofHA in particular simplifies further to

pE~EA!}p0~EA!p0~ER5E2EA!. ~30!

The additional consideration of the second~nonrobust!
angular momentum invariant~8! is straightforward, espe
cially as M̂5M̂A1M̂B holds exactly. The microcanonica
density becomes

rEM5
d~H2E!d~M̂2M !

*d~H2E!d~M̂2M !dxN , ~31!

the marginal density
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rEM~xA!}E d~H2E!d~M̂2M !dxB , ~32!

and the joint ‘‘reservoir’’ pdf based on the uniform distribu
tion

p0~ER ,MB!}E E d~HR2ER!d~M̂B2MB!dxAdxB .

~33!

The same approximation procedure for~32! as before then
gives

pEM~f!}E d~F2f!p0~ER5E2HA ,MB5M2M̂A!dxA .

~34!

The predictions of the statistical mechanics theory are he
pdfs estimated based on~33! and~34!. For comparison with
Fig. 1 the functionsp0(ER) and p0(ER ,MB) are plotted in
Fig. 3.

Despite the somewhat opulent appearance of~33! and
~34!, the practical procedure for estimating pdfs is actua
disarmingly simple. A sample of 105 states was generate
using the uniform distribution and the corresponding valu
of H, HA , HR , M̂ , M̂A , M̂B were computed and stored i
lists, as were the coordinatesxA of the four strong vortices.
ComputingH is by far the most expensive step here. His
grams based on these lists were then used to estimate~33!.
For any functionF(xA) to be investigated a correspondin
list of values was then computed from the stored coordina
This list together with a look-up table for the histogram i
crements}p0(ER ,MB) at the shifted arguments was the
used to estimate~34! at fixedE andM. It is worth stressing
that only a single large sample based on the uniform dis
bution is needed to describe the statistics of the system
arbitraryE andM.

B. Comparison with model results

The pdfs forEA ~i.e., the energy of the strong vortices!
are plotted in Fig. 4.

Throughout, thin lines denote pdfs estimated from his
grams taken from the direct numerical simulations and th
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 4. pdfs ofEA , the energy of the strong vortices, for the three runs. Thin lines are simulation results, thick lines are theoretical predictions, and th
denotep0(EA).
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lines denote theoretical predictions based on~34!. Also
shown in the middle panel isp0(EA), which corresponds to
random placing of the vortices with uniform distribution. A
could be expected, in the neutral energy case this give
reasonable first approximation, though still a less accu
one thanpEM(EA). The mean energy of the strong vortic
increases asE increases and this can clearly be predic
quantitatively from the theoretical predictions. In most cas
there is very good agreement between the theoretical
simulation statistics, not only in terms of accurate predict
of low-order moments, but also in the prediction of the no
Gaussian shape of the pdfs.

Figures 5 and 6 show the pdfs for the distance betw
same- and opposite-signed strong vortices, respectively.

The tendency for same-signed vortices to cluster
smaller r i j with increasingE is evident in Fig. 5. On the
other hand, the indifference toE of the averager i j between
opposite-signed vortices that was noted in Table I masks
table changes in the pdf that are evident in Fig. 6. These
well captured by the theoretical predictions.

Finally, Fig. 7 shows statistics forr i , the vortex distance
from the origin. This quantity is interesting due to the infl
ence of the self-interaction terms in~2!, which, as noted in
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Sec. II, significantly affect the dynamics of the strong vor
ces.

For neutral and high energies the pdf ofr i settles down
to a shape quite close to the uniform distribution~except near
the wall r i5R!, which is indicated by the squares in th
middle panel. However, the first panel in Fig. 7 shows h
the strong vortices tend to accumulate at the cylinder wall
very low energies. This is essentially a similar statistical
fect as the formation of opposite-signed vortex dipoles in
first panel of Fig. 6, but the wall effect is clearly more pr
nounced in its pdf. Interestingly, the effective temperatu
estimated asd ln p0(E)/dE from Fig. 1 at E52197 gives
'0.01 for this run. The theoretical upper limit in~6! for the
possible existence of canonical subsystem statistics in
present case gives'0.013, which confirms that this run i
close to a collapse to the wall. Finite point vortex statistics
a collapse case would rely entirely on the finite size of
reservoir formed by the small vortices.

