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Statistical mechanics of strong and weak point vortices in a cylinder
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The motion of 100 point vortices in a circular cylinder is simulated numerically and compared with
theoretical predictions based on statistical mechanics. The novel aspect considered here is that the
vortices have greatly different circulation strengths. Specifically, there are 4 strong vortices and 96
weak vortices, the net circulation in either group is zero, and the strong circulations are five times
larger than the weak circulations. As envisaged by Ondag@ovo Cimento, Suppb, 279(1949],

such an arrangement leads to a substantial amplification of statistical trends such as the preferred
clustering of the strong vortices in either same-signed or oppositely signed pairs, depending on the
overall energy level. To prepare the ground, this behavior is illustrated here first by a simple toy
model with exactly solvable statistics. A microcanonical ensemble based on the conserved total
energyE and angular momenturi for the whole vortex system is then used, in which the few
strong vortices are treated as a subsystem in contact with a reservoir composed of the many weak
vortices. It is shown that allowing for the finite size of this reservoir is essential in order to predict
the statistics of the strong vortices accurately. Notably, this goes beyond the standard canonical
ensemble with positive or negative temperature. A certain approximation is then shown to allow a
single random sample of uniformly distributed vortex configurations to be used to predict the strong
vortex statistics for all possible values BfandM. Detailed predictions for the energy, two-vortex,

and radial distribution functions of the strong vortices are then made for comparison with three
simulated cases of near-zdvband low, neutral, or higlk. It is found that the statistical mechanics
predictions compare remarkably well with the numerical results, including a prediction of vortex
accumulation at the cylinder wall for low values Bf © 2002 American Institute of Physics.

[DOI: 10.1063/1.1483305

I. INTRODUCTION lutions is feasible. Statistical theories based on Onsager’s
ideas(and on others that go beyond the point vortex ideali-
The application of statistical mechanics to two- zation have already been used successfully for predicting
dimensional point vortex dynamics was first suggested byhe detailed behavior of certain idealized geophysical flow
Onsagetin a landmark paper in 1949, in which he sketchedproblems? Formidable obstacles remain in order to make
a possible explanation for the formation of coherent vorticesuch theories applicable in practice, but the potential rewards
on statistical grounds linked to the possibility of negativeare great.
(statistica) temperatures for point vortex systems in a  Onsager described his ideas only in qualitative form and
bounded domain. Onsager’s suggestions have continued {Re detailed theoretical exploration of these issues only be-
attract some interest because two-dimensional fluid dynanyan with the development of a mean-field theory by Mont-
ics is a relevant paradigm in many applications such as gegjomery and Joyc&® which has since been extended and
physical fluid dynamics(in which the large-scale quasi- refined mathematically in many ways over the y&arsac-
horizontal flow along stratification surfaces in the cyrate direct numerical simulations of point vortices over
atmosphere or oceans is approximately layerwise twofong times have become feasible over the last two
dimensional, or plasma dynamics under certain conditiéns. decaded® It was suggested that for geophysical applica-
Indeed, a successful application of statistical mechanics tgons the most relevant values for the number of vortises
problems in these fields suggests a hidden degree of predigfs in an intermediate range between the regime of low-
ability that could easily be obscured by conventional directyimensional chao$where N may be less than 10and the
numerical simulations. Such statistical predictability can be‘thermodynamic" regime in whichN—c in some subtle

exploited quantitatively at much lower computational costjimit, This point of view is also taken here, where only cases
than by the brute force simulations of ensembles of manyyith N=100 are studied.

