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ABSTRACT

A long unresolved issue in nonorographic gravity wave generation is whether there is significant emission
from Kelvin–Helmholtz (KH) shear instability in the lower stratosphere, for instance, just above tropopause jets.
Such emission has often been suggested as significant for the angular momentum budget and hence for the
wave-driven circulation of the middle atmosphere, most crucially in the summer mesosphere. An idealized model
thought experiment is studied in which it is assumed that the KH shear instability rapidly mixes a thin layer,
producing a ‘‘pancake’’ of three-dimensional clear-air turbulence, and emitting low-frequency inertia–gravity
waves whose aspect ratio matches that of the turbulent layer and whose horizontal wavelength is large enough
to avoid back-reflection and hence reach the summer mesosphere. The wave emission is modeled as a linear
initial-value problem in which the rapid mixing of mass and momentum achieved by the turbulence is treated
as instantaneous, and hence as determining the initial conditions. Care is taken to cast the problem into a form
that permits well-conditioned numerical evaluation of the analytical solution, in both rotating and nonrotating
cases, which behave very differently. Comparison with fully nonlinear numerical simulations in two dimensions
of the same initial-value problem indicates that the linear theory is much better than might be expected on order-
of-magnitude grounds. A companion paper (Part II) investigates the transmission of the emitted waves to the
mesosphere subject to refraction and radiative damping.

1. Introduction

Gravity-wave-induced zonal momentum flux is be-
lieved on good evidence to account for most of the
angular momentum transport into the mesosphere that
is known to be crucial for many features of the observed
global-scale circulation, especially in the summer me-
sosphere (e.g., Holton et al. 1995) and also in the upper
stratosphere (e.g., Rosenlof 1996). Nonorographic
sources need to be involved because orographic waves
have critical layers near 20-km altitude (see Fig. 1) and
cannot reach the mesosphere. One possible nonoro-
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graphic source is Kelvin–Helmholtz (KH) shear insta-
bility above tropopause jets, forming pancake-shaped
clear-air turbulence (CAT) layers with envelope scales
of hundreds of meters in the vertical and tens of kilo-
meters in the horizontal.

However, the horizontal wavelength of individual KH
billows is typically far too short to reach the mesosphere
or even to be emitted at all. As noted in the companion
paper (Bühler and McIntyre 1999, hereafter Part II), waves
long enough to reach the mesosphere, that is, long enough
to avoid Doppler shifts up to the buoyancy frequency N
and consequent back-reflection, need to have horizontal
wavelength *30 km, implying that if KH emission is
important, then it must be nonlinear emission on the en-
velope scale, somewhat as in the original suggestion by
Fritts (1982, 1984) and Chimonas and Grant (1984).

Envelope-scale emission can occur either through
nonlinear forcing of waves during the actively turbulent
stage of the CAT layer, or during the collapse of the
mixed or partially mixed layer that is left behind once
the active turbulence has died away. A numerical study
of the first mechanism based on nonlinear grouping
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FIG. 1. Typical summer mean zonal wind profile. The profile has
a zero-wind line at 20-km altitude, which inhibits vertical propagation
of orographic, zero-phase-speed waves.

FIG. 2. Three stages of KH-induced wave problem seen in receding zoom: (a) rapid formation of a CAT layer (stage A), (b) initial
development of wave train (neglecting mean shear) (stage B), and (c) subsequent development of wave train using ray tracing (taking negative
mean shear into account) (stage C). Stage C is the subject of the companion paper (Part II). See text for details.

events between individual KH billows has recently been
undertaken by Scinocca and Ford (1999). The present
paper focuses on the second mechanism for envelope-
scale emission, namely, the mixed-layer collapse.

This is a formidable problem, and for tractability’s
sake a severe idealization of it is studied. The problem
is broken down into three stages, as indicated in Fig.
2. Stage A is the initial mixing event, that is, the rapid
formation of a CAT layer in which the background gra-
dients of potential temperature u(z) and mean zonal wind
u(z) are eroded, that is, weakened, by three-dimensional
turbulent mixing. This provides the initial conditions
for the linear wave emission problem studied in stage
B. To allow the initial development of a slowly varying
wave train, the mean shear must be neglected at this
stage. The main subject of this paper is the analytic
solution to this linear emission problem and a compar-
ison of it with fully nonlinear two-dimensional numer-
ical simulations of the same initial-value problem. The
latter suggests that the linearization works surprisingly
well, despite being far from strictly valid. In stage C

the subsequent development of the wave train is studied
using a ray-tracing scheme that takes into account mean
shear and wave dissipation by viscous diffusion and
infrared radiative damping. This is the subject of the
companion paper (Part II). The overall result is that only
waves with positive zonal pseudomomentum can reach
the summer mesosphere and hence exert a one-signed,
ratchetlike eastward force there, and that the average of
this force due to a realistic ensemble of stratospheric
CAT layers cannot safely be neglected for the global
angular momentum budget.

2. Stage A: Formation of KH-induced CAT layer

A comprehensive model for KH and KH-induced
CAT in the lower stratosphere would necessarily be very
complicated and would also involve subtle fluid-dynam-
ical issues such as the detailed structure of shear-induced
gravity wave breaking. Therefore, only one very simple
source mechanism of KH is considered in detail here,
which we believe is characteristic of many naturally
occurring situations. It involves a thin vertical layer of
increased static stability (i.e., high buoyancy frequency
N) that is rendered KH unstable as the result of transient,
that is, temporary, tilting by large-scale motions, pro-
ducing KH instability in the manner of the Thorpe
(1973) tilted-tank laboratory experiments in which the
tank was first tilted and then brought back to the hor-
izontal. The large-scale tilting motion could itself be
due to, for instance, passing large-scale gravity waves
or quasi-horizontal vortices, but it is not necessary to
consider a specific model for it.

It is a well-established, if surprising, fact that such
tilting motion makes layers with high N the preferred
sites of KH instability, despite the fact that for fixed
background shear uz the background Richardson number
Ri 5 (N/uz)2 before the tilting is larger, and hence more
stable, inside these layers. This is because the local shear
that develops under large-scale tilting motion is not
fixed but is proportional to the local N 2 in the ‘‘tilting’’
situation. In turn, the local Richardson number becomes
proportional to N22; that is, it becomes least stable in
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FIG. 3. Outline of typical CAT layer whose horizontal scale b is much larger than its vertical depth h. (The relative vertical depth h/b is
exaggerated for clarity.) (left) KH billows rolling up in the initial stage of the event; (right) profiles of potential temperature u(z), buoyancy
frequency N 2(z) } uz, and zonal velocity u(z) before (thin lines) and after (bold lines) a strong turbulent mixing event. The layer itself is
thought to be positioned in the lower summer stratosphere, i.e., above the tropopause jet, and hence inside a region of negative background
zonal shear (cf. Fig. 1), as indicated.

regions of strong stratification.1 This robust link between
strong stratification and increased likelihood of KH is
in accordance with many observations in the above-
mentioned tilted-tank experiments, and field studies
such as the study of KH billows on the ocean ther-
mocline in Woods (1968); also, e.g., Phillips (1977) and
Fritts and Rastogi (1985).

