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ABSTRACT

An expression is derived for the quasi-horizontal part of the mass transport across a given potential vorticity
contour on an isentropic surface, in terms of the rate of change of absolute circulation around the contour and
frictional and diabatic terms on the contour. It is deduced that this mass transport is small if the circulation
around the contour of interest is steady and if frictional forces and diabatic effects can be neglected on the
contour. In a single-layer model the corresponding result is that the total mass transport is zero. In a three-
dimensional model the implication is that the dominant mass transport across a vortex edge that tilts in the
vertical occurs through vertical advection. It is argued that these constraints on the mass transport are relevant
to the estimation of transport across the edge of the stratospheric polar vortex, and the relationship to other
similar results that have appeared recently in the literature is discussed. In addition, a new expression is derived
for the total mass flux across a three-dimensional surface whose intersection with each isentropic surface is a
potential vorticity contour. This expression generalizes previous results that were confined to steady flows and
hydrostatic scaling.

1. Introduction

The polar vortex plays an important role as a partial
barrier to transport in the lower stratosphere. There has
been much interest recently in quantifying the transport
across the edge of the vortex, for example, to assess the
impact of chemical processing and ozone depletion at
high latitudes on the ozone distribution in midlatitudes
(e.g., McIntyre 1995; Sobel et al. 1997; Mo et al. 1998).

Since the vortex edge can, under many circumstances,
be defined on each isentropic surface by a set of po-
tential vorticity (hereafter PV) contours, there is some
advantage in quantifying transport relative to PV con-
tours. What is of most interest for transport is the flux
of chemical tracers across the PV contour (or more gen-
erally the flux across a surface made up of PV contours
on each isentropic surface). Knowing the mass flux
across a PV contour is not sufficient to determine the
tracer flux across that contour, since there may be var-
iations in the tracer mixing ratio along the contour.
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Nonetheless, if the mass flux can be estimated, this puts
a useful constraint on the tracer flux. A corresponding
statement holds for mass and tracer fluxes across a sur-
face made up of PV contours. In calculating the total
mass flux across the vortex edge (or any other surface
made up of PV contours on each isentropic surface) it
is natural to divide the flux, purely geometrically, into
two parts. The first part, FH say, is a quasi-horizontal
flux across PV contours that arises from advection along
isentropic surfaces. The second part, Fu say, is a diabatic
quasi-vertical flux across isentropes and is generally
nonzero for a vortex edge that slopes in the vertical.
The total mass flux is then given by

F 5 FH 1 Fu. (1)

The quasi-vertical part Fu is zero in two-dimensional
models, but in three-dimensional models, unless the vor-
tex edge does not slope in the vertical, its contribution
to the mass flux can be significant [see Mo et al. (1998)
who studied quantitative examples in some idealized
theoretical models of steady flows].

In the following we first derive an expression for FH

and show that, under certain plausible assumptions, it
is small, indeed much smaller than a naive estimate
based on typical horizontal velocities would suggest.
The results we discuss are simply based on the balance
of mass and potential vorticity within appropriate con-
trol volumes and do not require new coordinates to be
defined. However, we note that Nakamura (1995) has
set out in some detail a formalism for quantifying trans-
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port relative to chemical tracer contours or PV contours
by making an explicit coordinate transformation (to an
‘‘equivalent latitude’’ coordinate). We then derive gen-
eral expressions for both parts of F through a three-
dimensional vortex edge. These general expressions do
not rely on isentropic coordinates or on hydrostatic scal-
ing, and they allow a useful cross-check on our first
result and on results published elsewhere.

2. The mass transport relation for FH

We use the hydrostatic primitive equations in isen-
tropic coordinates and the usual hydrostatic expression
Q [ (]y a/]x 2 ]ua/]y)/s for the potential vorticity,
where ua 5 (ua, y a, 0) is the absolute horizontal velocity
(i.e., including velocity contributions from the earth’s
rotation), s is the isentropic density, and where the de-
rivatives are performed at constant potential temperature
u. On each isentropic surface, labeled by u, we choose
a particular PV contour G(u, t) that lies in the vortex
edge on that surface. We assume that on G(u, t) the PV,
Q, is equal to QG(u). The absolute circulation C (u, t)
around G(u, t) satisfies the identity