individual flow realizations. This is a compelling vision if Now, the topic of the present paper goes back to a sug-
one considers, for example, the hugely expensive geophysjestive remark made by Onsager concerning the characteris-
cal climate and weather simulations, for which currently only; appearance of vortex distributions in a negative tempera-
a very small ensemble of direct simulations at very low resoyre state. and which to my knowledge has not been
considered explicitly since. In his masterful succinct exposi-
dElectronic mail: obuhler@mcs.st-and.ac.uk tion, Onsager says that in such a state “... vortices of the
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same sign will tend to cluster,preferably the strongest 1 NN
ones—, so as to Use up excess energy at the least possible H=—-— >, Il In(ra)+
H . 477 i>] J
cost in term of degrees of freedom ... the weaker vortices,
free to roam practically at random, will yield rather erratic 1 NN
and disorganised contributions to the flowhy italics). + 4—2 Il In(R4—2R2xi-xj+ rizrjz), 2
This encapsulates two crucial insigh{s) that strong Ti>)
vortices will be more predictable than weak ones; &bd
that the maximum disorder of the flow as a whékhich is  wherer?=x?+y?, rﬁ =(x— )2+ (yi—Y;)? and the asym-
implied by the statistical theoyywill be achieved in a re- metry in the logarithmic terms arises because the image vor-
markably inhomogeneous, composite manner, in which théices do not move with the implied physical velocity at their
relative order of the strong vortices will be more than com-location. In other words, the circular cylinder wall cannot be
pensated for by the increased disorder of the weak ones. Themoved. The double sums run over all pairsj, i.e., there
present paper is an attempt to verify and exploit both of thesare N(N—1)/2 individual terms in these. As<Or;<R, the
insights in the simplest possible setting that allows comprephase space is clearly bounded and its volumerR3)N. In
hensive numerical and theoretical exploration. the generic case df; with different signs we clearly have
To the best of my knowledge, detailed previous studiesH  (—,+ ) due to various combinations of terms with
have all focused on the case of identic@dr nearly r,—Ror rij—0. Indeed, even at fixed =E, say, individual
identical!) absolute vortex circulations, or on the even moreterms in(2) can go to=c whilst adding up to a finite num-
restricted case of identical vortex circulations throughout. Inber.
these cases, the statistical behavior of the flow is in some The first sum in(2) involves the usual free-space inter-
sense directly determined by the constraint of fixed total enaction term, which goes t@-= asr;;—0 for same-signed
ergy: large energy values must require the coming togetherortex pairs, and vice versa for oppositely signed dipoles. As
of same-signed vortices, and vice versa for low energy valis well known, this symmetric appearance masks a quite dis-
ues[see(2)]. In other words, the occurrence of vortex clus- tinct dynamical behavior in these two cases, with same-
ters is then enforced directly by the total energy constraintsigned vortices orbiting each other whilst oppositely signed
However, once different vortex strengths are present there isnes propagate along a straight line. The second sum in-
scope for interestingly different behavior, in which some vor-volves a self-interaction term for each vortex, which leads to
tices cluster spontaneously whilst others do not. counterclockwise propagation at fixedfor I';>0 and vice
The plan for the paper is as follows: Section Il intro- versa forl’;<0. Unlike the pair interaction terms, this term
duces the main features of the studied Hamiltonian pointlways goes to-« asr;—R, which is linked to the ever-
vortex system and corrects some minor errors in relatedloser approach of the vortex to its oppositely signed image
works; Sec. llI briefly illustrates Onsager’s suggestion by arin this limit. In other words, the cylinder wall is a location of
analogy with a simple toy model, which serves to prepare tanfinite negative energy for each vortex. Finally, the third
ground for the vortex theory; Sec. IV presents direct numerisum in (2) involves the interaction of each vortex with the
cal simulations of the vortices; Sec. V derives statistical meimages of all other vortices. Its terms become singular only if
chanics predictions and applies these to the simulations; ang, ri—R andrj;—0.
some concluding remarks are given in Sec. VI. One can note in passing that the dynamically active na-
ture of the cylinder wall that is expressed by the self-
interaction terms distinguishes the present case from the pre-
viously studied doubly periodic cad&!! These self-
interaction terms add advection parallel to the wall to the
Il. HAMILTONIAN POINT VORTEX DYNAMICS dynamics, which somewhat enhances the mobility of indi-
vidual vortices. Also, one can note that in the cylinder case
The Hamiltonian form of the equations of motion fdr  propagating vortex dipoles split up when they approach the
point vortices with circulationd’; and instantaneous Carte- cylinder wall and then propagate along the wall into opposite

1 N
E;l IZIn(R?-r?)

sian coordinates;(t) =(x;,y;) (wherei=1,2,...N) are directions. Unless they collide with other vortices before-
hand, the vortices would then rejoin on the other side of the
dx; JH dy; 9H cylinder, and again enter the interior as a dipole. Such vortex
I‘iﬁ= <9_y| ar a_xl (D) behavior might in fact be relevant for vortex dynamics on

beaches, where the vicinity of the shoreline has a similar
effect as the cylinder waff

The pairs §; ,y;) are canonical phase space coordinates, with  The infinities of the various terms ii2) occur on a set of
invariant phase space volume elemdridx,...dxy. Inthe  measure zero in phase space volume, but they nevertheless
special case of a circular cylinder with radiRscentered at have an impact on direct numerical simulations as well as on
the coordinate origfh the wall boundary condition is statistical theories, especially those with nonuniform phase-
satisfied? by placing for each physical vortex at locatiera ~ space measurde.g., (3)]. Indeed, the possibility of nega-
single image vortex with opposite circulation at location tively infinite self-interaction energy is important even in the
xR?/|x|2. This leads to an invariant Hamiltonian simplest casd’;=I"=const, although this seems to have
H(Xq,....Xy) @S been overlooked at times. For instance, Cagkotal® con-
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sider the conditions for existence of the usual canonical parmportance of the individual sums i) comes from consid-
tition function Z defined by the total phase space integral ering their variance over the phase space. Negledtigigs
interaction terms between strong and weak vortices, it turns
z:j exp(— BH)dxN, ©) out (cf. Sec. Il that the total variance of tHé,z_\ terms in the
double sums scales approximately@ENAT'%), and corre-
where g is the usual parameter inversely proportional to thespondingly so for the weak vortices. Therefore the param-
(statistica) temperature. They state th@k +« exists for  eters have been arranged such that these variances are ap-
fixed N and I if and only if proximately equal. The total variance of triéi self-
interaction terms in(2) scales aQ(NAF“A) and it turns out
Be _TSW,JFOO , (4  that for the chosen setup the numerical prefactor makes this
I'*N term significant in size compared with the te@{NAI'4).
where the finite negative range is needed in order to bounb’o""evfr’ for the weak vortices the self-intzgr?ction variance
the importance of same-signed vortex collisions with theirfO(Nsl'g) is small compared to the ter@(Nl'g). In sum-
infinite positive energies. However, this miscalculates theMary. strong and weak vortices are expected to interact vig-
importance of thenegativeinfinite energies as vortices ap- ©rously and the dynamics of the strong vortices is in addition
proach the wall. Indeed, for a single vortex in a cylinder is  Significantly affected by the presence of the wall.