It is now assumed that the KH billows eventually
break down into three-dimensional small-scale turbu-
lence via a sequence of secondary instabilities, whose
exact details are not important for the purpose of this
paper. It is further assumed that the three-dimensional
turbulence achieves rapid mixing of potential temper-
ature and horizontal velocity, eroding the mean gradi-
ents in both fields. When the transient large-scale tilt is
approximately reversed, a well-mixed layer of decaying
turbulence remains in which the background gradients
of u(z) and u(z) have been significantly eroded, this
erosion being complete in the limiting case of perfect
mixing that marks the outcome of a very strong mixing
event. Although Ri values must be low during the tilt,
we assume that they are relatively large afterward. Fig-
ure 3 shows a schematic of this mixed-layer scenario.

How well does this picture of the mixing process
compare with field observations and numerical simu-
lations? Observations such as those reported in Brown-
ing and Watkins (1970) show conspicuous evidence for
the irreversible mixing of u and the associated ‘‘rabbit-
ear’’ structure of the N 2 profile across the layer, which
corresponds to homogenized values of u in the core and
to all the stratification being pushed into the edges where
u has to match up with the background temperature
profile. Observations of velocity profiles before and af-

1 For example, if Coriolis forces are negligible, then the local shear
is proportional to g (t)N 2, where g (t) is the time integral of the time-
dependent tilting angle a(t) of the layer, and hence Ri } (gN )22. In
the opposite-extreme case of geostrophic balance, the formula Ri }
(gN)22 still holds but with g (t) 5 a(t)/ f where f is the Coriolis
parameter.

ter CAT events are much more scarce and are also dif-
ficult to interpret because of the unknown importance
of time-dependent background shear in the vicinity of
the CAT layer. For instance, the observations of Brown-
ing and Watkins (1970) showed little change in the ve-
locity profile before and after the CAT event apart from
some degree of overall smoothing.

Direct numerical simulations of KH and its turbulent
breakdown into CAT are, at present, barely beginning
to achieve a degree of complexity that makes them use-
ful for comparison with real atmospheric events (e.g.,
Scinocca 1995; and a series of papers including Fritts
et al. 1996 and Werne and Fritts 1999). Such simulations
are still severely limited in Reynolds number and by the
degree of three-dimensionality that they can achieve.
Atmospheric CAT Reynolds numbers are at least two
orders of magnitude larger than those in the simulations,
and hence atmospheric CAT can be expected to be much
more vigorous than the simulated turbulence. Lack of
full three-dimensionality can lead to qualitatively dif-
ferent long-time behavior such as long-lived two-di-
mensional vortex rolls that do not break down, contrary
to what is conspicuously observed in the atmosphere.

Such long-lived rolls would imply persistent mean
shear in the layer. However, once three-dimensional tur-
bulence sets in vigorously, then robust fluid-dynamical
energy arguments predict that the mean shear must be
eroded to supply the energy for the three-dimensional
eddies. These robust arguments underpin, for instance,
any theory based on turbulent eddy diffusivity for the
mean velocity, provided only that the natural variation
of eddy diffusivity across the vertical depth of the layer
(i.e., large diffusivity in the well-mixed strongly tur-
bulent core, small diffusivity near the stratified weakly
turbulent edges) is taken into account. This leads to the
prediction that direct numerical simulations at higher
resolution and larger Reynolds numbers will eventually
corroborate the assumption made here that potential
temperature u and horizontal velocity u are mixed in
essentially the same way in a CAT layer.
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3. Stage B: Analytic wave emission model

The general solution to the linear ‘‘Rossby adjust-
ment’’ initial-value problem for a localized, compact
initial disturbance embedded in an unbounded rotating
Boussinesq system is derived. The compact initial con-
ditions dissolve into two different flow components:
propagating inertia–gravity waves and a residual flow
in geostrophic balance. The solution is derived in detail
for the most complicated three-dimensional rotating
case, and, where appropriate, suitable modifications of
the formulas to obtain other cases are indicated. Care
is taken to obtain a form of the solution that is equally
useful for calculating snapshots of the time evolution
as well as for calculating the total asymptotic wave
emission into different directions.

Sufficient detail is given for a numerical discretization
of the solution using digital Fourier transforms (FTs).
A nontrivial discretization difficulty arises for spectral
modes with zero horizontal wavenumber, and appro-
priate limits have to be extracted carefully from the
solution formulas to yield a robust discretization.

a. General solution to linear initial-value problem

The linearized f -plane Boussinesq equations in a
frame of reference moving with the local mean velocity
are

u 1 f 3 u 1 =P 5 s ẑ (1)t

2s 1 N w 5 0 (2)t

= · u 5 0. (3)

A right-handed Cartesian coordinate system is used in
which x and y are the horizontal coordinates, with x
increasing eastward and y increasing northward, and in
which ẑ is a vertical unit vector pointing upward in the
direction of increase of the vertical coordinate z. The
corresponding linearized velocity components are u 5
(u, y , w), f 5 f ẑ is the Coriolis parameter, P is the
pressure in excess of the hydrostatic pressure divided
by the constant Boussinesq reference density, N is the
constant buoyancy frequency, and s is the buoyancy
acceleration. In the usual way, the no-divergence con-
dition (3), together with suitable boundary conditions
at infinity, determines =P uniquely, which effectively
reduces the number of independent fields by one. Hence
the initial-value problem is complete by posing initial
conditions for the velocities and the buoyancy accel-
eration only, that is, by posing

u(x, y, z, 0) 5 u (x, y, z) and0

s(x, y, z, 0) 5 s (x, y, z), (4)0

where the initial field u0 must satisfy (3). All initial
fields are assumed to be localized in a finite region
around the origin of the coordinate system, and they are
also assumed to be proper disturbance fields in the sense

that they must have zero mean value when integrated
over the entire spatial domain.

