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We present a theoretical and numerical investigation of longshore currents driven by
breaking waves on beaches, especially barred beaches. The novel feature considered
here is that the wave envelope is allowed to vary in the alongshore direction, which
leads to the generation of strong dipolar vortex structures where the waves are
breaking. The nonlinear evolution of these vortex structures is studied in detail
using a simple analytical theory to model the effect of a sloping beach. One of our
findings is that the vortex evolution provides a robust mechanism through which the
preferred location of the longshore current can move shorewards from the location
of wave breaking. Such current dislocation is an often-observed (but ill-understood)
phenomenon on real barred beaches.

To underpin our results, we present a comprehensive theoretical description of the
relevant wave–mean interaction theory in the context of a shallow-water model for the
beach. Therein we link the radiation-stress theory of Longuet-Higgins & Stewart to
recently established results concerning the mean vorticity generation due to breaking
waves. This leads to detailed results for the entire life-cycle of the mean-flow vortex
evolution, from its initial generation by wave breaking until its eventual dissipative
decay due to bottom friction.

In order to test and illustrate our theory we also present idealized nonlinear numeri-
cal simulations of both waves and vortices using the full shallow-water equations with
bottom topography. In these simulations wave breaking occurs through shock forma-
tion of the shallow-water waves. We note that because the shallow-water equations
also describe the two-dimensional flow of a homentropic perfect gas, our theoretical
and numerical results can also be applied to nonlinear acoustics and sound–vortex
interactions.

1. Introduction
It is well known that the breaking of obliquely incident ocean waves on a beach

can generate a current running in the alongshore direction. These longshore currents
are a familiar feature of coastal oceanography, and they are recognized to play a rôle,
for instance, in sediment transport and beach erosion. A quantitative theory of this
phenomenon was first given in Longuet-Higgins (1970a, b) (hereafter referred to as
LH70a, b) based on the radiation-stress theory for ocean waves developed earlier in a
sequence of papers by Longuet-Higgins & Stewart (1960, 1961, 1962, 1963, 1964). In
this theory a steady and homogeneous wavetrain is considered, where homogeneous
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Figure 1. (a) Phase lines of a homogeneous wavetrain incident on a straight shoreline at x = 0
(cf. LH70a, b), with alongshore coordinate y. The refraction of the waves due to decreasing hS is
indicated, as is the approximate width of the surf zone. (b) The inhomogeneous wavetrain considered
in the present paper. The wave breaking in the surf zone generates a vortex dipole with oppositely
signed circulations ±Γ .

means that the wavetrain does not vary in the alongshore direction (see figure 1a).
The refraction of the waves by the varying still water depth hS is approximated
by ray tracing and the wave breaking in the surf zone is modelled by imposing a
suitable saturation amplitude on the waves. The wave breaking leads to a convergence
of wave-induced momentum flux and to an effective mean force whose alongshore
component drives the current. A smooth profile for the longshore current can then be
calculated under the assumption that the momentum-flux convergence due to wave
breaking is balanced by bottom friction and by suitably modelled turbulent horizontal
mixing. Predictions based on this theory have provided good explanations of field
and laboratory data in the case of planar beaches, in which the still water depth hS
is a monotonically increasing function of distance from the shoreline.

However, there have been persistent and significant discrepancies between theory
and observations in the case of barred beaches, in which there is an interior minimum
of water depth hS on a bar crest at some distance from the shoreline (cf. location A
in figure 2). The theory then predicts two current maxima, which are correlated with
the locations of strongest wave breaking. One maximum occurs near the top of the
bar crest (A) and the other occurs near the shoreline (C), where hS goes to zero. In
contrast, barred beach observations often show a single current maximum situated in
the trough (B) between the bar crest and the shoreline (e.g. Church & Thornton 1993).
This means that the current has been dislocated away from the regions of strongest
wave breaking, in contrast with the predictions of the theory in LH70a, b. Small
changes to the theory (such as considering a statistical ensemble of incoming waves,
different wave breaking criteria, different models for bottom friction and turbulence,
or the ad-hoc introduction of delayed momentum flux convergences due to so-called
wave ‘rollers’) have had little impact on resolving this basic discrepancy.

Interestingly, laboratory experiments reported in Reniers & Battjes (1997) broadly
confirmed the predictions of the theory for both barred and non-barred beaches, but
in these experiments only homogeneous wavetrains were considered. It seems com-
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Figure 2. Schematic cross-section (with exaggerated vertical scale) of a barred beach showing the
fluid layer depth h and the bottom elevation hB , which add to give the fluid surface height h+ hB .
Also shown is the still water depth hS such that hS + hB = const. The surface disturbance is then
∆h = h − hS . In the present paper hB (and hence hS ) depend only on the offshore coordinate x.
Location A denotes the bar crest, B the bar trough, and C the approach to the shoreline. As
indicated, the incoming waves steepen and break pre-dominantly over the bar crest.

pelling to hypothesize that the discrepancies should therefore somehow be related to
inhomogeneity in the alongshore direction, which is certainly a feature of real surf
zones. Such inhomogeneity can arise through alongshore dependence of either hS or
of the waves themselves. Inhomogeneous hS would necessarily also generate inho-
mogeneity of the waves. For simplicity we will henceforth consider inhomogeneous
wavetrains whilst restricting the still water depth to functions hS (x).

Now, the mean-flow dynamics in the case of an inhomogeneous wavetrain differs
markedly from that in the homogeneous case considered in LH70a, b. Specifically,
breaking waves can now generate strong mean-flow vorticity situated at the flanks of
the wavetrain (e.g. Peregrine 1998, 1999; Bühler 2000, hereafter referred to as B2000).
This is illustrated in figure 1(b). This dipolar vorticity structure can be idealized as a
vortex couple and in § 2 we present a study of the nonlinear dynamics of such vortex
couples on a sloping beach. In a nutshell, considering the mean-flow vortex dynamics
makes it evident that the location of the strongest wave breaking need not coincide
with the eventual location of the strongest current. This current dislocation effect
occurs even on a planar beach, albeit weakly. However, the effect becomes significant
on barred beaches. Indeed, the compelling result of these considerations will be that
a bar trough becomes the preferred location for the longshore current on a barred
beach.

As far as we are aware, the radiation-stress theory of LH70a, b has not been
adapted previously for the case of an inhomogeneous wavetrain. This may be due
to two difficulties that arise in this connection. First, in the inhomogeneous case
the radiation-stress convergence contains dissipative terms due to wave breaking as
well as non-dissipative terms due to mean pressure changes. This makes it harder
to identify the dissipative terms, which alone can create mean-flow vorticity because
of Kelvin’s circulation theorem. We use the recently established results in B2000
(which builds on Andrews & McIntyre 1978 and other related work in atmospheric
wave–mean interaction theory) to identify clearly an effective dissipative force within
the radiation-stress convergence. This force appears in the pseudomomentum budget
of the waves and its curl produces the mean-flow vorticity, which provides the
quantitative link between wave dissipation and mean-flow vorticity generation.

The second problem is that a wave-driven longshore current saturates at an am-
plitude of the same order as the wave amplitude. This means that the nonlinear
mean-flow dynamics occurs over an advective time scale that is inversely proportional
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to the wave amplitude. A wave–mean interaction theory that is valid over such long,
amplitude-dependent time scales requires careful scaling of the equations. In § 3 we
will present a comprehensive wave–mean interaction theory aimed to be applicable
both in the early stage of evolution (in which the vortices build up and bottom friction
is negligible) and in the later stage (in which they advect nonlinearly and are affected
by bottom friction). This will be achieved by explicit re-scaling of the equations at an
appropriate transition time between the two stages.

In § 4 we present idealized nonlinear numerical simulations of the entire wave–vortex
dynamics using the shallow-water equations with bottom topography and bottom
friction. In these equations wave breaking occurs through shock formation, and the
advantage is that this requires no adjustable diffusion parameters. The simulations
broadly confirm our theoretical predictions, in particular they demonstrate the marked
current dislocation effect in the case of inhomogeneous wavetrains incident on barred
beaches. They also allow us to see the detailed effect of nonlinear bottom friction,
which is hard to understand theoretically.

Concluding remarks are given in § 5. In particular, we briefly discuss there the major
assumption that has to be made throughout in this paper, namely that a picture based
essentially on a single wavetrain (or on several well separated wavetrains) can give
useful results for real surf zones. This is important, because real breaking waves
are usually not well separated in the alongshore direction. Despite its marginal
validity, this assumption has been made here because it allows us to make substantial
analytical progress and to bring out the fluid-dynamical mechanisms most clearly, and
at affordable numerical cost. Going beyond this assumption is a possible direction
for further research.