easily evaluated as It remains to consider a second invariant that arises due
to the azimuthal symmetry of the Hamiltonidt in (2),
7— m R2(1-8,) namely the invariant angular momentum
1-8, N
: M = L > 112 (8)
only if 2mey it
2
ZB_<1 5 There are no other invariants, so vortex motions with 2
Bo=7—<1, (5) ! : |
™ are presumably nonintegrable in the cylinder. Unlitethe

otherwiseZ < + does not exist. It seems that this implies invariance ofM is not robust in the sense that a small dis-
that (4) in Caglioti et al. should be replaced by the slightly turbance of the problertsay, perturbing the cylinder wall to
more symmetrical be elliptica) would destroy the invariance ofl. Neverthe-
—8r +4r less, in the present casé clearly plays a rolg and neet_ds to
EE(T,—z), 6 be considered formally on the same footing Hs It is
“N° T straightforward to show that for the chosen setup the strong

which exhibits a finite temperature range also g¥0.[In  and weak vortex contributions to the variancevbfare again
the particular asymptotic limit subsequently studied in thatoughly equal.

papef® the rescaled upper limit i66) still tends to+o, so Finally, it is noteworthy that in a setup in which all the
the subsequent results may well remain infact. I'; are sign definite, the conservation Mf implies that the

Somewhat surprisingly, this means that a point vortexaccessible phase space is bounded even without a cylinder
system withl';=T" and bounded by a solid wall, if coupled Wall, and this has been used to study negative temperature
to an infinite energy reservoir at positive temperaffyevill  States of such a setup using only the first ternt2n How-
collapse to the wall a§ drops toward%/47, where Boltz-  ever, in the present setup wilh of either sign this cannot be
mann’s constant has been set to unity. Some evidence félone[contrary to assertions sometimes madéwhere (8)
such behavior is given in Sec. V. Of course, the point vortexwas misquoted witl"; replaced byl“iz].
model will lose its physical significance when this happens,

i.e., the finite core and finite self-energy of physical vortices
v_viI_I become importapt iq this limit. Also, any coupling to @ ||; A SOLVABLE TOY MODEL
finite energy reservoir will arrest the collap&g. Sec. ).

Now, in the remainder of this paper the following setup Here a toy model with exactly solvable statistical me-
will be studied. The total number of vorticés=100 will be  chanics is discussed in order to prepare the ground for the
split into No=4 strong vortices antg=96 weak vortices statistical mechanics of the vortex system. The toy model is
with respective circulations the one-dimensional Ising model without external magnetic

_ _ field, which can be thought of as an assembly of independent

Fa==10m,  Tg==2m ™ switches. Let there b® switches and let each switch either
The net circulation in either group is zero. This is a naturalbe in an “up” or “down” position, with corresponding en-
constraint for physical situations that have arisen from localergy valuesk;= +¢;, wherei=1,2,...M and the constants
ized vortex forcing, which always produces vortex dipolese; describe the individual strength of the switches. The finite-
with zero net circulatio® These particular values have been sized discrete state space of the system is formed by 'fhe 2
chosen in order to focus on the most complex scenario, adifferent states of all the switches. The total energy is

follows. M M M
_Bec_ause absolute_z energy values(2) are meaningless E=E E, with range _2 |€i|$E$+E lel. (9
(unlike in most classical systemshe relevant measure of i=1 i=1 i=1
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The energy extrema correspond to exactly one state each, This point about order/disorder can be made in another
and it is clear that there are only a few states with energieway by looking at the contributions to the entropy of the
near these extrema. This scarcity of states is of crucial imsystem that are made by the strong and weak switches, re-
portance for the statistical mechanics of this system. Now, irspectively. The usual expression for the entropy in the ca-
an analogy with vortex dynamics each of the switches nonical formalism is

corresponds to one of th@(N?) interaction terms in the first

sum in (2), the other sums being disregarded. Eaghhen S=InZi+ Ui =In(2 coslife;)) — Be; tanh( Bei). (11)
corresponds to a pairing;I';, and the up/down switch po- The switch entropys(Be;) is hence a positive even function
sitions correspond crudely to the variability of the loga-of its argument with maximung;(0)=1In(2) at the origin,
rithms. Surprisingly, it will turn out that this crude analogy and with monotone decrease to zero with increasjdig|.
can already explain a number of features of the vortex sysfAt B=0 and8— *« the value ofS; is compatible with the

tem. microcanonical definition of entropy as the logarithm of the
number of permissible stat¢#gain, this means that at fixed
A. Canonical statistical mechanics B we haveS,<Sg, i.e., the strong switches contribute less

We first imagine the system in contact with an infinite to trf dentropy tTa.n the wea_k sw]itcrr:.es. kabl
energy reservoir at temperatutfeand inverse temperature | ynamical interpretation of this remarkably compos-
te, inhomogeneous entropy distribution is suggested by the