As one would expect for a system with four time
derivatives and one constraint (3), for each spectral
wavenumber vector k 5 (k, l, m) in Fourier space the
solution is described by the sum of three modes, namely,
a steady mode in geostrophic balance and two time-
dependent inertia-gravity-wave modes. The linear
steady balanced mode for any given k can be extracted
from the initial conditions in the usual way by ‘‘in-
verting’’ the potential vorticity (PV) of the initial fields,
which is

f f
Q [ y 2 u 1 s 5 y 2 u 1 s . (5)x y z 0x 0y 0z2 2N N

The second equality follows from the identity Qt 5 0.
Because Q is time-independent, it is clear that only the
steady balanced mode can be significant for Q once all
the inertia–gravity waves have propagated away. There-
fore, for each k the steady balanced mode is found by
setting all time derivatives to zero in (1)–(3) and by
assuming that the PV for this k is entirely due to the
steady balanced mode. Denoting the balanced fields by
a superscript b, this results in

b b b b bf (2u , y ) 5 (s , s ), w 5 0,z z y x

b bu 1 y 5 0 (6)x y

f
Q̂ 5 i kŷ 2 lû 1 mŝ0 0 021 2N

f
b b b5 i kŷ 2 lû 1 mŝ (7)

21 2N

f
kŷ 2 lû 1 mŝ0 0 02N

b b b b⇒ {û , ŷ , ŵ , ŝ }5{2l,k,0, fm} . (8)
2 2 2 2 2k 1 l 1 m f /N

The hat over symbols denotes spatial FTs of fields ac-
cording to the definition of the n-dimensional spatial FT
pair:

1` 1`

2ik · xĝ(k) [ FT[g(x)] [ · · · e g(x) dx · · · dxE E 1 n

2` 2`

21g(x) 5 FT [ĝ(k)]
1` 1`1

1ik · x5 · · · e ĝ(k) dk · · · dk ,E E 1 nn(2p)
2` 2`

(9)

where g(x) is any function of x.
The balanced fields obtained by the PV inversion (8)

are subtracted from the initial conditions to yield the
relevant initial conditions for the remaining wave fields.
Denoting wave fields with superscript w, that is,

{uw, yw, ww, sw} [ {u 2 ub, y 2 yb, w, s 2 s b}, (10)

it then follows from (7) that there is no PV associated
with the wave fields:



1 NOVEMBER 1999 3753B Ü H L E R E T A L .

f
w w w wQ 5 y 2 u 1 s 5 0. (11)x y z2N

Many equivalent choices for expressing the spectral
eigenvectors of the wave modes are possible, and it now
proves convenient to introduce a particular complex am-
plitude function F(k) that allows treating all variables
on an equal footing. In particular, the complex F neatly
combines both real-valued wave modes, and |F| 2 will
turn out to be the relevant spectral density of wave
energy. The definition of F is

2 2 wÏk 1 m ŝh 0wF(k) [ 2 ŵ 1 iv̂(k) , (12)0 21 2k Nh

where kh [ k2 1 l2 is the magnitude of the horizontalÏ
wavenumber vector and (k) is the intrinsic frequencyv̂
given by the positive branch of the Boussinesq inertia-
gravity wave dispersion relation:

2 2m kh2 2v̂ [ f 1 N v̂(k) 5 v̂(2k)
2 2 2 2! k 1 m k 1 mh h

N $ v̂ $ | f |. (13)

The indicated range of holds if N . | f |.v̂
With the aid of F the wave fields can be written as

k l f m
w 21 2iv̂tu 5 RFT e F(k) 1 i (14)5 62 2[ ]k k v̂ Ïk 1 mh h h

l k f m
w 21 2iv̂ty 5 RFT e F(k) 2 i (15)5 62 2[ ]k k v̂ Ïk 1 mh h h

2khw 21 2iv̂tw 5 RFT e F(k) (16)5 62 2Ïk 1 mh

2N khw 21 2iv̂ts 5 RFT e F(k)i . (17)5 62 2v̂ Ïk 1 mh

Here R denotes taking the real part and use has been
made of the fact that the FT of a purely real or purely
imaginary function g(x) satisfies ĝ(k) 5 6ĝ*(2k), re-
spectively, where the star denotes taking the complex
conjugate. For instance, combining (12) and (16) at t
5 0 gives ww 5 R FT21{ 1 /N 2}, and due tow wŵ iv̂ŝ0 0

(k) 5 (2k) the second term results in a purely imag-v̂ v̂
inary FT21, leaving only as the real part.ww0

The two-dimensional case is included by setting the
respective wavenumber component to zero (e.g., l [ 0
if there is no y dependence) and using n 5 2 in the
definition of the FT pair in (9). Also, the nonrotating
case is included by setting f 5 0. The preceding analytic
solution in terms of F can straightforwardly be eval-
uated numerically using digital FTs, except for modes
with horizontal wavenumber kh 5 0. For these modes,
it turns out to be vital for a robust and accurate numerical
discretization that appropriate limiting values are care-

fully extracted from the preceding formulas, and this
task is described in the appendix. Using these limiting
values, it was sufficient to use 32 Fourier coefficients
in each spatial direction to obtain convergence for the
emission strength (i.e., convergence in the diagnostic

defined in section 3b), and it was sufficient to useIP*
256 Fourier coefficients in each spatial direction to ob-
tain very accurate snapshots of the time evolution of
the wave field.

b. Asymptotic wave emission

The solution derived in the last section describes in
detail how compact initial conditions unfold into a re-
sidual (steady) balanced flow and a propagating train of
inertia-gravity waves. Asymptotically, that is, after suf-
ficiently long time, this wave train can simply be char-
acterized in terms of a local wavenumber and a suitable
local wave amplitude. It is now demonstrated how the
function F(k) defined in (12) can be used to calculate
these local wave train characteristics. This is useful for
two reasons: first, it gives a precise answer to the ques-
tion of how much wave activity is radiated in different
directions; second, it provides the relevant initial con-
ditions for ray-tracing schemes in which the subsequent
propagation of the wave train under the influence of
mean shear, radiative damping, etc., can be studied (cf.
the companion paper).

Use is made of the well-known fact (e.g., Whitham
1974, p. 371 ff; or Lighthill 1978, p. 351 ff ) that if
s(x, t) is a field with compact initial conditions and given
in terms of a spectral amplitude S(k) as

s 5 R FT21{e S(k)},2iv̂t (18)

and if D (t) is a time-varying region in n-dimensional x
space, the boundary of which is moving with the local
group velocity cg 5 x/t, then

1 1
2 2s dx 5 |S| dk (19)E En2 (2p)D(t) K

holds for sufficiently long times. Here ( · · · ) denotes
an average over the phase of the wave train, and K
denotes the fixed region in k space corresponding point-
wise to D (t) through the group-velocity condition:

]v̂ xi(c ) [ (k) 5 . (20)g i ]k ti

Equation (19) holds with s2 replaced by the square
of any of the wave fields defined in (10), and this allows
evaluating the wave energy per unit mass contained in
a region D (t) by replacing the x integral over D (t) of
the wave energy density

1
w 2 w 2 2E [ [ |u | 1 (s ) /N ] (21)

2

by a k integral of a suitable spectral density over the
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corresponding region K . Combining (14)–(17), (13),
(19), and (21),

1 1
2E dx 5 |F| dk (22)E En2 (2p)D(t) K

is found, which shows that |F| 2 is the spectral wave
energy density. Global conservation of wave energy is
included as a special case by letting D, and hence K ,
cover the entire domain, that is,

1` 1`

wE [ · · · E dx · · · dxE E 1 n

2` 2`

1` 1`1 1
25 · · · |F| dk · · · dk . (23)E E 1 nn2 (2p)