2. Vortex dynamics on sloping beaches
We present a simple theory for the motion of two-dimensional vortices on a sloping

beach. For clarity, the frictionless motion of a single vortex couple is considered first,
followed by an account of how nonlinear bottom friction and the presence of other
vortex couples might affect the dynamics. Gravity waves are absent here; their rôle
will be examined in § 3.

2.1. Single vortex couple

Consider the dipolar vorticity structure in figure 1(b). We can imagine this structure
to have been generated by the breaking of a single, transient packet of gravity waves
somewhere in the surf zone. This allows us to ignore the gravity waves as far as
their impact on the subsequent vortex dynamics is concerned. We idealize the dipolar
structure as a vortex couple consisting of two circular vortices with oppositely signed
circulations. (For simplicity, we suppress here the small inclination of the vortex
couple that is due to the oblique incidence of the original wave packet.) The vortex
dynamics itself is a shallow low-Froude-number flow, i.e. the typical flow speed is
small compared to the gravity-wave speed. A reasonable first approximation for the
vortex dynamics is then to neglect surface undulations altogether by demanding that
the layer depth h = hS everywhere (cf. figure 2). This leads to the shallow-water
equations with a rigid upper lid (also called the zero-Froude-number limit of the
shallow-water equations). These are the continuity equation

∇ · (hSu) = 0, (2.1)
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Figure 3. (a) Idealized vortex couple generated by localized wave breaking in the surf zone. The
vortices have equal radius b, equal and opposite circulations Γ , and are separated by a distance
d. The radius b is assumed small compared to d, to the distance from the shoreline, and to the
gradient length scale of the topography 1/|∇hS |. Also shown in dashed outline are the approximate
image vortices obtained by reflecting the vortices at the shoreline. (b) Cross-section through one
vortex just shorewards of a bar crest. This shows the vortex tube curvature induced by the sloping
topography. Also shown is the virtual extension of the vortex tube to a three-dimensional vortex
ring with radius R. See text for details.

and the horizontal momentum equation

Du

Dt
+

1

ρ
∇p = 0. (2.2)

Here hS is the given (and constant in time) still water depth, u = (u, v) is the two-
dimensional velocity in the (x, y) directions, ρ is the uniform water density, and p
is the pressure at the upper surface, i.e. at the rigid lid. Note that in the case of
uniform hS these equations reduce to the usual two-dimensional incompressible fluid
equations. The velocity boundary conditions are decay to zero as x2 + y2 → ∞ and
u = 0 at the shoreline x = 0.

The flow described by these equations satisfies Kelvin’s circulation theorem and
this in turn implies the material conservation of potential vorticity (PV) in the form

q ≡ ∇× u
hS

,
Dq

Dt
= 0, (2.3)

where ∇× u is treated as a pseudoscalar. This highlights that the vorticity following a
material fluid column changes due to the stretching or squeezing of the column as it
travels over the sloping topography (e.g. Peregrine 1998). In particular, the vorticity
strength increases if the column moves into deeper water, and vice versa. By mass
conservation, the volume of the column remains constant and this implies that its
(x, y) cross-sectional area is proportional to 1/hS . Stokes’s theorem then ensures that
the circulation Γ around the column remains constant, as it has to be.

The motion of the vortex couple is due to two distinct effects: the mutual advection
of the vortices (taking due account of the boundary condition at the shoreline), and the
self-advection due to sloping topography. In principle, the motion can be calculated
exactly by solving a complicated PV-inversion problem in which the velocity field u
is calculated from the PV field q under the constraint (2.1) (cf. Richardson 2000).
However, in order to gain a robust qualitative understanding of the vortex dynamics,
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we will proceed here by modelling the motion with a few simple approximations, as
follows.

Consider figure 3(a). Due to the conserved circulation Γ even in the presence
of sloping topography, the azimuthal velocity around a vortex must still decay as
Γ/(2πr) in the far field (where r is the distance from the vortex), although this
velocity will in general depend also on the azimuthal angle. Still, this suggests that
the mutual advection should be approximately the same as that which occurs in
standard point-vortex dynamics, at least if the two vortices are located roughly in the
same topography region. This means that there is an approximate advection of the
couple towards the shoreline with velocity Γ/(2πd). At the same time, the no-normal-
flow condition at the shoreline can be accounted for by introducing an appropriate
image vortex couple. As is well-known, the resultant flow is an approach to the
shoreline by the couple, followed by a separation of the vortices in the alongshore
directions, the vortex with Γ > 0 moving towards increasing y, and vice versa (e.g.
Lamb 1932, § 155.3).

To this motion must be added the self-advection of the vortices due to the sloping
topography, which induces a curvature of the three-dimensional vortex lines as shown
in figure 3(b). A heuristic approximation of this effect is well-known in coastal
oceanography (e.g. Peregrine 1998; Thorpe & Centurioni 2000). In it the self-advection
of the vortex is approximated by the self-advection of a three-dimensional vortex ring
that results from extending the tube into a three-dimensional virtual vortex ring with
radius R. This approximation is based on the similarity between (2.1), which can be
solved by introducing a stream function for the mass flow, and the three-dimensional
continuity equation for axisymmetric flow, which can be solved by using Stokes’s
stream function (e.g. Lamb 1932, § 94). If one can assume that locally hS ∝ R, with
R measured from a suitable origin, then this similarity gives a simple approximation
for the flow induced by the local topography slope. The radius R is

R = hS/|∇hS |, (2.4)

which is the distance over which the water depth would be reduced to zero if it had
uniform slope equal to the local slope. Note that on a planar beach R is the distance
to the shoreline, in which special case the vortex ring approximation yields exact
results (e.g. Thorpe & Centurioni 2000).

Now, the speed of propagation of thin, circular vortex rings with core radius b and
ring radius R is (cf. Lamb 1932, § 163)

vortex speed =
Γ

4πR

(
ln

(
8R

b

)
− 1

4

)
, (2.5)

which is valid for b � R. This is therefore the approximate self-advection speed of
the vortices on a sloping beach. The direction of propagation is along isolines of
hS , with a sense of direction such that a vortex with Γ > 0 in figure 3(b) would
propagate out of the picture. As is clear from (2.5), the self-advection speed increases
with decreasing vortex radius b, although this dependence is logarithmic and hence
quite weak. Due to mass conservation of the vortex we have b2hS =const., or

b = b0(hS 0/hS )1/2 (2.6)

if one introduces the ‘potential radius’ b0 that the vortex would have if it were in
water of some reference depth hS 0. Putting (2.4)–(2.6) together then gives the following
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expression for the self-advection velocity U :

U =
Γ

4π

(∇hS
hS
× ẑ
) (

ln

(
8

b0hS
1/2
0

hS
3/2

|∇hS |
)
− 1

4

)
, (2.7)

where ẑ is the unit vector normal to the (x, y)-plane. It is attractive to see explicitly
the dependence of the logarithmic term on hS , but one should keep in mind that
changes in U as the vortex travels are likely to be dominated by changes in the term
∇hS/hS in the cross-product.

What can now be inferred about the qualitative motion of the vortex couple? The
sign of U depends on the sign of Γ and hence, as can be readily verified from (2.7),
the effect of the self-advection is to reduce the vortex separation d if the couple moves
into deeper water, whilst it increases d if the couple moves into shallower water. This
in turn implies that the mutual advection (which is proportional to 1/d) intensifies if
the couple moves into deeper water, and vice versa in the other case. The approaching
shoreline adds a tendency of increasing separation d due to the image couple. These
conclusions can be drawn quite generally, and it is not difficult to add quantitative
detail for a specific profile hS (x).

The net result is that in the case of a planar beach the vortices will be separated
quickly due to a constructive superposition of the separating tendencies due to self-
advection and to the approaching shoreline. One can hence hypothesize that the
vortex couple will not make much headway up a planar beach before the vortices
effectively are completely separated. This is in good qualitative agreement with the
numerical vortex couple simulations presented in Richardson (2000). In contrast, in
the case of a barred beach the couple first moves into the deeper water of the bar
trough, which brings the vortices closer together due to the self-advection (at least
if the shoreline is sufficiently far away). This means that the couple speeds up, and
makes good progress until it has to climb the other side of the trough. Then the same
process as on the planar beach sets in, leading to rapid separation of the vortices in
the alongshore direction. This leads to the hypothesis that vortices will easily move
into the bar trough, but will not make much headway climbing out of it again. The
overall prediction is therefore that vortex couples produced by breaking waves on the
bar crest will in all likelihood later be found in or close to the bar trough.