B=1/T. The individual switch statistics are then independent . o . . =
from each other and hence it suffices to consider ithe alternative variational formulation of canonical statistical

switch in isolation(The analogous statement is of course notr,nECh"’lnICS in terms of r.naxllmurthnformatlor) gntropy at
true in the vortex system, which is a couplsiebody prob- fixed mean energy. In this view, the strong switches tend to

lem. The probabilities for the switch to be in the up/down become more ordered, and hence contribute less to the en-

position are then equal to expe)/Z;, respectively, where tropy, because in doing so th(_ey absorb the “ght amount of
the normalization constant is the partition functich energy to allow the weak switches to be as disordered as

=2 cosh@e). The resultant average switch eneldyis ppss[ble. This p_ecuhar sharing-out of 'Fhe energy leads a dis-
tribution of maximum total entropy, which then emerges as a
truly composite, interactive feature of the system. This illus-
Ui=— ¢ tanh Bej), (10 trates the second part of Onsager’s remark.

which shows that there is no energy equipartition betweers. Microcanonical statistical mechanics
the switches unles8=0, and that regardless of the signepf

. . We now turn to consider the microcanonical statistics of
a positive temperature corresponds to negaltiveand vice

i X i . the toy model, in which the total energy is fixed at a certain
versa. The behavior of the switch as a functionf¥ iS4 1ue E such that only states with this energy value are per-
easily characterized: iB|€[>1 (i.e., T—0+) we haveU;  iteq and all such states are then deemed equally likely.
~—|e| and the switches are increasingly locked into theirryis is the proper setting in which to analyze numerical

low-energy positions. On the other handpifei| —0+ (i.e.,  gimyiations at conserved energy under an ergodic approxi-
T—ee) the switches become increasingly disordered @nd 1\ 4ion and the formalism developed here will be directly

goes to zero. A corresponding scenario unfolds A5t0, -~ ojeyant to the vortex dynamics discussed later.

which shows that positive and negative temperature statistics The total energy constraint now couples the individual
are perfectly symmetric here. All this applies qualitatively to switch statistics. Specifically, a subset of switches now be-
the vortex system as well, though the near symmetry bep,,es jike a subsystem in contact withimite energy reser-

tween positive and temperature states is lost there when coflir tormed by the other switches, and the key question is to
sidering a mean-field theofy. analyze the statistical mechanics of such a subsystem. To this

The switch fluctuations can be analyzed by consideringand we split theM switches into a subsysteraand a “res-
the numbelU; / ¢;= —tanh(Bg), which is the average switch ervoir” B such thatM,+Mg=M and Mg>1, assuming

position. (Identical conclusions are reached by consideringrrorn now on thatM>1 to begin with. We have
the variance of the switch energy, which is equal to

—dU,;/3B= e’Icost(Be).) Absolute values of this number E=Ea+Es (12)

near unity mark ordered, predictable behavior, whereas at}br all permissible states. The probability of a particular sub-

solute values near zero mark disorder and randomness. FQ{}stem state with energg, is then proportional to the num-
uniform ¢; order increases @8 increases. Consider now the o of reservoir states Wi%3= E—E,. Now, the density of

case of there being two distinct types of switches: strong angeservoir states per unit energy interval is that of a sum of

weak, respectively, such thpt,| >|eg|, in obvious analogy \; = 1 independent zero-mean random functions with finite

tbo r:he' vortfe>;] setup. Clea}rl);,] for the samebvalue,&)th((ej %ariances, which by the central limit theorem can be approxi-
ehavior of the strong switches is going to be more orderegh o4 by the continuous function

than that of the weak switches, i.8U/ea|=|Ug/€g|, With

equality holding only wherB=0. Indeed, if|es|>|eg| then 1 —E3

the strong switches can exhibit significantly more order than Po(Ep) = ex 7 |
. L . og\2m 203

the weak switches, which illustrates the first part of Onsag-

er's remark. where
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Ve dx, <« TIi2n
_ 2 i T vV X — X
UB_Z € 13 dt jzlE,j;&i (Xi_X]-)Z(yl YiXi=x)
N ’
is the energy variance of the reservoir. The subscript O de- > Uj/2m (y Y xi—x!) 15
notes that this probability corresponds to a uniform distribu- =1 (xi—xj’)2 Yim¥iXi=x).
tion over all possible states. For a particular subsystem state
with E, we therefore obtain the probability As noted in Sec. Il, each vortex has an image vortex with
parameters
Prolsubsystem state witBp} o po(Eg=E—E,) R?
—(E—Ep)? EE. Ei y Lj=-Tj, Xj'zxjm (16)
o _
ex 205 o2 203) a4

to satisfy the wall boundary condition. Notably, the second

where a factor independent Bf, has been absorbed into the SUM in(15) includes a self-interaction term wijk=i. Strong
proportionality constant determined by normalization. Thisand weak vortices were chosen ag7and for definiteness
means that for small subsystem enerdids<20? the rela-  the cylinder radiuR=5. By rescaling19) the present simu-
tive probabilities are described by canonical statistics with aftions can be mapped onto simulations with arbitrary finite
inverse temperatur@= —E/o3. We note in passing that if RandT'g provided the ratidI’s/I'g| =5 remains the same.

|Eal<|Eg| then 8 agrees with the microcanonical definition The numerical model itself is a standard Runge—Kutta

of inverse temperature of the reservoir as the derivative of;cheme of_four-ﬂfth s order with adaptye time step ref'm'e—