2` 2`

The total disturbance energy of the initial conditions,
say, E0, can be written as the sum of Ew and the energy
of the balanced flow Eb. Specifically,

1` 1`1
b b 2 b 2 2E [ · · · ( |u | 1 (s ) /N ) dx · · · dx ,E E 1 n2

2` 2`

and

b wE 1 E 5 E .0 (24)

The derivation leading to (22) is unaffected if E is
multiplied by a quantity that remains constant on group
velocity rays. The local wavenumber vector k and the
local frequency (k) are such quantities, and this allowsv̂
the simple evaluation of the x component of horizontal
pseudomomentum per unit mass that is contained in D (t)
as

k 1 1 k
2E dx 5 |F| dk. (25)E Env̂ 2 (2p) v̂D(t) K

General theoretical results from wave–mean interaction
theory show that the vertical flux of horizontal pseu-
domomentum is equal at leading order to the wave-
induced vertical flux of mean horizontal momentum
(e.g., Andrews and McIntyre 1978a,b; McIntyre and
Norton 1990). In other words, measuring the vertical
flux of zonal pseudomomentum is equivalent to mea-
suring the wave-induced flux of zonal momentum.
Hence, pseudomomentum is the appropriate diagnostic
for quantifying wave-induced momentum fluxes. It can
be noted that the pseudomomentum density kE/ has av̂
sign according to the sign of k and hence is not sign
definite. This means that there is no obvious upper
bound on the amount of pseudomomentum generated
by given initial conditions.

Let P I(t) denote the total amount of pseudomomen-
tum found at time t upward and eastward of a compact
source centered at the origin, that is,

1` k
IP (t) [ E dx dy dz; (26)E E E v̂x.0 2` z.0

then (25) allows the simple evaluation of the limiting
behavior of P I(t) as t → ` as

1`1 1 k
I 2lim P (t) 5 |F| dk dl dm.E E E32 (2p) v̂t→` k.0 2` m,0

(27)

Note that k . 0 selects waves with group velocity
(and phase velocity) directed eastward, and that m , 0
selects waves with positive vertical group velocity. A
nondimensional quantity is now introduced asIP*

HN
I IP [ lim P (t), (28)* E t→`0

where H is a length scale provided by the initial con-
ditions. The quantity is useful, as it can be easilyIP*
evaluated for two- and three-dimensional versions of
the linear solution, and it can also be approximately
evaluated in a nonlinear simulation.

c. Mixed-layer initial conditions

Initial conditions are chosen that resemble in the sim-
plest possible way the net mixing of mass and horizontal
momentum in the CAT layer. The initial conditions con-
sist of a relatively well-mixed core embedded in a
smooth Gaussian envelope; see (31) and Fig. 4. In the
core, the net mixing erodes the vertical background gra-
dients of density and of the zonal velocity, which are
N 2 and 2N/ Ri , respectively, using the standard def-Ï
inition of the background Richardson number Ri. The
sign of the background shear is chosen for consistency
with Fig. 1 but turns out not to affect the emission
process. The initial conditions thus chosen determine u0

and s0, and the remaining velocity components y 0 and
w0 are chosen to satisfy the continuity equation (3), that
is, y 0y 1 w0z 5 2u0x. In the three-dimensional case this
does not determine y 0 and w0 uniquely, and an additional
condition must be specified. We envisage that the tur-
bulent mixing acts on the mean velocities like a com-
paratively rapid zonal force-pair that erodes the zonal
mean shear. It is straightforward to show (e.g., Batchelor
1967) that in the limit of an impulsive zonal force (i.e.,
a force that acts over a time interval t K 1/N), the
(y 0, w0) response consists of irrotational (i.e., y 0z 5 w0y)
two-dimensional motion in each y–z plane driven solely
by a mass source–sink equal to 2u0x. This would lead
to

{kl, km}
{ŷ , ŵ } 5 2 û (29)0 0 02 2l 1 m

for the respective velocity FTs. This result cannot be
used unmodified because KH mixing times do not usu-
ally satisfy t K 1/N. However, for the flat, pancakelike
initial conditions with small aspect ratio h/b considered
here, a modified version can be shown to hold for longer
time intervals t K b/(hN). Significant values of û0 are
then found only in regions of spectral space satisfying
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FIG. 4. (left) Initial s disturbance over x–z plane at y 5 0. Note that the direction into the paper corresponds to the vertical. (right) Initial
s disturbance over z at (x, y) 5 0.

kh/|m| ; h/b K 1. This allows use of the hydrostatic
approximation to (29), in which O( /m2) terms are ne-2kh

glected. This leads finally to

k
{ŷ , ŵ } 5 0, 2 û . (30)0 0 05 6m

The specific initial fields centered at the origin of the
(x, y, z) coordinate system are given by

2N H N
2{u , y , w , s } 5 1az , 0, 2ax , 2bzN0 0 0 0 25 6LÏRi ÏRi

2 2 2 2 23 exp{2[(x 1 y )/L 1 z /H ]}.

(31)

The two-dimensional case is included by setting y 5 0.
The mixing parameters b and a can range from 0 to 1
and measure the extent to which the respective back-
ground gradients have been eroded. The limiting case
of perfect mixing at the center of the core corresponds
to a value of 1. The Gaussian envelope is determined
by the vertical and horizontal half-width scales H and
L. The corresponding initial disturbance energy is

2 2p L a H
4 2 2E 5 H N 1 1 1 b0 21 2[ ]16 H Ri L

in two dimensions and

2 2 2p p L a H
5 2 2E 5 H N 1 1 1 b0 2 21 2[ ]!16 2 H Ri L

in three dimensions. (32)

The shape of s0 (which is the same as u0 with a minus
sign) is depicted in Fig. 4 for b 5 1. The extent of the
well-mixed core of the mixed region indicated by h and
b in Fig. 3 must be related to envelope half-widths H
and L. Assuming that h/b 5 H/L and defining h as the
vertical distance between the two extremes of the initial
disturbance profile in Fig. 4, the relation

(h, b) 5 2(H, L)Ï (33)

is obtained.
It is now convenient to nondimensionalize the prob-

lem and to use all its obvious symmetries in order to
reduce the number of free parameters. The Boussinesq
model has no intrinsic length scale, and hence a length
scale of the initial conditions, say, H, can be used for
that purpose. This leaves only the aspect ratio H/L to
set. The choice

H/L 5 h/b 5 1/100 (34)

is compatible with many observations (e.g., Browning
and Watkins 1970), and for simplicity’s sake this value
of H/L is used throughout.

The Boussinesq model has two intrinsic timescales,
N and f. Using N to nondimensionalize the problem
leaves open the choice of Prandtl’s ratio f/N. The fol-
lowing values for Prandtl’s ratio are used:

f/N 5 {0, 0.005, 0.01}, (35)

which roughly span the stratospheric range of this pa-
rameter.