In this way the region of fast-moving fluid between the vortices is moved away from
the breaking region and into the bar trough. If one now allows an inclined vortex
couple to represent the breaking of oblique waves, one can begin to see a picture
of the longshore current as being composed of these fast-moving regions between
vortices. The average current location can then be identified with the likely long-time
location of the vortices, which hence explains why the longshore current can be found
in the bar trough even though the wave breaking may be concentrated on the bar
crest. The vortex dynamics described here hence offers a possible explanation of the
current dislocation observed on barred beaches.

As an aside, note that on a planar beach these considerations imply that in a
seaward-moving couple, i.e. a couple moving away from the shoreline, the vortices
will move closer together due to the self-advection. Hence, the couple will speed up
due to the intensified mutual advection. The region of fast-moving fluid between the
vortices will also get narrower and quicker, which is a vivid manifestation of the
well-known ‘rip currents’, which can carry a swimmer hundreds of metres offshore.
Peregrine (1998, § 3.2), however, argues that a seaward-moving couple should slow
down rather than speed up. Presumably, such slowing-down behaviour would have to
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be caused by frictional or three-dimensional effects that are neglected here. Eventually,
deep-water three-dimensional instabilities must set in, which presumably will destroy
most of the coherent vortex couple and hence stop the rip current.

2.2. Bottom friction

The fluid experiences a viscous boundary layer drag at the bottom, which is usually
modelled by a turbulent friction term in the momentum equation (e.g. LH70a, b). The
momentum equation (2.2) then becomes

Du

Dt
+

1

ρ
∇p = − cf

hS
|u|u, (2.8)

where the empirically determined non-dimensional friction coefficient cf ≈ 0.01. The
friction term allows momentum to be transferred from the fluid into the ground, and
its form ensures that kinetic energy is always diminished. The fact that the friction
term is quadratic in the velocity means that it scales with flow speed in the same way
as the term (u · ∇)u in the material derivative. This means that the relative importance
of the friction term for the advective vortex dynamics is governed purely by cf/hS .
For instance, the ratio of advective to frictional time scales is the same for vortices of
the same geometry but different amplitude. This means that strong and weak vortices
travel the same distance before their energy has been dissipated, the only difference
being that the stronger vortex will reach this distance more quickly. (Another way to
see this is to note that (2.8) and (2.1) are symmetric under the transformation u→ αu,
p→ α2p, and t→ α−1t for α > 0. See § 3.5 for further discussion of this symmetry.) We
note that, as the friction strength is inversely proportional to hS , it seems that a bar
trough is a location of comparatively weak bottom friction, though the implications
of this for vortical structures are not clear.

It would certainly be convenient if one could assume that for cf � 1 the friction
simply attenuates the vortex couple dynamics over a time scale long compared to a
vortex turnover time. However, this does not seem to be the case, as can be seen, for
instance, from the PV equation

Dq

Dt
= − cf

hS
∇×

( |u|u
hS

)
. (2.9)

In general, the right-hand side will not be zero for irrotational flow even if hS is
uniform. For instance, the azimuthal velocity field v(r, t) and PV q(r, t) of a single
axisymmetric vortex on flat terrain (at a fixed radius from the vortex centre r > 0)
would decay as

v(r, t) =
v(r, 0)

1 + (t v(r, 0)cf/hS )
≈ hS

tcf
, q ≈ hS

r tcf
as t→∞. (2.10)

Clearly, q does not exhibit any simple behaviour, i.e. it becomes non-zero in regions
of initially potential flow, and it becomes non-uniform in regions that were initially in
solid-body rotation. This means that one cannot rigorously speak of isolated vortices
any more once frictional effects have become noticeable. Therefore, one has to antici-
pate the possibility that the simplistic picture of the flow dynamics in terms of the
motion of a single vortex couple breaks down on a frictional time scale. The study of
such flows can still be pursued numerically (as in § 4), but to our knowledge a theoret-
ical description of this regime has not been given and remains open for future research.

Therefore, it seems prudent here to hypothesize no further than to remark simply
that the energy dissipation due to bottom friction must eventually diminish the
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capacity for coherent propagation of the vortex couple, and that the concomitant loss
of coherence of the couple also hinders its further propagation. Coherent propagation
over a finite distance is still possible provided that the advective time scale is shorter
than the friction time scale, i.e. provided that the friction coefficient cf is small enough.

As an aside, we note that in the less relevant case of linear bottom friction (i.e.
Rayleigh damping) the vortices would remain coherent whilst decaying exponentially
(for uniform hS ). In that case stronger vortices would also travel larger distances than
weaker vortices before succumbing to dissipative decay; the travel distance would be
proportional to the vortex amplitude.

2.3. Motion of several vortex couples

The above results for a single couple can be used to arrive at some useful conclusions
for the motion of several vortex couples that are forced, say, by an array of wavetrains
staggered in the y-direction. Each wavetrain forces a couple that behaves roughly
as described above, at least if the wavetrains are well separated. As stated before
(leaving aside frictional effects), the vortices in a couple will eventually separate in
the alongshore direction, with the Γ > 0 vortex moving towards increasing y and vice
versa. What happens next depends on the strength of the bottom friction: if cf is small
enough, then the Γ > 0 vortex might meet the Γ < 0 vortex produced by the adjacent
wavetrain, which travels in the opposite direction. These vortices can now form a new
couple moving seawards. On a planar beach this new couple would be recognized as
a rip current. On a barred beach the couple might separate again when it tries to
climb the bar crest in a seaward direction. Then one could imagine a further sequence
of encounters with oppositely signed vortices emanating from adjacent wavetrains,
leading to a complicated meandering motion of the vortices across the bar trough,
with eventual decay due to bottom friction. It might be possible that this decay is
least pronounced in the bar trough (because of the factor 1/hS in (2.8)), which adds
another attractive feature to this location.

These scenarios neglect the loss of coherence due to nonlinear bottom friction
and due to the stripping apart of vortex filaments that must come into play once
sufficiently many vortices are present to make the ideas of two-dimensional turbulence
theory applicable. Nevertheless, it is interesting to note that in the envisaged dynamics
the bar trough appears to be capable of trapping the vortices and thereby of attracting
the longshore current into this preferred location.

3. Wave–mean interaction theory
The wave–mean interaction theory for the surf zone is formulated here in a shallow-

water model. The theory is based on an asymptotic expansion in wave amplitude,
which hence has to be small. No detailed wave shape is assumed, but specific results
based on ray tracing for sinusoidal waves are noted. By combining the radiation-stress
theory of LH70a with the results from B2000, a theory valid for an inhomogeneous
wavetrain is formulated. Careful scaling has to be undertaken in order to capture
both the early stage of mean-flow vorticity growth, and the later stage of mean-flow
vortex advection and vortex decay due to bottom friction. This also yields explicit
scaling laws for the mean-flow response.

3.1. Shallow-water model

We use a free-surface shallow-water model with variable bottom topography as
the simplest possible model for the surf zone. The main advantages are that both
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waves and vortices can be described by the same mathematical model, and that
their interaction theory can be developed fully and explicitly and without restriction,
say, to irrotational flow. The main disadvantage is that shallow-water waves poorly
approximate deep ocean waves, e.g. the non-dispersive shallow-water waves form
shocks even over flat topography, which is not the case for deep ocean waves.

The governing equations are the continuity equation

∂h

∂t
+ ∇ · (hu) = 0 (3.1)

for the layer depth h(x, y, t) and the momentum equation

Du

Dt
+ g∇(h+ hB) = F − cf

h
|u|u (3.2)

for the velocity u(x, y, t) = (u, v). Here g is gravity, hB is the bottom elevation (cf.
figure 2), F is an unspecified dissipative body force, and the final term represents
the nonlinear bottom friction, as before. We assume that the dissipative force F is
scale-selective in a way that makes it negligible in smooth parts of the flow whilst
becoming significant when the waves are steepening. In essence, F is a simplistic
representation of the dissipation due to shock formation of the shallow-water waves
(cf. B2000).†

The full PV is now

q =
∇× u
h

, such that
Dq

Dt
=
∇× F
h
− cf

h
∇×

( |u|u
h

)
. (3.3)

We assume that all flow fields φ can be split into a mean part φ̄ and a disturbance
part φ′ such that φ = φ̄ + φ′. The mean part is defined by phase averaging, i.e.
by a spatial average of the flow field over a typical wavelength of the waves. (A
temporal average over a wave period would give the same results here.) We assume
throughout that φ′ = 0 holds with negligible error, which is certainly justified in the
numerical simulations presented in § 4. We also assume that all mean variables (e.g.
the wavetrain envelope, bottom topography, longshore current velocities) are slowly
varying in the horizontal, i.e. that the typical length scale of a mean field is large
compared to a typical wavelength of the incoming waves. Formally, if the gradients
of disturbance fields are O(1), then the gradients of mean fields are O(µ), where µ� 1
is a suitable small parameter measuring the scale separation.