C (u, t) [ u · ds 5 sQ dx dy. (2)R a EE
G(u,t) AG

The second integral in (2) is taken over the area A G

enclosed by G(u, t).
Using the second equality in (2), the time derivative

of C (u, t) can then be evaluated as

]C (u, t) ](sQ)
5 dx dyEE]t ]tAG

1 sQu · n̂ ds, (3)R G
G(u,t)

where uG is the horizontal velocity of the PV contour
G normal to itself and where n̂ is the horizontal outward
unit vector normal to the PV contour. The first term on
the right-hand side can be rewritten using the flux form
of the PV evolution equation,

](sQ)
1 = · [sQu ] 1 = · J 5 0, (4)H]t

where uH 5 (u, y , 0) is the horizontal velocity and

]y ]u
J [ u̇ , 2 u̇ , 0 1 (2G , G , 0)2 11 2]u ]u

(5)| | | |
z z}}}}}}}} }}}}}}

[J [Ju̇ G

is the nonadvective PV flux defined by Haynes and
McIntyre (1987, hereafter HM87). The diabatic part

depends on diabatic heating [ Du/Dt as well as˙J uu̇

on vertical shear. The part JG due to a nonconservative
body force, G, is simply given in terms of the horizontal

components G1 and G2 of that force. Note that J has no
cross-isentropic component. In real three-dimensional
flow the part JG is perhaps due to gravity wave dissi-
pation or to vertical momentum transport by localized
patches of turbulence or to the direct effects of molec-
ular diffusion of momentum. The other part, , is as-Ju̇

sociated with quasi-vertical advection of momentum by
the diabatic, cross-isentropic velocity.

Substituting in (3) and using the two-dimensional di-
vergence theorem then gives

]C (u, t)
5 sQ(u 2 u ) · n̂ dsR G H]t G(u,t)

2 J · n̂ ds (6)R
G(u,t)

5 Q (u) s(u 2 u ) · n̂ dsG R G H
G(u,t)

2 J · n̂ ds, (7)R
G(u,t)

where QG(u) can be moved outside the integral because
Q 5 QG(u) everywhere along the PV contour. The first
integral on the right-hand side represents the PV ac-
cumulation inside the contour due to the advection of
PV across the contour with relative velocity (uG 2 uH).
Because of the fact that Q is constant and equal to QG(u)
on the contour, this part of the rate of change is precisely
equal to QG(u) multiplied by the horizontal mass flux
FH (per unit ‘‘vertical’’ depth as measured by a unit step
in potential temperature) across the contour, defined by

F (u, t) [ s(u 2 u ) · n̂ ds. (8)H R G H
G(u,t)

Here, FH is defined to be positive for flux into the vortex.
We see that combining (8) with (6) yields

]C (u, t)
5 Q (u)F 2 J · n̂ ds, (9)G H R]t G(u,t)

relating the quasi-horizontal mass flux across the PV
contour and changes of the circulation around the PV
contour. [This result has been noted independently by
Thuburn and Lagneau (1999).]

Note that all that we have written so far applies with
minor modifications to a single-layer system, for ex-
ample, to a suitable shallow water numerical model. In
such a single-layer system the nonadvective PV flux due
to forcing JG is the same as in (5), that is, it is equal
to k 3 G, where k is the unit vector perpendicular to
the layer and G is any nonconservative body force, for
example, friction, perhaps associated with a model
small-scale hyperdiffusion. The diabatic effects are usu-
ally modeled simply by adding a suitable mass source–
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sink term in the single-layer continuity equation, while
neglecting the corresponding momentum source–sink
terms in the momentum equations. (This corresponds to
the injection or extraction of fluid with velocity exactly
equal to the local fluid velocity.) In other words, the
diabatic PV flux in (5), which is due to the quasi-Ju̇

vertical transport of momentum, is usually neglected in
a single-layer system.

In many numerical simulations of the stratospheric
polar vortex, both two-dimensional and three-dimen-
sional simulations (e.g., Juckes 1989; Haynes 1990), it
appears that the flow settles down to a quasi-equilibrium
state in which the vortex edge is defined over a sub-
stantial length of time by a set of PV contours. If we
take one such PV contour, on a given isentropic surface,
we might reasonably argue that the circulation around
it is steady and hence deduce that in (9) the left-hand
side is zero and hence that the mass flux across the
contour is proportional to the nonadvective flux contri-
bution, that is

1
F (u, t) 5 J · n̂ ds. (10)H RQ (u) G(u,t)G

Even if the circulation were not exactly steady, a
similar equation could be derived in the time average.
We note the following results that follow from (10).