In po(Eg) With respect tog ment. The integrations are performed with double precision
O B B . . _ . . . . _
Now, for larger subsystem energies the finite size of theand tm Ct}’lctlﬁs ofé‘t—.0.|01, ijﬁlngtr?d?ritlve time j‘t?‘;lfmef'”e

reservoir is felt via the second term (i4), which decreases ment until Ine erroris fess than the tolerance set to"LNo

the likelihood of such states and marks the departure fronqegulanzatlon of the equations for_numencal purposes was

canonical statistical mechanics for the subsyté@oinciden- needed, e.g., there was no near-field smoothing to prevent

tally, the statistics of aingleswitch in contact with the finite Iarge dV?IOC.'t;eS’ atnd thfe IuntL:]suaII);] I9V¥ errg:tr totlerancedls re-
reservoir are precisely canonical, due to the symmetry of it urred 1o integrate sately through intermittent episodes in

two energy level3.Also, one can note that the probability Wh:lc:thhortlce§ tare %(tatt”:g vgrydclos:a tc()jetach othedr, Ior tofthe
distribution (14) admits a somewhat unusual maximum- W&/l Ihese intermittent episodes lead 1o a model perfor-

entropy formulation in which the subsystem information en-mance that can vary by a factor of 10 over a run. The toFaI

tropy is extremalized subject two constraints, namely that energy and angular momentum are conserveql with very high
of fixed average energy as well as fixed energy variance. It jgrecision and all runs were performed on a single-processor
straightforward to_show that such a procedure leads to g/orkstanon.

probability ocexp(— ,BEA—"&EE\) for a subsystem state with en-
ergy E,, in accordance with the structure found(ity).

The above-mentioned results show how microcanonical Under the ergodic approximation the statistics of a run
statistical mechanics can be used to calculate the statistics 8fe determined by the invariant values of its Hamiltonian
a subsystem in contact with a finite reservoir, even beyondi =E and its angular momentumd = M, say. All runs had
the usual asymptotic limiMg—o, E/Mg=0(1) in which  values ofM very close to zero. This is because no explora-
canonical subsystem statistics would emerge. The importation of the role ofM was intended because of the nonrobust
reservoir energy varianoeé in (13) enters the definition of nature of this invariant noted in Sec. Il. Three different en-
B and it also demarcates the finite size of the reservoir as feRrgy valuesdenoted low, neutral, and higlwvere chosen to
by the subsystem. In analogy with the toy model &h8), give runs broadly corresponding to regimes of positive, zero,
the reservoir variance in the vortex system is proportional t@nd negative microcanonical temperature. The specific val-
NiI's, as was previously asserted. ues for the three runs were

B. Description of three model runs

E={-197,221,62B M={2.1,4.123 (17)

and they were determined as followsA random population
of 10° vortex configurations was generated in which each of
the hundred vortices was placed independently with uniform
probability anywhere inside the cylinder. Thkevalues were
Pthen computed fronf2) (this being the computationally ex-
0Bensive stepand a histogram was formed to give the prob-
ability density function(pdf) for the total energypy(E), as
plotted in Fig. 1a). The average energy is nonzero because
of the sign-definite effect of the self-interaction termg2n
The model integrates the dynamical equations derive@nd also because there a@§N) more oppositely signed
from (1) and(2), i.e., terms than same-signed terms in the double sums.

IV. NUMERICAL SIMULATIONS

Direct numerical simulations of the vortex system setu
from Sec. Il are described and analyzed. The comparis
with statistical mechanics predictions follows in Sec. V.

A. Numerical model details
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The corresponding pdf for the total angular momentumtime intervals ofAt=0.25. Very different behavior of the
(not plotted is close to a zero-mean normal distribution with strong vortices was observed. The low-energy run showed a
variance equal t<Fi2R4/48772 summed over all vortices. Also strong tendency of vortices sticking close to the wall, or
plotted in Fig. 1b) is the joint pdf of total energy and total forming short-lived vortex dipoles. The high-energy run
angular momentunpy(E,M), which indicates approximate showed a strong tendency to form same-signed vortex pairs
statistical independence & andM. that persisted a comparatively long time. The neutral-energy

At the beginning of each run the four strong vorticesrun showed a mixture of both behaviors. In all cases there
were placed in the same positions, i.e., these vortices wensere fluctuations around this behavior, but the self-
symmetrically spaced in azimuthal angle at a common radiusrganization of the vortices into these typical patterns was
r =3, with alternating circulation from vortex to vortex. This conspicuously clear.
is very close to an exact steady state of four vortices in a  Several quantitative diagnostics for the strong vortices
cylinder, which occurs at radius= (17— 4)¥*R~2.96, and were computed: their energ§, [i.e., (2) evaluated using
hence the strong vortices are essentially set into motion bgnly the strong vorticgs the distance between same-signed
the weak vortices. The positions of the weak vortices were/ortex pairs, and the distance between oppositely signed vor-
taken from uniformly distributed random samples that weretex dipoles. The mean values and standard deviations of
generated until a sample with suitatiteand M was found. these quantities over the duration of the simulations are sum-
The resulting initial states are displayed in Fig. 2. marized in Table I, with pdfs presented in Sec. V.