We are looking for the mean-flow response to slowly varying small-amplitude
gravity waves propagating on a background state of rest. Formally, we introduce a
non-dimensional wave amplitude a � 1 such that the background state is O(1), the
waves are O(a), and the mean-flow response is O(a2). We will treat this problem first
by a regular perturbation expansion in a, which is valid up to times t = O(1). (As an
aside (cf. B2000), we note that an expansion valid for t = O(1) cannot describe the
self-induced shock formation of small-amplitude gravity waves, which occurs over a
time scale t = O(a−1).) This expansion allows us to derive detailed results for the
early stages of the mean-flow evolution with minimal technical effort. The later stage

† In the analogy with two-dimensional flow of a homentropic perfect gas with ratio of specific
heats equal to 2, the gas density would correspond to h, and hB would correspond to an external
field potential that leads to an inhomogeneous background density hS such that hS + hB = const.
Small-amplitude wave dissipation in gas dynamics upsets homentropy only by a small amount of
third order in wave amplitude, and hence we note that our asymptotic results are applicable to
nonlinear acoustics and sound–vortex interactions.
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of the mean-flow evolution at times up to t = O(a−1) is described separately in § 3.5,
where the saturation of the mean-flow amplitude at O(a) is discussed.

3.2. Linear waves

We now turn to the perturbation expansion in wave amplitude a. The O(1) background
state has zero velocity and a flat surface. This means that the background layer depth
is equal to hS (x) = hS 0 − hB(x), where hS 0 is a constant reference depth at a suitable
seaward location where hB = 0. The local wave speed is then

c(x) =
√
ghS (x). (3.4)

A suitable definition for the non-dimensional wave amplitude is a = max(h′/hS ),
where the maximum is taken over a wavelength. For plane monochromatic waves
this is equivalent to a = max(|u′|/c). To find the governing equations for the linear
gravity waves we set u = u′ +O(a2) and h = hS + h′ +O(a2) and collect terms at O(a)
in (3.1)–(3.2). This gives

∂h′

∂t
+ ∇ · (hSu′) = 0, (3.5)

∂u′

∂t
+ g∇h′ = F ′. (3.6)

Note that bottom friction does not enter at O(a). Indeed, it will turn out that the
bottom friction can also be neglected at O(a2) in the early stage of the evolution, i.e.
friction only becomes important at the later stage described in § 3.5. The equations
(3.5)–(3.6) with F ′ = 0 admit the usual irrotational non-dispersive gravity waves
subject to refraction caused by the slowly varying layer depth hS (x). For F ′ 6= 0 these
waves are damped and there can also be a vorticity part due to

∂(∇× u′)
∂t

= ∇× F ′. (3.7)

The theory developed here does not depend on ∇ × u′ = 0, even though ∇ × F ′ is
often negligible at O(a).

It is convenient to introduce linear particle displacements ξ′ = (ξ′, η′) by

∂ξ′

∂t
= u′, such that h′ + ∇ · (hSξ′) = 0 (3.8)

can be obtained by integrating (3.5) in time. We now calculate several O(a2) wave
properties, which are averaged squares of the O(a) solutions and hence depend only
on the linearized equations. These wave properties will enter the equations for the
mean-flow response. The wave energy per unit mass† is defined as

E =
1

2

(
u′2 + v′2 + g

h′2

hS

)
(3.9)

and using (3.5)–(3.6) it can easily be shown to satisfy

∂E

∂t
+

1

hS
∇ · (ghS h′u′) = u′ · F ′, (3.10)

which shows that the area integral of hSE is conserved in the absence of F ′, as is

† We use energy per unit mass partly to aid the analogy with nonlinear acoustics. Water wave
studies often use the energy per unit area, which is hSE here.
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to be expected for waves on a background state of rest. It can be seen that, strictly
speaking, the dissipative force should satisfy F ′ 6 O(µa) in order to be consistent
with the assumption of a slowly varying wavetrain envelope.

Another useful wave property is the so-called Stokes drift ūS , which is defined as
the difference between the Lagrangian (i.e. particle-following) mean velocity ūL and
the Eulerian mean velocity ū. Its general functional expression is complicated but to
O(a2) it is given by (cf. Andrews & McIntyre 1978)

ūS = (ξ′ · ∇)u′ =
1

hS
(hSξ

′ · ∇)u′ = − 1

hS
∇ · (hSξ′)u′ + O(µa2) ≈ +

1

hS
h′u′, (3.11)

after using (3.8) and neglecting the envelope term O(µa2). Analogous expressions hold
for all Stokes corrections φ̄S = φ̄L − φ̄.

Of particular importance is the so-called pseudomomentum per unit mass p,
which occurs naturally in wave–mean interaction theory, especially when considering
averaged versions of the circulation theorem, or of the PV definition in (3.3) (cf.
B2000). Its components are given to O(a2) by

pi = −ξ′j,iu′j = +ξ′ju′j,i + O(µa2) ≈ ξ′ju′i,j + ξ′j(u′j,i − u′i,j), (3.12)

p = ūS + ξ′ × ẑ(∇× u′) =
1

hS
h′u′ + ξ′ × ẑ(∇× u′), (3.13)

where commas denote differentiation and the summation convention has been used.
The evolution equation for p is obtained by multiplying (3.6) with h′/hS , averaging,
and some further manipulations, which are detailed in an Appendix. The result is

∂pi
∂t

+
1

hS

∂

∂xj

(
hS u

′
iu
′
j + δij

hS

2

[
g
h′2

hS
− |u′|2

])
+
|u′|2
2hS

∂hS

∂xi
= −ξ′j,iF ′j ≡ Fi, (3.14)

where the dissipative force F captures the dissipative decay of p. It will turn out
that F is central to the mean-flow vorticity forcing. (To get a feel for the way F
affects the waves one can consider the generic case F = −τ−1p for some dissipative
time scale τ.) We note that if hS depends only on x, then in the absence of dissipation
the y-component of the area integral of hSp is conserved. However, the x-component
of pseudomomentum is not conserved. Specifically, x-pseudomomentum is generated
wherever the slope of hS is negative and vice versa. For instance, the total x-
pseudomomentum contained in a wavepacket climbing a planar beach is increased
(cf. B2000).

For completeness we briefly summarize now some useful expressions for the linear
waves based on ray tracing for a slowly varying wavetrain containing sinusoidal
waves. The attraction of ray theory is that it gives physically plausible results with
very little effort, for instance the ray-tracing expressions will be valid for general
hS (x, y). At the very least, these results can then be used as guide for understanding
the real phenomena.

For simplicity, we consider a steady wavetrain with uniform frequency. Locally,
the gradient of the wave phase is given by a slowly varying wavenumber vector field
k = (k, l) that satisfies the integrability condition ∇ × k = 0. The time derivative of
the phase is given by minus the frequency ω subject to the dispersion relation ω = cκ,
where the depth-dependent wave speed c =

√
ghS and κ = |k|. The O(1) background

state is steady, and due to the assumption of uniform frequency we have

ω = ω0 =
√
ghS 0κ0 everywhere, which implies hSκ

2 = hS 0κ
2
0 (3.15)
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using the reference depth hS 0 at a suitable seaward location. This implies that κ > κ0

as the water depth decreases. As is readily verified from the linear plane wave
solutions, the local wave structure has u′ parallel to k, group velocity cg = ck/κ, and
satisfies energy equipartition such that

E = |u′|2 = gh′2/hS = ghS a
2/2, (3.16)

where a is the non-dimensional wave amplitude. The Stokes drift and pseudomomen-
tum are both given by

ūS = p =
k

ω
E. (3.17)

Note that in the presence of an O(1) background flow the intrinsic frequency would
appear in (3.17). We see that p is independent of the wavelength of the non-dispersive
waves considered here, for which ω ∝ κ.

The rate of change per unit time of k along a group-velocity ray is given by

∂k

∂t
+ (cg · ∇)k = −κ∇c,

which yields

1

κ2
(k · ∇)k = − 1

2hS
∇hS . (3.18)

Clearly, if hS is independent of y then l = const. along rays.

Combining (3.10), (3.14) and (3.17), we see that in factF = kω−1 u′ · F ′, which can
also be seen directly from kiω

−1u′j = ξ′j,i. Therefore, multiplying (3.10) by kω−1 and
using (3.11), (3.15) and (3.17) gives

F =
k

hS
∇ ·
(
hS
k

κ2
E

)
. (3.19)

The same equation can also be derived from (3.14) and (3.18). This shows that F is
parallel to −k and hence to −p, as expected.