1) If J were identically zero on G, then (10) would
imply that the net quasi-horizontal mass flux FH (or
its time average) across G is identically zero.

2) In three-dimensional flow, if the body force G van-
ishes on the contour, then the net quasi-horizontal
mass flux across G is proportional to ) ds. AsJ · n̂u̇

noted by HM87, under quasi-geostrophic scaling the
flux is small in comparison with typical isentropicJu̇

advective fluxes of PV, essentially because of the
smallness of the vertical velocity compared to naive
estimates from the mass-continuity equation. Thus
the net quasi-horizontal mass flux across G is smaller
by a factor of Ro than a naive order-of-magnitude
estimate, also based on quasi-geostrophic theory,
that is simply based on typical isentropic velocities
and, hence, does not recognize (10) explicitly.

3) More generally, using the estimate ; RoU 2/L ;|J |̇u

Ro2Uf given by HM87, where Ro is the Rossby
number, U is a typical velocity, and L is a typical
horizontal length scale, we have

G
2F ; sL max Ro U, , (11)H 1 2f

where G is a typical magnitude for G and f is a
typical magnitude for the Coriolis parameter.

3. Mass transport relations for both parts of F on
three-dimensional vortex edges

We now consider the total mass flux into the vortex
F, which by (1) is the sum of the previously considered

quasi-horizontal flux FH and the quasi-vertical flux Fu.
An explicit expression for Fu valid for finite-amplitude
undulations of the vortex edge was given by Mo et al.
(1998), which in Cartesian coordinates is [cf. their (4.3)]

21
]u

F 5 r u̇ dx dy. (12)u EE 1 2]z

Here, the integral is performed over the edge surface of
the vortex, and dx dy denotes the horizontal projection
of the surface element, defined to be positive if the edge
surface slopes outward with increasing altitude. Using
standard quasigeostrophic scaling arguments, it can be
shown that the flux (12) across a sloping vortex edge
is O(Ro21) larger than the horizontal flux (11), if G is
zero. However, the analysis leading to (12) in Mo et al.
(1998) was restricted to steady flows and hydrostatic
scaling.

It is possible to derive a (coordinate-independent) ex-
pression for both parts of the mass flux F 5 FH 1 Fu

without these restrictions, as we shall show now. This
makes it self-evident that there are no essential com-
plications associated with allowing unsteady flows and
nonhydrostatic scaling.

We now use the three-dimensional Rossby–Ertel PV
defined by Q [ (za · =u)/r, where the absolute vorticity
za and the gradient operator = now have the standard
meaning in three-dimensional flow and where r is den-
sity in Cartesian coordinates. As before, it is convenient
to use the flux form of the PV equation, now written in
standard Cartesian coordinates as [e.g., HM87, Eq. (3)]

](rQ)
1 = · [rQu] 5 = · [u̇z 1 G 3 =u]. (13)a]t

Multiplying (13) by QG(u)21, it may be shown, using
the definition of as the material rate of change of u,˙u
that

] rQ rQ
1 = · u1 2 [ ]]t Q (u) Q (u)G G

u̇z G 3 =ua5 = · 1 . (14)[ ]Q (u) Q (u)G G

Note that this is simply a restatement of the PV equation
(13) except that the freedom allowed in the definition
of PV (HM87) has been exploited and the PV has been
redefined by multiplying the original by QG(u)21.

We now integrate this equation over the volume V
defined by Q $ QG(u) , uB # u # uT (see Fig. 1). The
bounding surface ]V of this volume is made up of the
surface Q 5 QG(u) , which we might denote by ]VQ and
the remainder, say, ]Vu, comprising the isentropic sur-
face u 5 uT and the isentropic surface u 5 uB, the latter
only if the contour G(u, t) still exists on this isentropic
surface (i.e., it lies above the bottom of the vortex).