The mixing parameters b and a may vary indepen-
dently in physical reality, but in the nondimensional
linear problem only their ratio enters. This is because
multiplying both parameters by the same number only
multiplies all wave fields by that number, and in par-
ticular leaves , which is a nondimensional ratio ofIP*
pseudomomentum and wave energy, unchanged. Fur-
thermore, inspection of (31) and (32) shows that Ri
enters only in the ratio a/ Ri . Hence, a, b, and Ri canÏ
all be combined into a single parameter a/(b Ri). ForÏ
simplicity, only the following few values for this pa-
rameter are considered in the following linear calcula-
tion:

a/(b Ri) 5 {0, 0.5, 1}.Ï (36)

Letting a/(b Ri) range from 0 to 1 brackets the ex-Ï
tremes of relative importance of kinetic energy to avail-
able potential energy that is contained in the initial
mixed layer. At one extreme, the kinetic energy is un-
important while at the other extreme there is equipar-
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TABLE 1. Nondimensional wave energy Ew/ E0. Each column cor-
responds to a different value of f /N and each row corresponds to a
different value of a/(b Ri). Left and right entries correspond to two-Ï
dimensional and three-dimensional cases, respectively. The value of
Ew/E0 does not depend on the signs of a and b. In the nonrotating
two-dimensional case the PV is identically zero and, hence, Ew 5 E0

there. The differences between two-dimensional and three-dimen-
sional values are in many cases significant.

f /N

a

(bÏRi)

0

2D 3D

0.005

2D 3D

0.01

2D 3D

0
½
1

1.00
1.00
1.00

1.00
0.90
0.76

0.44
0.56
0.72

0.64
0.65
0.66

0.25
0.40
0.62

0.40
0.48
0.60

tition between both kinds of energy. Inclusion of the
opposite extreme (i.e., dominating kinetic energy) was
omitted for brevity and because we felt this case was
less relevant to real CAT, for which it is natural to as-
sume, influenced by the ‘‘tilted-tank’’ experiments, that
density mixing is always involved at leading order. In-
cluding the case a/(b Ri) → 0 gives the important testÏ
case (for comparison with numerical simulations at
least) of density mixing only, with zero background
shear and temporary tilted-tank conditions.

In summary, the nondimensional diagnostic in (28)IP*
depends only on a/(b Ri), f/N, H/L, and the numberÏ
of spatial dimensions. In comparison, the total pseu-
domomentum, as defined in (27), has some additional
explicit dependence on the model parameters as follows.
The total pseudomomentum has dimensions H 4N, (or
H 3N in two dimensions). Hence, if the size of the mixed
region is doubled while the values of f/N, H/L, Ri, and
b, a are kept fixed, then the total amount of pseudo-
momentum is increased by a factor of 16 (or 8 in two
dimensions), highlighting the sensitive dependence of
the pseudomomentum emission on layer size. Also, if
N is doubled under the same conditions, then the total
pseudomomentum is doubled. Finally, the total pseu-
domomentum is proportional to the squares of the mix-
ing parameters, that is, doubling both b and a quadru-
ples the total pseudomomentum.

d. Model runs and upward–eastward
pseudomomentum emission

The wave emission has been calculated in two and
three dimensions and for the parameter combinations
discussed above. It turns out that in all cases the up-
ward–eastward pseudomomentum emitted due to joint
velocity and density mixing is simply the sum of the
upward–eastward pseudomomentum emitted due to ei-
ther velocity or density mixing in isolation. In other
words, the pseudomomentum fluxes due to velocity mix-
ing and due to density mixing simply add. This is a
nontrivial result, which depends on certain special (but
quite reasonable) properties of the chosen initial con-
ditions, as follows.

First, consider the spectral wave energy density |F| 2,
defined by (12), in the nonrotating two-dimensional
case. In this case all balanced fields are 0. For the chosen
initial conditions in (31) the property u0 } s0 holds
throughout the domain, and therefore (using ŵ0 5
2kû0/m) the complex FTs û0, ŵ0, and all have theŝ0

same phase in spectral space. This means that |F| 2 in
(12) is given for each spectral wavenumber vector k as
a sum of squares of initial velocity and density FTs,
without cross-correlation terms between these velocity
and density FTs. In other words, |F(k)|2 is simply a
(weighted) sum of a2 and b2.

A corresponding statement is trivially true for the
rotating two-dimensional case as well as for the non-
rotating three-dimensional case. In these cases the dis-

turbance PV is due only to a single term, which is either
fsz/N 2 or 2uy, respectively. Using the expression for

in (8), we see that the wave field 5 2 inb w bŝ ŝ ŝ ŝ0 0

(12) is then simply proportional to (in the f 5 0ŝ0

case simply because s b [ 0), with a real-valued factor
of proportionality that is either less than or equal to
unity, in the respective cases. Again, this implies that
there are no velocity–density cross-correlation terms in
|F(k)|2.

On the other hand, in the rotating three-dimensional
case the PV depends on a linear combination of velocity
and density contributions, and this leads to an expres-
sion for in (12) that depends on both a and b. Con-wŝ 0

sequently, |F(k)|2 now includes a cross-correlation term
}22ablmf. Nevertheless, for initial conditions that fac-
torize in the y coordinate (which includes those consid-
ered here) the contribution of this cross-term to an in-
tegral of |F| 2 over all y wavenumbers l must vanish.
This is because the cross-correlation term in (12) is then
necessarily an odd function of l, as can be easily shown.

All of the above remains true if |F| 2 is replaced by
the spectral pseudomomentum density |F| 2k/ Both thev̂.
total wave energy E w and the total pseudomomentum
emitted upward–eastward involve an integral over all l,
and hence both are simply additive over velocity and
density mixing in all cases. One consequence of this is
that E w/E0 as well as in (28) can only depend onIP*
|a/(b Ri)|, implying, for instance, that the signs of theÏ
initial conditions in (31) cannot affect the net upward–
eastward pseudomomentum emission.

Consider now the numerical results for the ratio Ew/E0

5 (E0 2 Eb)/E0 in Table 1, which describes how E0 is
split between energy of the propagating gravity waves
and energy of the balanced residual state. Basically, this
ratio is diminished as the PV content of the initial con-
ditions is increased, and vice versa. Hence, there is a
general decrease of E w/E0 as f/N is increased. In the
two-dimensional cases E w/E0 increases as the velocity
mixing strength a is increased, which is because ve-
locity does not contribute to the PV in these cases.

The shape of the pseudomomentum density |F| 2k/v̂
differs in an interesting way from that of the energy
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FIG. 5. Spectral pseudomomentum density. Solid contours denote positive values, dotted contours denote negative values: (left) without
background rotation; (right) with background rotation equal to f 5 N/100. In both cases a 5 b.