Equation (3.19) is valid for general hS (x, y) and k(x, y), at least in the absence of
caustics due to intersecting rays. We will now simplify (3.19) by assuming (i) that
hS = hS (x), (ii) that the angle of incidence is small (i.e. |l0| � κ0), and (iii) that all rays
orginate from a seaward reference location x = x0 with uniform k(x0, y) = (k0, l0),
where k0 > 0 and l0 are constants. The wave amplitude at x = x0 is still allowed to
vary with y. Together, (i) and (iii) imply that l = l0 everywhere, and (ii) allows the use
of the small-angle approximation, in which only terms O(l0/κ0) are retained. Also,
(iii) implies that parallel rays emerge from x = x0 and hence focusing effects in y are
absent. Using l = l0 and (3.15), the wavenumber k > 0 is given by

k(x) = κ

√
1− l20

κ2
≈ κ = κ0

√
hS 0

hS (x)
, (3.20)

in the small-angle approximation. Now, ∇ · (kκ−1) ≈ 0 in the same approximation,
and this can be used to simplify (3.19) to

F =
k

hS

{
1

κ
(k · ∇)

(
hSE

κ

)
+

(
hSE

κ

)
∇ ·
(
k

κ

)}
≈ k

hSκ
(k · ∇)

(
hSE

κ

)
. (3.21)

Using (3.15) again, we see that hS
3/2E is constant along rays in the absence of
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dissipation. By (3.16) this implies that a ∝ hS
−5/4 in this case, which quantifies the

amplitude growth of the waves. Using (3.20) and (3.15) the components of F can be
given explicitly as

Fx =
1

hS
3/2

∂

∂x
(hS

3/2E) +

√
hS

hS 0

l0

κ0

∂E

∂y
, Fy =

1

hS
√
hS 0

l0

κ0

∂

∂x
(hS

3/2E). (3.22)

Following LH70a, b, one could now consider a saturation criterion such that a = const.
after the onset of breaking. By (3.16) this means that E ∝ hS and hence F can in
principle be quantified for a given hS (x), subject to care with complications due to
amplitude variations in y and due to the possible switch-off of wave breaking over
the bar trough, where a could sink again below the breaking threshold.

3.3. Mean-flow response: early stage

We now turn the equations for the mean-flow response. Averaging the continuity
equation (3.1) gives

∂h̄

∂t
+ ∇ · (h̄ū+ h′u′) = 0. (3.23)

Introducing the depth set-up ∆h = O(a2) via h̄ = hS + ∆h, noting that ū = O(a2) and
collecting terms at O(a2) then gives

∂∆h

∂t
+ ∇ · (hS ūL) = 0, where ūL = ū+ ūS . (3.24)

Thus the depth set-up changes according to the transport of hS with the Lagrangian-
mean velocity ūL. A suitable boundary condition at x = 0 is ūL = 0. The mean
momentum equation is somewhat more cumbersome to derive and it is perhaps less
clear what its optimal form should be. We will manipulate it into a form in which the
radiation-stress tensor appears, and then we will consider the relation of that stress
tensor toF. Before this, we note the argument given in LH70a, b that shows that the
bottom friction term in (3.2) is still negligible at O(a2), where because of ū = O(a2) it
equals

− cf
hS
∇×

(
|u′|u′
hS

)
. (3.25)

Here u′ comes from the linear solution and for a plane monochromatic wave the
resultant friction force averages to zero. We will assume here that this allows us to
neglect the friction term.

Now, averaging (3.2) without the friction term results in

∂ū

∂t
+ (ū · ∇)ū+ (u′ · ∇)u′ + g∇(h̄+ hB) = F̄ . (3.26)

Introducing ∆h as before means that because hS +hB = hS 0 we have ∇(h̄+hB) = ∇∆h,
and collecting terms at O(a2) then gives

∂ū

∂t
+ (u′ · ∇)u′ + g∇∆h = F̄ . (3.27)

The second term contains u′ from the linear solution, and we can manipulate it as
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follows:

(u′ · ∇)u′ =
1

hS
∇ · (hSu′u′)− 1

hS
∇ · (hSu′)u′ (3.28)

=
1

hS
∇ · (hSu′u′) +

1

hS

∂h′

∂t
u′ (3.29)

=
1

hS
∇ · (hSu′u′) +

∂ūS

∂t
− 1

hS
h′
∂u′

∂t
(3.30)

=
1

hS
∇ · (hSu′u′) +

∂ūS

∂t
− 1

hS
h′F ′ +

g

2hS
∇h′2. (3.31)

Substituting back into (3.27) and rearranging then results in

∂ūL

∂t
+

1

hS
∇ ·
(
hSu′u′ + δ

g

2
h′2
)

+ g∇∆h = F̄
L
, (3.32)

where δ is the unit tensor with components δij . The quantity in brackets is the
radiation-stress tensor S used in LH70a, b. Its components are

Sij = hSu
′
iu
′
j + δij

g

2
h′2. (3.33)

The right-hand side of (3.32) still contains an explicit dissipation term equal to F̄
L
.

However, as pointed out in § 4 of B2000, in the case of slowly varying mean quantities
and a momentum-conserving dissipative force (i.e. a force that derives from a stress
tensor divergence as Fi = h−1σij,j) it turns out that |F̄Li | � |Fi|, by a factor of

O(µ). By taking the scale for |Fi| from (3.14) we see that F̄
L

is in fact negligible in
(3.32). We stress again that this does not hold for arbitrary forces F , but only for
momentum-conserving forces such as those arising in the Navier–Stokes equations.

For instance, F̄
L

would not be negligible in the case of Rayleigh damping, where

F ∝ −u and hence F̄
L∝ −ūL.

Restricting our considerations now to momentum-conserving forces, we finally
obtain

∂ūL

∂t
+ g∇∆h = − 1

hS
∇ · S + F̄

L
= − 1

hS
∇ · S (3.34)

to leading order. This equation together with (3.24) completely describes the mean-
flow response to the waves because the symmetric tensor S is a wave property and
hence depends only on the linear solution.

3.4. Radiation-stress tensor versus effective dissipative force

The last section demonstrated that if {ūL,∆h} are used as variables then the conver-
gence of the radiation-stress tensor S represents the entire wave-induced forcing of
the mean flow (in general, this cannot be achieved in more complicated fluid models,
cf., for instance, the discussion of Coriolis forces in § 8 in Andrews & McIntyre
1978.) However, the mean flow responds to a number of different physical effects
such as wave transience, dissipation, and wave-induced changes in the mean pressure.
All these effects combine to make up S and this makes it hard to disentangle, for
instance, the dissipative effects that alone can produce vortices because of Kelvin’s
circulation theorem.

This is not a problem in the case of the steady homogeneous wavetrain treated
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in LH70a, b. There, the y-derivatives of all mean fields are zero, and hence the
y-component of (3.34) simplifies to

∂v̄L

∂t
=
∂v̄

∂t
+
∂v̄S

∂t
=
∂v̄

∂t
= − 1

hS

∂Syx
∂x

. (3.35)

LH70a, b demonstrated that the right-hand side of (3.35) is precisely due to wave
dissipation and this forms the basis of the successful theory for longshore currents in
this case.

However, in the case of a steady but inhomogeneous wavetrain there is now an
extra term −g∂∆h/∂y on the left-hand side of (3.35), which complicates the problem.
Moreover, the divergence of S is then due to other effects in addition to dissipation.
Finally, for unsteady wave fields the use of Lagrangian-mean velocities can be avoided
no longer, and in addition S then contains further terms to do with wave transience.

For this reason it is convenient to decompose the convergence of S into parts
explicitly linked to the different physical effects. (This mirrors manipulations familiar
from the wave–mean interaction theory of atmospheric flows (e.g. Andrews, Holton,
& Leovy 1985). However, in these cases the mean flow is usually taken to be
axisymmetric.) Specifically, comparing (3.33) and (3.14) we can see that

− 1

hS
∇ · S =

∂p

∂t
−F− 1

2
∇|u′|2 (3.36)

holds, which neatly separates effects due to transience, dissipation, and mean pressure
changes. For instance, in the case of steady non-dissipative waves the only non-zero
term is the last one, which can then be balanced in (3.34) by a layer depth change
∆h = −0.5 |u′|2 without further mean-flow acceleration. This is a form of the familiar
density dilatation effect in acoustics (see Bühler & McIntyre 1998 for a detailed
discussion of this effect in rotating shallow water). Also, for a steady homogeneous
wavetrain the right-hand side of (3.35) is equal to −F· ŷ, which was the case treated
in LH70a, b.