Integrating (14) over this region and then taking the
time derivative outside the integral gives
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FIG. 1. Schematic snapshot of a three-dimensional vortex. The top
and bottom boundaries (denoted by ]Vu) are given by the isentropes
u 5 uT and u 5 uB, respectively. The horizontal boundary ]VQ is
marked by the isentropic contours G(u, t). Also indicated is the surface
band between two isentropes u and u 1 du, the corresponding vector
increments ds and db, and the area element dA 5 ds 3 db, all of
which are used in the appendix. Note that the (infinitesimal) width
of the band is strongly exaggerated for illustration.

d rQ rQ
dV 1 (u 2 u ) · n dAE E edt Q (u) Q (u)G GV ]V

u̇z G 3 ¹ua5 · n dA 1 · n dA, (15)E EQ (u) Q (u)G G]V ]V

where n is the outward-pointing unit normal vector and
ue is the velocity of the bounding surface normal to
itself.

Now consider the contributions from the various sur-
face integrals over the vertical part ]Vu of the bounding
surface, on which n is parallel to =u. The contribution
from the second term on the right-hand side disappears
because two of the vectors in the triple product are
parallel. Since ]Vu is made up of isentropic surfaces, it
must be that, on ]Vu, ut 1 ue · =u 5 0 and, hence, that
(u 2 ue) · =u 5 . Using the identity rQ 5 za · =u it˙u
may be shown that the contributions from the second
integral on the left-hand side and from the first integral
on the right-hand side cancel on ]Vu. It follows that the
surface integrals in (15) need only be evaluated over
]VQ, that is, on those parts for which Q 5 QG(u).

Hence (15) reduces to

d rQ
dV 1 r(u 2 u ) · n dAE E edt Q (u)GV ]VQ

u̇z G 3 =ua5 · n dA 1 · n dA. (16)E EQ (u) Q (u)G G]V ]VQ Q

It is shown in the appendix how the volume integral
can be written as a surface integral involving the is-
entropic circulations C (u, t). If we assume that C on
each isentrope is constant in time, then we may equate
the total mass flux to the terms on the right-hand side.
In doing this it is useful to first write ndA 5 dAH 1
dAu, where dAH satisfies =u · dAH 5 0 and dAu satisfies
=u 3 dAu 5 0. Then we have, after a sign change,

r(u 2 u) · n dAE e

]VQ

u̇z G 3 =ua5 2 · dA 2 · dAE H E HQ (u) Q (u)G G]V ]VQ Q

u̇za2 · dA .E uQ (u)G]VQ

(17)

This expression is equal to the total mass flux F. The
first two terms on the right-hand side are just those
considered earlier for FH, and in particular the first can
be argued to be small under small-Ro scaling. The third
term is Fu, and it may be rewritten using the fact that
dAu is parallel to =u as

ru̇
F 5 2 sgn(=u · dA ) |dA |, (18)u E u u|=u|

]VQ

where sgn(=u · dAu) gives a plus or minus sign according
to whether =u and dAu point into the same or into opposite
directions. This gives a minus sign in the generic case, in
which the vortex edge slopes outward with increasing al-
titude while u increases with altitude. Finally, replacing
=u with ]u/]z and 2sgn(=u · dAu)|dAu| with dx dy, we
recover (12), that is, the hydrostatic result of Mo et al.
(1998).

4. Discussion

The results in this paper leading to (11) show that
under certain circumstances the horizontal mass flux FH

across a PV contour on an isentropic surface is a factor
of O(Ro) smaller than might be expected on the basis
of naive scaling arguments based simply on typical hor-
izontal velocities. Similar results, usually starting from
(4) and assuming at that stage that the flow is in steady
state, have been noted by others and are reviewed by
Sobel and Plumb (1999). Such results include those of
Schneider (1987), McIntyre and Norton (1990), and Mo
et al. (1998). Sobel and Plumb’s (1999 hereafter SP)
result is more general, in that the flow is not assumed
to be perfectly steady, but the mass enclosed within each
PV contour that lies within G is assumed to be steady.
Using the additional assumption that J 5 0 everywhere,
these authors showed that the net mass source within
all contours must be zero, which implies that FH 5 0
across all contours. Our results, following from (9)
above, focus directly on FH across the bounding contour
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G and are based on a different set of assumptions, name-
ly on the steadiness of the circulation C and on the
vanishing of J only on G itself. Situations can occur in
which both sets of assumptions apply, but we regard
our results and those of SP as mainly complementary.
The result (9) has been noted independently by Thuburn
and Lagneau (1999), but they then derive constraints on
the mass source within the contour, rather than the mass
flux across the contour.