It is probably fair to say that it is impossible to guess by =~ These numbers make clear that significant statistical dif-
inspection of Fig. 2 whether and in what way the long-termferences are indeed observed between the runs. With increas-
statistics of the strong vortices will differ in these runs. ing overall energyE the average of the subsystem enefgy

All runs were now integrated up to= 750, which corre-  (which initially has equal value in all rupsncreases and the
sponds to many hundred cylinder traversals of each vortexgverage distance between same-signed vortex pairs de-
and 3000 instantaneous states of the evolution were stored ateases. Also, at the neutral energy lefwveth zero microca-

FIG. 2. Inital states for the three runs with low, neutral, and high energy levels, from left to right. Large circles show the strong vortices, anavblaek
color indicates positive or negative circulation.
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TABLE I. Mean values and standard deviations over the duration of thethe surface integral on the right. Multiple pdié¢, , ¢,) are
simulation vs theoretical predictions for various quantities. For the distance: efined analogously using products ®functions pde de-
rij andr; these quantities are averaged over all relevant combinations o? d by (19) b timated icallv b f . hi
ije{1,234 if I';,= — 107 andT; ;= + 107 Ine Yy can be estimated numerically oy torming nis-
tograms of®(x) based on random samples xfIn theory,

Low Neutral High optimal convergence of such a procedure requires impor-
Energy E. 23126 141111 269136 tance sampling, in WhIC.I’p is u_sed as _the denS|t.y of the
Predicted —64+136 129-117 242+152 random sample. In practice, using a uniform density coupled
Same-sign distance r; 51+2.1 45-1.9 3.7:2.0 with histogram increments proportional gas much cheaper
Predicted 5.1x2.1 4.5:1.9 3.9:2.1 in the present case of a finite phase space. The special case of

- . + . . — . . .

Opp.-sign distance 45:25 4421 46-18 a uniform densitypo=(7R?) "N is particularly important,
Predicted 4.6+2.5 4521 45+1.9 E) in Fig. 1 has b . qf
Radius r 3.6+1.2 3311 3.141.0 e.g.,po(E) in Fig. as been estimated from
Predicted 3.6+1.2 3.3r1.1 3.1+1.1

pO(E)=(7TR2)‘NJ S(H—E)dxN. (20)

nonical temperatujethere is no preference between pairing All pdfs calculated from the uniform density are denoted by

of same-signed or oppositely signed vortices. The averag@"(')' . . .
distance between oppositely signed vortex dipoles remain|§| TgeE uzuEaI . m(;crf(_)cagomcal density based on energy
roughly constant a& is increased and close to a value cor- €[E,E+dE]is defined as
responding to uniformly random placement of the vortices, S(H—E)
which is 4.5 (with standard deviation 2)1 However, the PE= T 5(H—E)dxN (21
standard deviation of this quantity reduces with

Table | also includes predictions based on the theory@nd corresponding pdfs will be denoted py(-). For sim-
described in Sec. V. These predictions are generally quitglicity, consideration of the angular momentum invariant is
accurate, except foE, in the low-energy case and for the deferred until later. Fron19) one obtains
same-signed;; in the high-energy case. Sample autocorre-
lation functions based on the numerical time series feeding pE((;S)ocf 8(®— ¢)S(H—E)dxNxpo( ¢,E), (22
into these averages were computed in order to estimate con-
fidence intervals. These suggested long-lived oscillations imp to an overall normalization factor. This means thatc)
the low-energyE, with periods of about~50 as well as a can in principle be evaluated from a joint gaf( 4,E) based
slowly decaying autocorrelation in the high-energy,  on the uniform distribution. However, for a particular value
which presumably is linked to long-lived vortex pairs in that of E this is computationally very expensive, as most samples
case. Confidence intervals based on these estimates put thgve to be discarded. On the other handpitlepends only
observed discrepancies at the borderline of statistical signifien a subset of the variables then its pdf can be much simpli-

cance. fied, as follows.
Specifically, letx, andxg denote the coordinates of all
V. COMPARISON WITH STATISTICAL MECHANICS the strong and weak vortices, respectively. Thbg dxg

i ) , =dxN and we consider only function®(x,) from now on.
The numerical results are compared with pdfs es'umatetfirom (22) one obtains

based on microcanonical statistical mechanics for the whole

system. The general estimation procedure is described in
some detail, not least because it contains an impoatauhioc Pe(¢) | o(P—¢) | 8(H—E)dxg dx,
approximation that significantly reduces computational cost.