FIG. 6. The factor k/ŵ over the quadrant (k $ 0, m # 0) of spectral space: (left) without background rotation; (right) with background
rotation equal to f 5 N/100.

density |F| 2. A typical shape of |F| 2k/ is illustrated inv̂
Fig. 5, where the two-dimensional |F| 2k/ is contouredv̂
as a function of k and m for two cases, f 5 0 on the
left and f 5 N/100 on the right. The total pseudomo-
mentum emitted upward–eastward is equal to the inte-
gral over the lower-right quadrant, in which k $ 0 and
m # 0. Note that the pseudomomentum density takes
both positive and negative values, which could not occur
for the everywhere nonnegative energy density. The
plots illustrate that the total pseudomomentum radiated
upward (or downward) is 0, that is, initial conditions
such as (31) emit a wave train with an eastward–west-
ward symmetry. There is also a conspicuous difference
between the rotating and nonrotating cases, namely, that
in the rotating case (on the right) there is a well-defined
maximum of the spectral pseudomomentum density in
the interior of each quadrant at

|kH| ù 0.01 |mH| ù 1.5, (37)

whereas in the nonrotating case there is a jump discon-
tinuity along k 5 0 that connects extreme values on
either side of the discontinuity. This is due to the factor
k/ which in the nonrotating case jumps at k 5 0, andv̂,

in the rotating case goes to zero at k 5 0, as illustrated
in Fig. 6 and further discussed in the appendix.

Numerical results for are collected in Table 2. ItIP*
can be noted that always decreases as f/N increases,IP*
and that, somewhat surprisingly, the differences be-
tween two-dimensional and three-dimensional values of

are small, except in the case f 5 0. This can beIP*
compared with the values for E w/E 0 in Table 1, in which
these differences are in many cases significant. This
appears to be due to the factor k/ in the spectral pseu-v̂
domomentum density, which counteracts to some extent
the dependence of the spectral wave energy density on
the number of spatial dimensions.

In summary, for values of the Prandtl ratio f/N com-
parable with the aspect ratio H/L, there is little differ-
ence in between two-dimensional and three-dimen-IP*
sional cases. This allows the use of two-dimensional
emission models in these cases. If, for example, f/N ø
H/L, then, depending on the relative strength of the
density and the velocity mixing, the values of rangeIP*
through

f/N ø H/L ⇒ 5 [0.05 . . . 0.10].IP* (38)
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TABLE 2. Nondimensional pseudomomentum ; cf. Table 1 forIP
*details. The values for the nonrotating two-dimensional case depend

only very weakly on a/(b Ri) and are equal to the precision shownÏ
here. The value of does not depend on the signs of a and b.IP

*
f /N

a

(bÏRi)

0

2D 3D

0.005

2D 3D

0.01

2D 3D

0
½
1

0.40
0.40
0.40

0.25
0.24
0.21

0.12
0.14
0.17

0.12
0.13
0.13

0.05
0.07
0.10

0.06
0.07
0.09

If, on the other hand, f 5 0, then the three-dimensional
results must be used because the two-dimensional model
greatly overpredicts the emission strength. The range of

for f 5 0 isIP*
f/N 5 0 ⇒ 5 [0.21 . . . 0.25].IP* (39)

e. Sensitivity to small-scale details in the envelope
structure

The Gaussian envelope structure of the initial con-
ditions in (31) was chosen for its simplicity, and it is
important to check whether the pseudomomentum emis-
sion could be sensitive to small-scale details of the en-
velope structure. Clearly, such small-scale details would
be very hard to predict because they are likely to be,
to some degree, dependent on the details of the actively
turbulent phase of the CAT layer. The emitted wave
energy Ew is always bounded by E0 and is hence in-
sensitive to small-scale changes. However, as noted be-
fore, there is no such obvious bound for the emitted
pseudomomentum P I. It is the pseudomomentum that
gives the wave-induced momentum flux, and hence its
sensitivity needs to be considered.

The behavior of k/ which multiplies the spectralv̂,
energy density to obtain the spectral pseudomomentum
density, is investigated for this purpose. Sensitivity to
small-scale detail is indicated if k/ can grow withoutv̂
bound as the typical wavenumber vector k 5 (k, l, m)
takes on large absolute values. Rotating and nonrotating
cases need to be considered separately, and f 5 0 is
considered first. Waves with zonal wavenumber k larger
than ø2p/30 km will be back-reflected by the easterly
jet before they reach the summer mesosphere (as shown
in detail in Part II); and hence only bounded values of
k need to be considered. Large absolute values of me-
ridional wavenumber l mean that → N in k/ butv̂ v̂,
this leads only to bounded values provided that k re-
mains bounded. Hence, only waves with large absolute
values of vertical wavenumber m need to considered.

In this case, k/ → |m|k/(khN), which exhibits un-v̂
bounded growth as |m| grows (cf. left panel in Fig. 6).
This implies sensitivity of the pseudomomentum emis-
sion to vertical small-scale details, that is, to details of
the vertical envelope shape. However, these large-|m|
waves necessarily have low vertical group velocities,

and hence spend a long time near their launch altitude
where they are subject to dissipative processes such as
radiative damping. Radiative damping acts very effec-
tively on large-|m| waves (provided that background
rotation is absent; this crucial condition is investigated
in detail in Part II); and hence these waves will be
dissipated near their launch altitude and not reach the
mesosphere.

The above points concerning the horizontal wave-
numbers k and l apply equally in the rotating case f ±
0. In the rotating limit of large |m| the factor k/ → k/ f,v̂
which is again bounded as long as k is bounded; and
hence there is no sensitivity of the pseudomomentum
emission to vertical small-scale details in the rotating
case. In summary, it can be concluded that the amount
of pseudomomentum that reaches the summer meso-
sphere is probably quite insensitive to the small-scale
details of the initial conditions.

4. Nonlinear numerical simulations

Linear theory is not formally valid in the early stage
of the emission, when the wave train first develops from
the mixed region. This is true especially in the limiting
case of perfect mixing, in which isentropes acquire ver-
tical slopes. For this reason, independent fully nonlinear
simulations of the emission stage have been performed
to test the accuracy of the linear theory. The simulations
were two-dimensional, that is, their domain was re-
stricted to the x–z plane, but a three-dimensional ve-
locity field u 5 (u, y , w) was considered. The flow fields
are then y independent but, in the presence of nonzero
background rotation f, the velocity component y in the
y direction is nontrivially coupled to the other compo-
nents.

This allows, at reasonable computational cost, some
form of dynamically significant nonlinear vortex
stretching to take place, in addition to allowing nonlin-
ear effects caused by the interplay of advection and
buoyancy forces in the x–z plane. The latter effects may
actually be stronger in two than in three dimensions,
due to the comparatively less rapid amplitude decrease
of the dispersing flow fields in two dimensions.