Substituting (3.36) back into (3.34) and taking the curl results in

∂

∂t
∇× (ūL − p) = ∇× (−F) (3.37)

because the irrotational gradient terms make no contribution. This is in fact the O(a2)
version of a finite-amplitude, nonlinear result derivable using generalized Lagrangian-
mean theory (§ 3 in B2000). That theory also shows that, consistent with (3.37), the
surprisingly simple relation

q̄L =

(∇× u
h

)L
=
∇× (ūL − p)

hS
(3.38)

holds to O(a2). Together, (3.37) and (3.38) make obvious the fact that the mean
vorticity generation can always be thought of as arising through the action of an
effective dissipative force equal to −F. (In the generic caseF = −τ−1p, where τ is a
suitable dissipative time scale, this means the effective dissipative force would be equal
to +τ−1p, which makes it easy to visualize the effective dissipative force and its curl.)

If the waves are steady then (3.37) simplifies to

∂

∂t
∇× ū = ∇× (−F) (3.39)



Wave-driven currents and vortex dynamics on barred beaches 329

because both Stokes drift and pseudomomentum are then constant. This equation
retains the simplicity of (3.35) in that there is no coupling to ∆h, which neatly
separates the vortical mean flow from the rest of the possible mean-flow dynamics
(note that the full mean-flow equations (3.24)–(3.34) can support mean-flow gravity
waves). Thus, by modelling or measuring the effective dissipative force −F one can
deduce the mean-flow vorticity generation. The modelling could be achieved by the
ray-tracing theory described before, whereas measuring −F in a numerical model can
be achieved indirectly by computing the approximate remainder of (3.14) (cf. B2000).

In summary, the net result of the wave–mean interaction theory described so far
is that in the early stage of the evolution the mean vorticity grows according to
(3.37), or to (3.39) if the wavetrain is steady. The curl of −F is non-zero because of
the envelope structure of the wavetrain, and this leads to the typical dipolar mean
vorticity pattern shown previously in figure 1 and figure 3.

3.5. Mean-flow response: later stage

So far the focus has been on the early stage of the mean-flow evolution, in which the
flow starts from rest and the mean vorticity grows at a rate proportional to O(a2) in
response to the wave dissipation (cf. (3.39)). The asymptotic small-amplitude theory
for this early stage is strictly valid only for t = O(1) and hence the generated mean
vorticity is never larger than O(a2), which was seen to imply that bottom friction was
negligible. This is quite different from the theory in LH70a, b, in which the early stage
was not considered explicitly. Instead, the theory in LH70a, b aimed to solve directly
for a final state in which bottom friction and wave forcing balance each other (subject
to additional horizontal momentum diffusion). The final longshore mean velocity v̄
turned out to be O(a), though it had to be small compared to the O(a) wave velocity
|u′| in order for the bottom friction term to take a manageable form.

It is highly desirable to extend the theory given here to allow for O(a) mean-flow
velocities as well. This will bring in bottom friction as well as the nonlinear vortex
dynamics described in § 2. As the mean vorticity grows as O(a2t) in the early stage,
O(a) mean-flow velocities are achieved over t = O(a−1). In principle, an asymptotic
theory valid for amplitude-dependent time intervals requires a singular perturbation
analysis. However, the present situation seems to be simple enough to arrive at the
most important results by inspection, which is what we seek to do now.

For simplicity we will consider only a steady wavetrain. In the early stage we
utilized the following scaling assumptions for the mean-flow evolution:

t = O(1) : ūL = O(a2), ∆h = O(a2),
∂

∂t
= O(1). (3.40)

The first task is to arrive at a later-stage scaling for ∆h. Vortices with ūL = O(a) require
∆h = O(|ūL|2) = O(a2) to achieve cyclostrophic balance. Larger, O(a) contributions

to ∆h would have to be associated with mean-flow gravity waves, which operate on
time scales of O(1). Such waves could perhaps be driven to some extent by unsteady
wavetrains. However, they are not likely to interfere significantly with the much slower
vortex dynamics, which occurs over an advective, nonlinear time scale t = O(a−1). We
will hence neglect all mean-flow gravity waves. This can be achieved by the following
scaling assumptions for the later-stage mean-flow evolution:

t = O(a−1) : ūL = O(a), ∆h = O(a2),
∂

∂t
= O(a), (3.41)

where the last item fixes the slow, advective time scale for the evolution.
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Now, the original linear O(a) waves are not affected by an O(a) mean flow, as their
structure depends only on the O(1) background state. Therefore all the equations for
u′, h′ and the wave properties E, ūS ,F etc. remain valid in their original form. (Note
that we continue to neglect the self-induced shock formation of the shallow-water
waves over a time scale t = O(a−1). This is possible because of the fixed, O(1) travel
time of the waves towards the beach.) As an aside, we note that ūS = O(a2) implies
that |ūL| � |ūS | and therefore ū ≈ ūL at O(a), i.e. the Stokes drift is now negligible.

Using (3.41) in the continuity equation (3.23) and collecting terms at leading order
shows that

∇ · (hS ūL) = 0 (3.42)

holds to O(a) (as well as to O(a2)). The manipulation of the mean momentum equation
(3.26) is changed only by keeping the term (ū·∇)ū on the left-hand side and by keeping
the friction term from (3.2) on the right-hand side. Abbreviating the friction term by
−B and using that (ū · ∇)ū = (ūL · ∇)ūL to O(a2) now, the result is a new version of
(3.37) (for a steady wavetrain):

∂

∂t
∇× ūL + ∇× [(ūL · ∇)ūL] = −∇× (F+ B). (3.43)

Note that all terms in this equation are O(a2) by (3.41). Using (3.42) this can be
re-written as (

∂

∂t
+ (ūL · ∇)

) (∇× ūL
hS

)
= −∇× (F+ B)

hS
, (3.44)

which is also in agreement with a finite-amplitude relation derivable in GLM theory
(B2000).

Finally, the bottom friction force term is

B =
cf

hS
|u|u (3.45)

at O(a2). The nonlinear term |u| makes it hard to write B simply in terms of u′ and
ūL. Outside the wavetrain B is simply given in terms of ūL. Inside the wavetrain one
can follow LH70a, b and make the ad-hoc assumption that |u′| � |ūL| and derive an
expression for B based on this and on a very simple wave structure; this is detailed
in an Appendix. An expression for B valid throughout the domain is then

B =
cf

hS

2

π
u′max ū

L ·
(
kk

κ2
+ δ

)
+
cf

hS
|ūL|ūL, (3.46)

where u′max = ac is the maximum velocity amplitude of the wave.
Combining (3.42) and (3.44), we see that the slow evolution of the later-stage mean

flow does indeed obey the rigid-upper-lid dynamics discussed in detail in § 2. The
equations derived here allow us to draw fairly definite conclusions about the scaling
of the mean-flow behaviour with respect to wave amplitude a. This is very useful, not
least because the direct numerical simulations reported in § 4 had to be run with very
small a. The main observation (as already briefly noted in § 2) is that the later-stage
mean-flow dynamics (3.42) and (3.44) is symmetric under the scale transformation
a → αa and t → α−1t for α > 0. In other words, the later-stage mean-flow dynamics
is self-similar in amplitude a. The early-stage dynamics of both linear waves and
mean-flow response is also symmetric, but to a different scale transformation a→ αa
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and t → t. Finally, the transition time t′ from early to later stage scales as O(a−1),
and hence t′ → α−1t′.

An example can now make the overall picture clear. Consider the time evolution
of a flow in response to a steady wavetrain with a certain amplitude a. Now consider
a second flow in response to the same wavetrain but with twice the amplitude (i.e.
α = 2). The early-stage mean-flow vorticity forcing in (3.37) will be increased by
a factor of four. However, this early stage only lasts half as long now, so that the
overall amplitude of the mean-flow has only doubled. The later-stage mean-flow vortex
dynamics will hence occur at a doubled amplitude and doubled speed. Therefore, we
see that the net effect of doubling the wave amplitude is a doubling of the resultant
longshore current velocities.

4. Numerical simulations
We present direct numerical simulations of both waves and vortices in a nonlinear

shallow-water model with bottom topography. Our limited aim, at this stage, was to
illustrate and cross-check our theoretical predictions for the dynamics of a vortex
couple and for current dislocation on barred beaches. Therefore, only highly idealized
scenarios (e.g. in terms of topography and shoreline boundary conditions) have been
studied, and no claim is made for their quantitative applicability to real beaches,
though we believe that this could be achieved in future extensions of this work.

A well-known constraint on shallow-water models in the present context is the
self-induced shock formation of waves, which is unrealistic for incoming deep-water
waves. This shock formation is rapid (e.g. a wave with amplitude a = 0.1 breaks after
just a single wavelength of propagation) and it severely limits the wave amplitudes
that can be achieved if non-breaking propagation over several wavelengths is desired.