x| 6(P— Xp)dXp , 23
A. Estimation of pdfs J ( P)pe(Xn)dxa 23

The estimation of pdfs is based on phase space densitigghere the integral in square brackets is the unnormalized
p(Xq,....Xn), Which for convenience in the present case arénarginal densitypg(xa). Now, if it were the case thatl

normalized such that =Ha(xa) +Hg(xg) (as was true in the toy modethen
J pdx=1, (18) PE(XA)OCf O(HgtHA—E)dxg=po(Eg=E—Hp), (24)
where the integral is extended over the whole phase spacehere
Relative to a chosep the pdf of any phase space function
D (xq,...,Xy) taking real valuess is defined as pO(EB)OCJ S(Hg—Eg)dxg (25)
pdA
P((ﬁ):f o(P—¢)p dXN:J¢¢W- (19 is the pdf of the weak vortex enerdyg in the uniform

distribution. The last term irf24) means that the function
The scaling properties of the Diratfunction succinctly cap- pg(Eg) should be evaluated d&Eg=E—H,. Clearly, all
ture the thickness of the laye@se[ ¢, +d¢] measured in  statesx, with the same energid, are now equally likely.
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1L.5F ] 200}k ] FIG. 3. (a) pdf of the reservoir energy
Egr=E—E,, whereE, is the energy
=) of the strong vortices, based on®10
*AM 1ok ] Em o} J random samples with uniform distri-
m bution. The average reservoir energy is
= 109 with variance 229 (b) Joint res-
_200F g ervoir energy-angular momentum pdf,
0.5F 1 after some smoothing, wheidz=M
—M, andM, is the angular momen-
. -400F ) tum of the strong vortices.
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Becausepg(Xa) depends only oft—H 4 this is a huge sim-
plification, aspy(Eg) can be computed once and for all from J v
. T Xp)< | S(H—E)S(M—M)dxg, 32
the uniform distribution. Pem(Xa) ( )& )dxg (32
However, the Hamiltoniart2) does not fit into this cat-
egory, as we have and the joint “reservoir” pdf based on the uniform distribu-

H (Xa .Xg) = Ha(Xa) + Ha(Xg) + H (Xa Xg), (2 tion

where the “interfacial” energyH, consists of terms involv- -
ing both strong and weak vortex circulations. In principle, po(ER’MB)“f f S(Hr—ERr) 8(Mg—Mg)dx,dxg .
this means thapg(x,) does not depend solely da—H,. (33
Calculatingpg(xa) for all x, directly would be very expen-
sive, as even in the present case this would require a look-uphe same approximation procedure f82) as before then
table in eight dimensions. Instead, a much sim@drhoc  gives
approximation forpg(x,) as a function ofE—H, is used,
which for H,=0 reduces td24). The approximation is Pem(ﬁf’)“J S(®— ) po(Ex=E—Hr Mg=M—M ) dxs.
Pe(Xa) < Po(Er=E—Ha(Xa)), 27 34)
where
The predictions of the statistical mechanics theory are hence
Po(Er) J J S(Hr— Eg)dx,dxg (28)  bdfs estimated based ¢83) and(34). For comparison with
Fig. 1 the functiongy(Eg) and po(Er,Mg) are plotted in
is the pdf of the “reservoir” energHg=Hg+H, based on Fig. 3.
the uniform distribution. Unlike in25), the double integral Despite the somewhat opulent appearancé38j and
is necessary here becaudg depends on botl, and xg . (34), the practical procedure for estimating pdfs is actually
This approximation effectively assigns the same probabilitydisarmingly simple. A sample of f0Ostates was generated
to all statesx, that have the same strong vortex energyusing the uniform distribution and the corresponding values
Ha(Xa). Indeed, the assigned probability can be shown to bef H, Hy, Hr, M, M4, Mg were computed and stored in

the average probability over all states with the samg lists, as were the coordinateg of the four strong vortices.
Based on this approximation, the pdf for afy(x,) is =~ ComputingH is by far the most expensive step here. Histo-
now given by grams based on these lists were then used to estif83te
For any functiond®(x,) to be investigated a corresponding
Pe(p)x f S(P— P)po(ER=E—Hp)dX,. (29) list of values was then computed from the stored coordinates.
This list together with a look-up table for the histogram in-
The pdf ofH, in particular simplifies further to crementsepy(Eg,Mg) at the shifted arguments was then
Pe(Ex) % Pol Ex)Po(Er=E—E.0). (30) used to estimaté34) at fixedE andM. It is worth stressing

that only a single large sample based on the uniform distri-
The additional consideration of the secofmbnrobust  bution is needed to describe the statistics of the system at

angular momentum invarian8) is straightforward, espe- arbitrary E and M.

cially as M=M,+ Mg holds exactly. The microcanonical

density becomes B. Comparison with model results
S(H—E)S(M—M) The pdfs forE, (i.e., the energy of the strong vortiges
PEM= (3)  are plotted in Fig. 4.

_ _ N’
J8(H-E)8(M—M)dx Throughout, thin lines denote pdfs estimated from histo-
the marginal density grams taken from the direct numerical simulations and thick
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FIG. 4. pdfs ofE 4 , the energy of the strong vortices, for the three runs. Thin lines are simulation results, thick lines are theoretical predictions, and the squares
denotepy(E,).