Various simulations with and without background ro-
tation and with or without a balanced flow component
have been performed, and good quantitative agreement
with the linear theory could be demonstrated. Although
these simulations provide a good test of the linear pre-
dictions, there remains one caveat, namely, that mean
shear has again been neglected.

a. Numerical model

The numerical model used was the Clark model
(Clark 1977). It is a finite-difference gridpoint model,
which in these simulations solved the nonlinear two-
dimensional Boussinesq equations with background ro-
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FIG. 7. Contour plots of linear and nonlinear s field after one period
of time: t 5 200p/N. Note the stretched vertical coordinate. The
broken lines show the control sides across which the upward–east-
ward pseudomomentum flux is calculated. This is case B of the cases
summarized below.

tation with a three-dimensional velocity field u 5
(u, y , w), that is,

2u 1 (u · =)u 1 f ẑ 3 u 1 =P 5 s ẑ 1 n¹ u (40)t

2 2s 1 (u · =)s 1 N w 5 n¹ s (41)t

= · u 5 0, (42)

where all fields are y independent; ẑ is the upward unit
vector; = 5 (]/]x, 0, ]/]z); and N, f, and n are constants.

The vertical scale of the initial conditions H and the
buoyancy frequency N were chosen as length and (in-
verse) timescales. The Reynolds number H 2N/n was
very large, of the order of 106, and hence the simulations
were nearly inviscid. The resolution was always 400 3
400 grid points, and the (x, z) domain size was always
(62.155, 6215.5)H. Outer boundary conditions were
chosen as radiation conditions. This was achieved by
applying a no-stress condition at the boundary, and by
smoothly increasing Rayleigh damping in all model
fields toward the outer boundaries of the computational
domain. The simulations showed no sign of spurious
back-reflection from the boundary.

b. Pseudomomentum diagnostics

Consider Fig. 7, which shows a snapshot at a given
time t of the nonlinear s field in a particular simulation
(case B in the summary below). Note that for compar-
ison the corresponding linear solution using 256 3 256
spectral modes is also shown, indicating the good qual-
itative agreement in this case.

Now, the pseudomomentum radiation upward–east-
ward that has occurred up to time t is denoted by Prad(t),
and it can be estimated as the sum of two parts as fol-
lows. The first part is the pseudomomentum content at
time t in the dashed–solid control rectangle located in

the first quadrant of Fig. 7. The second part is the time-
integrated (from the initial time up to time t) pseudo-
momentum flux across the two dashed control sides of
this rectangle.

Hence, given a suitably defined pseudomomentum
density per unit mass p and pseudomomentum flux vec-
tor F, the diagnostic Prad(t) is calculated as

t

P (t) [ p dx dz 1 F · n ds dt, (43)rad EE E E1 2
0

where the area integral is extended over the dashed–
solid control rectangle in Fig. 7, and the line integral,
in which n is the outward unit normal vector, is extended
over the two dashed sides, which form part of the
boundary of the control rectangle. This flux integration
is further symbolized by the two arrows in Fig. 7, which
highlight the fact that the flux integration leaves out the
solid edges of the control rectangle. Clearly, in cases
where linear theory is quantitative applicable, Prad(t) ø
P I(t), where P I(t) is defined by the two-dimensional
version of (26).

There is, however, a problem that requires some dis-
cussion. Suitable nonlinear definitions for the pseudo-
momentum density p and its flux F in terms of the
Eulerian flow variables s and u are readily available in
the nonrotating case f 5 0 (e.g., Scinocca and Shepherd
1992). Here it is understood that ‘‘suitably defined’’
implies not only that the pseudomomentum is con-
served, but also that the vertical pseudomomentum flux
is equal to the leading-order wave-induced flux of zonal
momentum in the usual way. However, it turns out that
such a suitable Eulerian definition of pseudomomentum
is not available in the rotating case f ± 0. This fact
seems to be related to the essential need, in the rotating
case, for additional Lagrangian particle displacement
information in the sideways (y) direction in order to
obtain a suitable pseudomomentum definition. This
point is currently investigated further by one of us (O.
Bühler, 1999, unpublished manuscript).

Here, a simple far-field approximation is used that
avoids introducing additional Lagrangian fields. Con-
sider the following set of equations, which are derived
by straightforward manipulations of the nonlinear Bous-
sinesq equations (40)–(42):

s
p [ (u 2 w ) (44)0 z x2N

2 21 s y sz2 2 2F 5 p u 1 1 u 2 w 2 y 2 (45)x 0 2 21 22 N N

2f y sxF 5 p w 1 uw 2 sy 1 (46)z 0 2 2N 2 N

2Q [ ( f ẑ 1 = 3 u) · (ẑ 1 =s /N ) 2 f (47)

f 1
5 y 1 s 1 (y s 2 y s ) (48)x z x z z x2 2N N
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TABLE 3. Parameters used in the nonlinear simulations. The velocity
mixing rates in cases C, D, and F are chosen such that the minimum
local Richardson number in the center of the mixed region is ¼. The
notional background Richardson number Ri 5 1. Only case E has
nonzero potential vorticity.

Case
Velocity
mixing a

Density
mixing b f /N

A
B
C
D
E
F

0.0
0.0
2.0
1.41
0.0
2.0

0.5
1.0
0.0
0.5
0.5
0.0

0
0
0
0
0.01
0.01

]p0 1 = · F 1 yQ 5 0, (49)
]t

Here p0 is the Eulerian pseudomomentum density of the
nonrotating case f 5 0 for uniform background fields
(cf. Scinocca and Shepherd 1992), and Q is the PV in
excess of the background PV divided by N 2, and hence
Qt 1 (u · =)Q 5 0.

Now, in all the numerical cases studied, p0 and the
underlined parts of F in (45) and (46) have been used
in (43) in order to calculate the diagnostic Prad(t). It is
straightforward to show that in the small-amplitude
WKB limit both p0 and the underlined parts of F reduce
to the standard WKB expressions kE/ and cgkE/ forv̂ v̂
pseudomomentum density and flux, where cg is the
group velocity. Importantly, this is true in both rotating
and nonrotating cases. Hence, provided that the dashed
control edges in Fig. 7 lie in the far field where the flow
has already dispersed into a small-amplitude slowly
varying wave train, the underlined terms can be used
as an approximation to F.

Near the origin, on the other hand, p0 is not strictly
conserved if yQ ± 0 [cf. (49)], and the use of p0 as the
pseudomomentum density is hence only approximate.
Still, the balanced part of p0 is clearly zero by inspection
(because both ub and wb are zero even in nonlinear bal-
ance); and hence the approximation becomes better with
increasing time t. This is because more and more waves
will by then have propagated away from the initial seat
of the disturbance, where Q might be nonzero. This is
corroborated by case E of the numerical simulations.

c. Run parameters and results

Six nonlinear runs have been performed. The same
initial conditions as in the linear theory were used, that
is, the initial fields were given by (31) with y 5 0, H/L
5 0.01, and with varying mixing and rotation parameter
settings that are collected in Table 3. The notional back-
ground Richardson number has been set to Ri 5 1 for
simplicity. However, as in the linear theory, no mean
shear has actually been present in the simulations.