In simulations with homogeneous wavetrains it is possible to overcome this difficulty
by moving the seaward boundary and the wavemaker very close to the breaking region
(e.g. Kobayashi & Karjadi 1996). However, in our simulations it was essential that
the seaward boundary and wave-making region were well separated from the wave-
breaking region in order not to interfere with the vortex dynamics there. This explains
the necessary use of an unrealistically small wave amplitude a = 0.015 below. We
suggest that this artificial constraint could be overcome in future work by using a
hybrid model that solves the ‘modified’ shallow-water equations of Bühler (1998) in
the deep-water region whilst reverting to the standard equations in the surf zone.

4.1. Model details

A shock-resolving finite-volume shallow-water model was used to solve the continuity
equation (3.1) and the momentum equation (3.2) in flux form, which is

∂hu

∂t
+ ∇ ·

(
huu+ δ

g

2
h2
)

= −gh∇hB + h∇φw + hF − cf |u|u, (4.1)

where φw is a forcing potential for the waves. No explicit dissipative force F was
present in the model. However, the model produces dissipation inside the shocks,
where the usual hydraulic jump conditions apply to enforce local conservation of
mass and momentum. This means that the model behaves as if F = 0 in smooth
regions, but F 6= 0 in shocks (apart from a small amount of numerical diffusion
on the grid scale). The upshot is that the model effectively integrates (4.1) with a
dissipative force F that is significant only in shocks, where the waves break. Because
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Figure 4. A planform of the numerical domain. Note that the forcing centre x0 has been shifted
for ease of presentation even though x0 was the same in all cases.

F is momentum-conserving, the theory described in § 3.3 applies to the numerical
integrations.

Because the model resolves the waves, it is quite costly to run long simulations
that also capture the mean-flow vortex dynamics, but it was still possible to perform
all runs on workstations. The model itself is a slope-limited second-order solver on
a uniform Cartesian grid. A Roe-approximate method is used to compute fluxes at
cell boundaries. Fluxes for both directions over the entire grid are computed, and
the cell values are updated simultaneously over the entire grid at each time step. The
bottom topography, bottom friction, and wave forcing are incorporated by a splitting
method. A predictor–corrector method ensures that the computation is second-order
in time.

A crude radiating boundary was implemented at the seaward edge (where the still
water depth is hS 0) as a relaxation layer, relaxing the depth to hS 0 and the velocity to
zero. This had no discernible effect on the shoreward-propagating surface waves or
on the ensuing vortex dynamics. For simplicity, the other boundary conditions were
chosen as periodic in the longshore direction and reflecting at the beach. Indeed,
there is no shoreline per se, rather the still water depth is made 0.05hS 0 at the
shoreward edge to break all but the weakest waves. Whilst convenient and simple,
it should be noted that this procedure neglects all effects due to realistic shoreline
movement, which is likely to affect the dynamics in the immediate vicinity of the
shoreline.

A planform of the model appears in figure 4. The waves are forced by taking the
finite-difference gradient of the potential φw(x, t). This makes the forcing approxi-
mately curl-free, sidestepping a disruption of the vortex dynamics. The form of the
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Parameter Meaning Formula or value

CFL Courant–Friedrichs–Lewys number 0.98

dt Time step CFL
wavespeed

1

1/dx+ 1/dy
s

dx x grid spacing 1 m
dy y grid spacing 3 m
C Cross-shore dimension 200 m
L Alongshore dimension 498 m
hS 0 Still water depth at seaward boundary 4 m
g Acceleration due to gravity 9.8 m s−1

— Relaxation rate at seaward damping layer 0.63 s−1

cf Bottom friction coefficient used in (3.45) 0.01

Table 1. Global model parameters with interpretation and value. The quantity ‘wavespeed’ in the
second row is the maximum shallow-water wavespeed computed at each time step by the program.
As a result, dt changes during integration; it is the CFL number which remains constant.)

forcing potential in the inhomogeneous case is

φw(x, t) = a
2 ghS 0

3
R(t) sin(ωt) cos(kx+ ly) cos2

(
π

2

x′

xs

)
exp

(
−2

(
y′

ys

)2
)
. (4.2)

This potential generates both a shoreward- and a seaward-propagating wavetrain,
which is better behaved numerically than forcing a single wavetrain (cf. Bühler
& McIntyre 1998). The seaward-propagating waves are absorbed at the seaward
boundary. Here xs, ys are the envelope scales and x′, y′ are local coordinates measured
from the wave-forcing centre x0, y0. The waves propagate at an angle θ = arctan(l/k),
and in the inhomogeneous case the local coordinates were in fact rotated by θ, as
shown in figure 4. The function R(t) represents a smooth ramp function which is
turned on at t = 0 and saturates to unity within a couple of wave periods.

In the homogeneous case there is no alongshore envelope, and the forcing potential
is (4.2) without the last term and with x′/xs replaced by x/xs. In both cases the forcing
potential is zero outside the forcing region indicated by the shaded boxes in figure 4.
Global model parameters are listed in table 1 along with their associated values. The
wavelength for the simulations was chosen by balancing numerical cost against the
requirement of achieving a spatial scale separation between waves and mean fields
(note that the ray-tracing theory in § 3.2 showed that the effective dissipative force
−F does not depend on the wavelength). We found that about 20 grid points per
wavelength were required to resolve a propagating wave without excessive numerical
diffusion. The choices for all the wave parameters are summarized in table 2.

4.2. Planar beach

To prepare for the barred-beach simulations the scheme was first tested on a simple
planar beach, with profile hB(x) chosen as two straight lines: hB = 0 for x < −125 m,
whilst for x > −125 m hB grows linearly to hB = 0.95hS 0 = 3.8 m at the shoreline
x = 0. Typical images of homogeneous and inhomogeneous wavetrains respectively
are shown in figure 5. These illustrate the refraction as well as the amplitude decay
due to shock-induced dissipation. They also show that the discontinuous topography
slope at x = −125 m leads to some weak numerical oscillations there.

In figure 6 we look at the evolution of the Eulerian-mean longshore current, which
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Parameter Meaning Value Value
(Homogeneous) (Homogeneous)

a Amplitude of forced waves 0.015 0.015
θ Angle of incidence 15◦ 15◦
κ Magnitude of wavenumber vector 0.2913 m−1 0.3034 m−1

λ Wavelength = 2π/κ 21.56 m 20.70 m
ω Forcing frequency =

√
ghS0 κ 1.82 s−1 1.90 s−1

x0 Cross-shore centre of wave forcing −150 m −150 m
y0 Alongshore centre of wave forcing 250 m 250 m
xs Envelope scale for φw λ λ
ys Envelope scale for φw ∞ 3λ

Table 2. Wave parameters, interpretation and value.
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Figure 5. Layer height h + hB after 200 wave periods on a planar beach with bottom friction:
(a) homogeneous wavetrain; (b) inhomogeneous wavetrain. The weak impact of the discontinuous
topography slope can be made out at x = −125 m.

is defined as the y-averaged alongshore velocity v. (The mean velocity scales as O(a)
in the later, friction-controlled stage (cf. LH70a, b and § 3.5 here) and hence Stokes
corrections (which are O(a2)) become negligible then. Therefore, one can note that ū
and ūL are approximately equal at this stage.) The wave breaking extends all the way
to the shoreline on this beach, and in response we see the build-up and saturation of
a broad current in the homogeneous case in (a). In accordance with LH70a, b, the
current maximum forms roughly at the onset of wave breaking. The current does not
go to zero at the shoreline boundary because of the finite water depth and reflecting
boundary condition there. There is also a spurious weak counter-current near the
sea-side boundary condition, which has been forced by the weak dissipation of the
seaward-going wavetrain generated by the wavemaker at x = −150 m.

The longshore current in the inhomogeneous case in figure 6(b) is much weaker, by
a factor of about 20. This is explained in part by the Gaussian wavetrain envelope in
(4.2), which in the present case reduces the wave-induced influx of y-momentum by a
factor of about 5. Also, the depicted longshore current is now the y-average over an
inhomogeneous, slowly varying mean flow, a significant part of which lies outside the
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Figure 6. Growing longshore currents after 200, 500, 800, and 1200 wave periods on a planar beach
with bottom friction. The bottom topography is also depicted. y-averaged alongshore velocity v
for (a) a homogeneous wavetrain, and (b) an inhomogeneous wavetrain, with strongly reduced
amplitude scale.

wavetrain. This means that the scaling of LH70a, b for the bottom friction term does
not apply in this case, and so there is no obvious link between incoming momentum
flux and current peak amplitude in the inhomogeneous case.