VI. CONCLUDING REMARKS

The theoretical predictions based on an ergodic appr
mation for the whole vortex system were seen to predict
ions, and
FIG. 5. pdfs ofr i j between strong vortices of the same sign, for the three runs. Thin lines are simulation results, thick lines are theoretical predict
the squares denotep0(r i j ). The simulation results are averages over the pdfs ofr 12 and r 34 .
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FIG. 6. pdfs ofr i j between strong vortices of opposite sign, for the three runs. Thin lines are simulation results, thick lines are theoretical predictions
squares denotep0(r i j ). The simulation results are averages over the pdfs ofr 13 , r 14 , r 23 , andr 24 .
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pdfs of many, though not all, descriptive variables of t
strong vortex subsystem with a surprisingly high degree
accuracy. Some simulation averages converged only v
slowly and significantly longer integrations could test t
quality of the ergodic approximation in these cases. On
other hand, nonergodic observations might also be due to
crucial approximation leading to~34!, which was necessar
to estimate the theoretical pdfs at affordable computatio
cost. Otherwise, the prediction procedure was remarka
simple and cheap, relying only on a single random sampl
vortex configurations to predict pdfs forall values of total
energyE and angular momentumM.

The toy model, the direct numerical vortex simulation
and the theoretical predictions all corroborated Onsag
crucial insight that strong vortices will exhibit amplified st
tistical tendencies compared to weak vortices, and hence
be more predictable in a negative temperature state. It is
strongly unequal circulation strengths that allows the flow
organize itself in this inhomogeneous manner. It can be no
that in terms of entropy as a measure of accessible p
space volume, clustered vortices always present a l
entropy state. The crucial point is that in a negative tempe
ture state the low entropy of the clustering strong vortice
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more than compensated for by the high entropy of the fre
roaming weak vortices.

It is intriguing to note that on the level of individua
vortex dynamics there is a smooth transition from positive
negative temperature behavior, exemplified by the smo
p0(E) in Fig. 1. By contrast, in a coarse-grained picture tw
vortices with opposite circulations that are close toget
cancel each other out and hence disappear from view. T
illustrates why solutions to mean-field theories~such as the
Sinh–Poisson equation4! have a characteristic cut-on beha
ior as b,0, because only same-signed vortex clustering
observable in the coarse-grained variables of these theo
It is also noteworthy that the near collapse of the vortices
the wall in the present low-energy case@which is linked to
the theoretical upper bound in~6!# does not occur in the
Sinh–Poisson equation because there the scaling has
arrangedab initio to render the wall-induced self-interactio
energies negligible.

The present setup seems to have been the most com
cated to study, i.e., the strong vortices interact vigorou
with both the wall and with the small vortices, and the sm
vortices themselves form only a finite energy and angu
momentum reservoir. As noted before, the latter point p
dictions,
FIG. 7. pdfs ofr i , the distance from the origin of the strong vortices, for the three runs. Thin lines are simulation results, thick lines are theoretical pre
and the squares denotep0(r i). The simulation results are averages over the pdfs ofr 1 , r 2 , r 3 , andr 4 .
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the strong vortex statistics beyond the reach of the us
canonical theories. In other words, whilst the overall ene
regime can be broadly classified by the sign of the us
statistical mechanics temperature, the temperature con
alone is not sufficient to make quantitative predictions. T
modified maximum entropy principle suggested by t
Gaussian pdfs of the toy model~in which entropy was maxi-
mized subject to both a fixed mean energy and a fixed en
variance! might allow analytical progress to be made he
Another possible avenue for future analytical progress is
asymptotic exploitation of the small parameteruGB /GAu.

It is tempting to generalize the present results~which
directly apply only to well-separated finite-size vortices! to
continuous vorticity distributions by lettingN→` in some
way. As is now well known, the relevant scaling must ke
NG5O(1) in this limit. However, this implies that the mi
croscopic vortex mobility due to the induced velocity by t
nearest vortices at average distance}R/AN would decrease
to zero asGAN}1/AN. Therefore the microscopic vorte
system equilibration time~which is implicitly assumed here
to be small compared to the observation period! goes to in-
finity in this limit. This problem is directly observable, sa
in the simplest case of manyG i5const vortices in a cylinder
for which exact solutions of theN→` limit are known.8

Simulations starting from nonequilibrium initial condition
clearly show that these solutions are practically unattaina
due the lack of vortex mobility. On the other hand, there
evidence3 that the slow evolution of well-mixing large-sca
flows can be approximated by statistical point vortex theo
Notably, random forcing also helps in this context, as it t
increases the mobility of the vortex population. This sugge
that a limit in whichNA5const andNB→` could perhaps be
used to model the behavior of strong vortices surround b
sea of ‘‘filamentary vortex debris,’’ because the stirring
the strong vortices could provide the essential mobility
the debris.

Finally, the prediction tools developed in this pap
could be used to study an interesting ‘‘inverse’’ proble
from observing only the strong vortices, can one deduce
number and strengths of the unobserved weak vortices?
would provide a nonlinear method for estimating unobse
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able sub-grid-scale data, perhaps with applications in g
physical fluid dynamics.
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