The density mixing parameter b ranged between 0
and 1, and the velocity mixing parameter a was either

0 or chosen such that the minimum local Richardson
number in the center of the mixed region [which is given
there by (1 2 b)/a2] was equal to a quarter. This was
done in order to achieve maximal initial disturbance
amplitudes while avoiding unstable initial conditions.
Only cases E and F had nonzero background rotation,
and only case E has nonzero potential vorticity.

The results for Prad(t) are collected in Fig. 8. The
corresponding linear estimates from the previous section
are in all cases indicated by a broken line. In all cases
with zero Q, Prad(t) quickly converges to an asymptotic
value close to the linear estimate. On the other hand,
in case E the convergence is markedly slower and also
involves stronger oscillations. It has been checked that
these strong oscillations are due to slowly decaying cor-
relations between the balanced, steady part of s and the
wavelike, unsteady part of uz 2 wx. These correlations
impact on p0 as defined in (44), and hence on the first
part of (43). It has also been checked that these oscil-
lations occur equally when diagnosing a time-dependent
linear solution.

The agreement between the linear and nonlinear es-
timates for the emitted pseudomomentum has been re-
markably good, suggesting an error margin of perhaps
20%. This provides a good check on the use of linear
theory for the emission stage, if, as noted before, the
effect of mean shear can indeed be neglected.

5. Concluding remarks

A simple linear model for the emission of inertia–
gravity waves by shear-generated mixed layers of CAT
in the lower stratosphere has been formulated. The so-
lution to this mixed-layer linear initial-value problem
in two and three dimensions has been derived, with due
care over numerical details in order to achieve a robust
discretization of it in both the rotating and the nonro-
tating cases, the latter being the relevant case in equa-
torial regions.

The total pseudomomentum emission upward–east-
ward from a mixed layer has then been computed over
a range of parameters (as summarized in Table 2), and
these results have been been partially cross-checked by
independent nonlinear numerical simulations that
showed very good agreement with the linear theory. The
formulated model therefore appears to capture most of
the relevant features of the emission problem, with the
possible exception of strong nonlinear effects associated
with strong mean shear on the scale of the mixed region.
It is conceivable that nonlinear effects due to strong
shear might significantly disrupt the formation of the
inertia-gravity wave train, with unclear implications for
the resulting pseudomomentum fluxes. Hence, the im-
pact of strong shear on mixed-layer emission remains
a fruitful topic of further research, which will however
require techniques completely different from the ones
used here.

The companion paper (Part II) takes up the question
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FIG. 8. Nonlinear pseudomomentum diagnostics. The broken lines represent the linear estimates. Note the much larger vertical scale for
case E. Each period corresponds to a time unit of 200p/N. The diagnostic ‘‘P flux’’ corresponds to the second, flux-related part of Prad(t) in
its definition (43).
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of vertical propagation of the emitted wave spectrum to
the mesosphere.
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APPENDIX

Discretization Formulas for Modes with kh 5 0

As kh → 0 the appropriate limits for the balanced
fields in (8), the amplitude function F in (12), and the
wave fields in (14)–(17) must be extracted carefully. If
kh → 0 and m → 0 simultaneously, then F, as well as
the balanced and the wave fields, goes to 0 because all
initial fields are assumed to have zero mean value.
Therefore, only the limit kh → 0 and m ± 0 needs to
be considered. It turns out that rotating and nonrotating
cases must be considered separately, and that the ro-
tating case is easier to deal with than the nonrotating
case.

In the rotating case (i.e., f ± 0) the balanced fields
in (8) tend to

{ûb, , ŵb, } → {0, 0, 0, }b bŷ ŝ ŝ0 (A1)

as kh → 0 and m ± 0. The amplitude function F in (12)
tends to [using = · u 5 0 and (11)]

k l l k
w wF → sgn(m) û 2 i 1 ŷ 1 i , (A2)0 01 2 1 2[ ]k k k kh h h h

where sgn(m) [ 61 if m . 0 or m , 0, respectively.
This shows that the limit of F as kh → 0 is path-de-
pendent; that is, it depends on the limiting values of
k/kh and l/kh, and therefore F is discontinuous at this
limit. However, |F| as well as all the combinations ap-
pearing as integrands in (14)–(17), are in fact indepen-
dent of the limiting values of k/kh and l/kh. Hence, any
choice of limiting values will lead to the same spectral
wave energy density |F| 2 and wave fields. For definite-
ness, the convention

(k/kh, l/kh) → (1, 0) ⇒ F → sgn(m)( 1 ) (A3)w wû iŷ0 0

is adopted for the numerical discretization.
In the nonrotating case (i.e., f 5 0) the balanced fields

tend to

2 2l kl k kl
b b b b{û , ŷ , ŵ , ŝ } → û 2 ŷ , ŷ 2 û , 0, 0 ,0 0 0 02 2 2 25 6k k k kh h h h

(A4)

that is, ûb and are discontinuous in this limit andbŷ

→ 0, which can be compared with the completelybŝ
different limits in the rotating case. The function F tends
to

wk l ŝ0w wF → sgn(m) û 1 ŷ 2 i . (A5)0 01 2k k Nh h

Now both F and |F| are discontinuous in this limit.
Using (A5) it can be checked that the sum of the bal-
anced fields in (A4) and the wave fields in (14)–(17) is
continuous in this limit. This means that snapshots of
the balanced plus wave fields will not be affected by
the choice of limiting value for k/kh and l/kh. The same
convention as in (A3) is adopted, and hence

b b b b{û , ŷ , ŵ , ŝ } → {0, ŷ , 0, 0} and (A6)0

w wF → sgn(m)(û 2 iŝ ) (A7)0 0

are obtained.
The genuine discontinuity as kh → 0 of the spectral

wave energy density |F| 2, while not affecting the va-
lidity of the analytic solution, remains an obstacle for
calculating accurately. In the numerical discretizationIP*
|F| 2 has to be evaluated (and integrated) pointwise in
spectral space; and hence the suitability of the conven-
tion (A7) must be checked. In the two-dimensional non-
rotating case the discontinuity of |F| affects the pseu-
domomentum estimate significantly because |F|IP*
reaches its maximum for fixed m at k 5 0, as was il-
lustrated in Figs. 5 and 6. The limiting value of F at k
5 0 in (A7) is then consistent with the limit k → 01,
that is, with k 5 0 being approached through positive
values of k. Hence, the convention (A7) allows the de-
sired pseudomomentum estimate for eastward-moving
waves, which have k . 0, to integrate correctly. In the
three-dimensional nonrotating case the discontinuity of
|F| turns out not to affect significantly. This is be-IP*
cause the locus of the discontinuity is now only a line
in three-dimensional spectral space, as opposed to a line
in two-dimensional spectral space in the two-dimen-
sional case. Upon integration the relative importance of
the values of F on that line compared to the importance
of the values of F throughout the spectral domain is
very small. The convention (A7) therefore provides a
simple limit that is accurate in both two-dimensional
and three-dimensional cases.
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