The weaker current amplitude also makes obvious the numerical oscillations caused
by the discontinuous topography slope at x = −125 m. This emphasize the importance
of a continuous topography slope, which we took care to observe in the barred-beach
simulations below.

4.3. Barred beach

A very simple topography profile hB(x) with continuous slope was chosen here:

hB(x)

hS 0

=


0, x < −120

0.75 sin2(π(x+ 120)/40), −120 < x < −100
0.5 + 0.25 cos2(π(x+ 100)/100), −100 < x < −50

0.5 + 0.45 sin2(π(x+ 50)/100), −50 < x < 0,

(4.3)

where x is in m and hS 0 = 4 m. So, the bar crest rises sharply to 75% of hS 0 at
x = −100 m, then falls to 50% in the trough at x = −50 m, before rising again to
95% at the shoreline x = 0. No detailed similarity with a real beach was intended,
though these numbers were roughly motivated by the topography encountered in the
observations at Duck, North Carolina (e.g. Church & Thornton 1993).

The wave breaking now occurs mainly over the bar crest at x = −100 m, with
a weaker secondary breaking region near the shoreline. The dynamics of a vortex
couple on this beach is displayed in a sequence of PV images in figure 7. In order
to show the vortex dynamics most clearly, this particular simulation was performed
without bottom friction, i.e. cf = 0 in this run only. Also, the region x > −30 m
nearest to the shoreline is not shown because of the very large PV values there (due
to the factor 1/h in (3.3)) and also because of the noted sensitivity of this region to
the shoreline boundary condition.

The panels very clearly show three distinct phases in the vortex couple evolution:
growth over the bar crest, propagation towards the shoreline, and finally separation
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Figure 8. Simulations with a homogeneous wavetrain after 1200 wave periods on a barred beach
with bottom friction. (a) PV contours for x < −30 m. Solid or dotted contours correspond to
positive or negative PV, respectively. (b) y-averaged alongshore velocity v.

along the shore. This is in good agreement with the theoretical expectations discussed
earlier.

Finally, we show simulations with bottom friction, aiming at a saturated, nearly
steady state for the barred beach. The results for homogeneous and inhomogeneous
wavetrains are displayed in figure 8 and figure 9, respectively, which are both taken
after 1200 wave periods. In accordance with LH70a, b, the homogeneous case shows
a clearly defined, quite narrow current located over the bar crest, where most of the
wave breaking occurs. There is also a weaker secondary peak at the shoreline, where
the remaining wave breaking occurs, and, as before, there is a spurious counter-current
near the seaward boundary condition.

In the inhomogeneous case in figure 9, however, there is a much broader current
(again, with much reduced amplitude) now located over the bar trough instead of the
bar crest. This appears to be a clear example of possible current dislocation due to
the dynamics of a vortex couple that is forced by an inhomogeneous wavetrain.

In summary, we have illustrated with idealized simulations how vortex dynamics
and concomitant current dislocation effects can play a significant rôle on barred
beaches when inhomogeneous wavetrains are considered. As noted before, future
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Figure 9. Simulations with an inhomogeneous wavetrain after 1200 wave periods on a barred
beach with bottom friction. (a) PV contours for x < −30 m. Solid or dotted contours correspond
to positive or negative PV, respectively. (b) y-averaged alongshore velocity v. (Note the reduced
amplitude scale.)

direct numerical simulations of less idealized scenarios will require an improved
treatment of the deep-water waves and of the shoreline boundary condition. Such
direct numerical simulations should be useful to guide the design of models for the
vortex dynamics only, in which the inhomogeneous wavetrain dynamics (including
wave breaking) is parametrized.

5. Concluding remarks
We have introduced a new mechanism based on vortex dynamics that offers a

possible explanation for current dislocation on barred beaches. The main restriction
was that we only considered a single wavetrain, or several well-separated wavetrains.
However, many partially overlapping wavetrains seem to be the norm on real surf
zones. This might lead to near-cancellation of vortex couples, and hence to a strongly
diminished capacity for the type of coherent vortex propagation that was envisaged
in the present paper. A study that generalizes our work to apply in such a situation
would be extremely valuable.

From a fundamental theoretical point of view, a study of this kind may require
the development of a theory of forced–dissipative two-dimensional turbulence on a
sloping beach. It would certainly be interesting to see whether typical two-dimensional
turbulence features such as vortex mergers and the concomitant up-scale evolution of
energy will also arise on a sloping beach. This would also address the open problem
of whether selective decay due the factor hS

−1 in the bottom friction term would make
the bar trough a preferred vortex location. We are unaware of fundamental studies of
these problems to date. We have noted that in the absence of forcing and dissipation
some progress can be made on a statistical theory of vortices on a sloping beach
along the lines of Onsager’s original theory for point vortices. Work is currently being
pursued in this direction.

From a numerical point of view, one result of the costly direct numerical simulations
presented here was to verify that the wave dynamics was only weakly affected by
the mean-flow dynamics. This means that a fruitful numerical research direction is
to run a shallow-water model with a rigid upper lid (as in § 2) that is forced by an
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effective dissipative force −F via (3.44). Here F, p and B could be modelled by the
ray-tracing theory detailed in § 3.2. This would allow time-stepping on the advective
time scale t = O(a−1), which would reduce the number of time steps by two orders
of magnitude. This should be enough to allow a numerical study of a surf zone with
many wavetrains, even with a two-dimensional hS (x, y). As this requires a completely
different numerical code, we have not yet pursued work in this direction.

We note in passing that fundamental theoretical and numerical work on two-
dimensional turbulence in slanted, wedge-shaped domains is also of general interest
outside coastal oceanography. For instance, there appear to be related problems to
do with vortex dynamics in gravitating astrophysical accretion disks, which can have
a pronounced slanted geometry (E. A. Spiegel, personal communication).

Finally, we note that the great practical usefulness of the LH70a, b theory is rooted
in the fact that it allows the simple analytical computation of an average profile
for the longshore current. Such a simple computational method for finding the mean
current is lost once mean-flow vortices are recognized as playing a significant rôle. For
instance, the work presented here shows clearly that the dynamics of these vortices
cannot be modelled by eddy diffusion. Future advances in understanding the average
dynamics of these vortices may lead to a new, but again simple, computational method
for calculating the averaged longshore current on barred beaches.
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graphic Institution (USA) and sponsored by the US National Science Foundation. We
wish to thank Rick Salmon, the director of the 2000 summer study, for his support.
O. B. gratefully acknowledges further financial support from the Nuffield Foundation
(UK) under grant NAL/00034/G. It is a pleasure to acknowledge stimulating cor-
respondence and conversations on this work with Falk Feddersen, Lou Howard, Jie
Yu, and Dump Ling. The comments of an anonymous referee significantly improved
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Appendix
A.1. Derivation of (3.14)

After multiplying (3.6) with h′/hS , averaging and using (3.5) we obtain

∂ūS

∂t
+

1

hS
u′∇ · (hSu′) +

g

2hS
∇h′2 =

1

hS
h′F ′. (A 1)

The second term can be re-written exactly as

1

hS
u′∇ · (hSu′) =

1

hS
∇ · (hS u′u′)− (u′ · ∇)u′ (A 2)

=
1

hS
∇ · (hS u′u′)− 1

2
∇|u′|2 + u′ × ẑ(∇× u′) (A 3)

=
1

hS
∇ · (hS u′u′)− 1

2
∇|u′|2 +

∂

∂t
(ξ′ × ẑ(∇× u′))− ξ′ × ẑ(∇× F ′),

(A 4)

where the last line uses (3.8) and (3.7). Substituting (A 4) back in (A 1), using (3.12)
and (3.12) with u′j replaced by F ′j finally gives (3.14).
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A.2. Derivation of (3.46)

Outside the wavetrain u′ = 0 and hence the last term in (3.46) is obtained. Inside the
wavetrain we assume that |u′| � |ūL| and |u′| � |ū| and that

u′ =
k

κ
ac sin θ with phase θ ∈ [0, 2π]. (A 5)

In general, we have

|u| = |ū|+ |u|′, |u|u = |ū| ū+ |u|u′, (A 6)

due to |ū|u′ = 0. The nonlinear term |u| is

|u| = √|u′|2 + 2u′ · ū+ |ū|2 ≈ |u′|+ u′ · ū
|u′| (A 7)

after expanding the root. Combining (A 5)–(A 7) and | sin θ| = 2/π then produces the
first term in (3.46) with ūL replaced by ū. Using that aū = aūL + O(a3) then allows
replacing ū by ūL whilst retaining O(a2) accuracy.
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