Unlike FH, the vertical flux Fu can only be computed
using a three-dimensional vortex edge. This part of the
flux has received considerably less attention than FH,
and here our results leading to (18) offer a useful cross-
check and generalization of the results of Mo et al.
(1998).

In conclusion, we return to the question of whether
(10) is useful only when it is applied to contours in the
vortex edge. The simplest form of our results applies
when the circulation around G is exactly steady. We have
argued that this is likely to be a good approximation for
contours in the vortex edge in a flow that has reached
a statistical equilibrium. Of course, (10) should apply
in the time average to any contour, including contours
in the surf zone, if the flow has reached statistical equi-
librium. There might, however, be circumstances under
which we can argue that the flux J is systematically
smaller in the vortex edge than in the surf zone. For
example, this seems plausible in a single-layer numer-
ical model, where J is associated with small-scale dis-
sipation, which is likely to be most active in the surf
zone. Under such conditions it follows that the time
average mass flux across PV contours in the vortex edge
will be systematically less than that across PV contours
in the surf zone. Explicit single-layer numerical cal-
culations that demonstrate such behavior are presented
and discussed in some detail in SP. However, in realistic
flows, where J might be due to gravity wave drag, for
example, then it would seem to be far more difficult to
argue that the time average of the right-hand side of
(10) would be systematically less in the vortex edge
than in the surf zone.

A final point concerns the relation of mass transport
and tracer transport. The total tracer flux may be ex-
pressed as the sum of two terms, the first the product
of the average tracer mixing ratio and the the total mass
flux, the second an average of the product of local fluc-
tuations in mass flux and tracer mixing ratio around the
contour. The results here constrain the size of the first
term and suggest that it is smaller on the vortex edge
compared to the surf zone. However, it is difficult to
make any prediction of the comparative size of the sec-
ond term in the vortex edge or in the surf zone, except
to note that in the vortex edge one might expect good
correlations between PV and tracer contours and, hence,
that the fluctuations in tracer mixing ratio around PV
contours are quite small there.
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APPENDIX

The PV Volume Integral in (16)

Using the identity rQ [ (= 3 ua) · =u, the PV vol-
ume integral in (16) can be converted to a surface in-
tegral given by (cf. HM87)

(= 3 u ) · =u u 3 =ua adV 5 = · dVE E 1 2Q (u) Q (u)G GV V

u 3 =ua5 · dA. (A1)E 1 2Q (u)G]VQ

Here, the total boundary ]V has already been replaced
by the horizontal boundary ]VQ because the integrand
vanishes at the isentropic top and bottom boundaries
]Vu.

The contribution to the surface integral in (A1) from
a surface band bounded by two infinitesimally close
isentropes, u and u 1 du, is now calculated (cf. Fig. 1).
The surface element dA can be written as dA 5 ds 3
db, where ds and db are vector increments lying inside
the surface band. The vector increment ds is the line
element along the isentropic edge contour G(u, t), and
the vector increment db connects the two isentropes.
The relations ds · =u 5 0 and du 5 db · =u therefore
hold by construction.

Hence, the relevant integrand in (A1) can be written as

u 3 =u (u · ds)(=u · db)a a· dA 51 2Q (u) Q (u)G G

du
5 u · ds , (A2)a Q (u)G

and the contribution from the infinitesimal surface band
is given by a contour integral around G(u, t) with in-
tegrand (A2). The contributions arising from many such
infinitesimal surface bands can then be integrated in u
to yield

uTu 3 =u dua · dA 5 u · ds .E E R a1 2 [ ]Q (u) Q (u)G(u,t)G G]V uQ B

(A3)

Substituting (A3) in (A1) then gives the final result
uTrQ du

dV 5 C (u, t) , (A4)E EQ (u) Q (u)G GV uB
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where C (u, t) is the absolute circulation around the edge
contour G(u, t) in (A3). It is noteworthy that the identity
(A4) holds for arbitrary functions of potential temper-
ature QG(u) and that it has not been necessary to assume
here that the edge contours G(u, t) are contours of con-
stant PV. However, such an assumption is needed to
relate the time derivative of (A4) to the mass flux, as
was demonstrated below (16).
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