lines denote theoretical predictions based @4). Also  Sec. ll, significantly affect the dynamics of the strong vorti-
shown in the middle panel igo(E,), which corresponds to ces.
random placing of the vortices with uniform distribution. As For neutral and high energies the pdfrefsettles down
could be expected, in the neutral energy case this gives t@ a shape quite close to the uniform distributiemcept near
reasonable first approximation, though still a less accuratéhe wall r;=R), which is indicated by the squares in the
one thanpgy(EA). The mean energy of the strong vortices middle panel. However, the first panel in Fig. 7 shows how
increases a& increases and this can clearly be predictedthe strong vortices tend to accumulate at the cylinder wall for
guantitatively from the theoretical predictions. In most casesyery low energies. This is essentially a similar statistical ef-
there is very good agreement between the theoretical anféct as the formation of opposite-signed vortex dipoles in the
simulation statistics, not only in terms of accurate predictionfirst panel of Fig. 6, but the wall effect is clearly more pro-
of low-order moments, but also in the prediction of the non-nounced in its pdf. Interestingly, the effective temperature
Gaussian shape of the pdfs. estimated agl In py(E)/dE from Fig. 1 atE=—197 gives
Figures 5 and 6 show the pdfs for the distance betweer-0.01 for this run. The theoretical upper limit {6) for the
same- and opposite-signed strong vortices, respectively. possible existence of canonical subsystem statistics in the
The tendency for same-signed vortices to cluster apresent case gives0.013, which confirms that this run is
smallerr;; with increasingE is evident in Fig. 5. On the close to a collapse to the wall. Finite point vortex statistics in
other hand, the indifference ® of the average;; between a collapse case would rely entirely on the finite size of the
opposite-signed vortices that was noted in Table | masks naeservoir formed by the small vortices.
table changes in the pdf that are evident in Fig. 6. These are
well captured by the theoretical predictions.
Finally, Fig. 7 shows statistics far, the vortex distance
from the origin. This quantity is interesting due to the influ-
ence of the self-interaction terms (&), which, as noted in

VI. CONCLUDING REMARKS

The theoretical predictions based on an ergodic approxi-
mation for the whole vortex system were seen to predict the

25 T Y Y T 25 T T \ \ 25 Y v T T
20 L 4 20} N 1 2.0
o 15F {1 = 15} { =15
x by © ) ¥
> > % =
i) St t/
3 y: z
a 1.0F 4 < 1Lof { < 10}
K
9
\
0.5} : 0.5F s 1 0.5
S
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0.0 2 " i i 0.0 M i L A 0.0
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T | T,

FIG. 5. pdfs ofr;; between strong vortices of the same sign, for the three runs. Thin lines are simulation results, thick lines are theoretical predictions, and
the squares denofgy(r;;). The simulation results are averages over the pdfspandrg,.
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FIG. 6. pdfs ofr;; between strong vortices of opposite sign, for the three runs. Thin lines are simulation results, thick lines are theoretical predictions, and the
squares denotpy(r;;). The simulation results are averages over the pdis 9fri4, rps, andr,,.

pdfs of many, though not all, descriptive variables of themore than compensated for by the high entropy of the freely
strong vortex subsystem with a surprisingly high degree ofoaming weak vortices.
accuracy. Some simulation averages converged only very It is intriguing to note that on the level of individual
slowly and significantly longer integrations could test thevortex dynamics there is a smooth transition from positive to
quality of the ergodic approximation in these cases. On th@egative temperature behavior, exemplified by the smooth
other hand, nonergodic observations might also be due to they(E) in Fig. 1. By contrast, in a coarse-grained picture two
crucial approximation leading t4), which was necessary vortices with opposite circulations that are close together
to estimate the theoretical pdfs at affordable computationatancel each other out and hence disappear from view. This
cost. Otherwise, the prediction procedure was remarkabliflustrates why solutions to mean-field theorigsich as the
simple and cheap, relying only on a single random sample a8inh—Poisson equatidnhave a characteristic cut-on behav-
vortex configurations to predict pdfs faill values of total ior as <0, because only same-signed vortex clustering is
energyE and angular momentur. observable in the coarse-grained variables of these theories.
The toy model, the direct numerical vortex simulations,lt is also noteworthy that the near collapse of the vortices to
and the theoretical predictions all corroborated Onsager’the wall in the present low-energy casehich is linked to
crucial insight that strong vortices will exhibit amplified sta- the theoretical upper bound if6)] does not occur in the
tistical tendencies compared to weak vortices, and hence wibinh—Poisson equation because there the scaling has been
be more predictable in a negative temperature state. It is therrangedab initio to render the wall-induced self-interaction
strongly unequal circulation strengths that allows the flow toenergies negligible.
organize itself in this inhomogeneous manner. It can be noted The present setup seems to have been the most compli-
that in terms of entropy as a measure of accessible phasated to study, i.e., the strong vortices interact vigorously
space volume, clustered vortices always present a lowwith both the wall and with the small vortices, and the small
entropy state. The crucial point is that in a negative temperavortices themselves form only a finite energy and angular
ture state the low entropy of the clustering strong vortices isnomentum reservoir. As noted before, the latter point puts

1.0 T 10 T
0.8 N . 08 H ]
0.6} ! 0.6p :

Pem(ry)
Pem(r)
Pem(r?)

04F 4
0.2F 4
0.0 ’ \ :

0 1 2 3 4 5

FIG. 7. pdfs ofr; , the distance from the origin of the strong vortices, for the three runs. Thin lines are simulation results, thick lines are theoretical predictions,
and the squares denqgpg(r;). The simulation results are averages over the pdfs, of ,, r5, andr,.
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the strong vortex statistics beyond the reach of the usuable sub-grid-scale data, perhaps with applications in geo-

canonical theories. In other words, whilst the overall energyphysical fluid dynamics.

regime can be broadly classified by the sign of the usual

statistical mechanics temperature, the temperature concegbExKNOWLEDGMENTS
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